
Temoral Difference Learning in Complex Domains
Smith, Martin C.

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/jspui/handle/123456789/5020

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

http://qmro.qmul.ac.uk/jspui/handle/123456789/5020

Temporal Difference Learning in Complex
Domains
Martin C. Smith

Department of Computer Science

Research Report No. RR-00-01			 ISSN 1470-5559			 January 2000

TEMPORAL DIFFERENCE LEARNING
IN COMPLEX DOMAINS

by
Martin C. Smith

Submitted to the University of London
for the Degree of

Doctor of Philosophy in Computer Science

October 1999

This work is dedicated to

Bethina

Acknowledgements
 I would like to thank my wife Bethina and my parents Margaret and Barry for their
love and understanding throughout my student years. I would also like to thank all at
the QMW Department of Computer Science. Most importantly I would like to thank
my supervisor and friend Don Beal, without whose help, support and encouragement
this thesis would not have been possible.

i

ABSTRACT

This thesis adapts and improves on the methods of TD(l) (Sutton 1988) that were
successfully used for backgammon (Tesauro 1994) and applies them to other complex
games that are less amenable to simple pattern-matching approaches. The games
investigated are chess and shogi, both of which (unlike backgammon) require
significant amounts of computational effort to be expended on search in order to
achieve expert play. The improved methods are also tested in a non-game domain.
In the chess domain, the adapted TD(l) method is shown to successfully learn the
relative values of the pieces, and matches using these learnt piece values indicate that
they perform at least as well as piece values widely quoted in elementary chess books.
The adapted TD(l) method is also shown to work well in shogi, considered by many
researchers to be the next challenge for computer game-playing, and for which there
is no standardised set of piece values.
An original method to automatically set and adjust the major control parameters used
by TD(l) is presented. The main performance advantage comes from the learning
rate adjustment, which is based on a new concept called temporal coherence.
Experiments in both chess and a random-walk domain show that the temporal
coherence algorithm produces both faster learning and more stable values than both
human-chosen parameters and an earlier method for learning rate adjustment.
The methods presented in this thesis allow programs to learn with as little input of
external knowledge as possible, exploring the domain on their own rather than by
being taught. Further experiments show that the method is capable of handling many
hundreds of weights, and that it is not necessary to perform deep searches during the
learning phase in order to learn effective weights

ii

Declaration
The work presented in this thesis is my own and is the result of research and
experiments carried out by myself, with the exception of those parts noted below that
are the results of work done in conjunction with my supervisor.
The majority of the program code used for this research was written by myself,
including all of the temporal difference engine. A few sections, such as the interface
for the chess program and parts of the shogi capture search, were written in
collaboration with my supervisor. The various published papers arising from the
work presented in this thesis were written jointly with my supervisor. Appendix E is
a lightly edited version of a co-authored paper resulting from research undertaken
prior to my PhD.

Table of Contents

iii

TABLE OF CONTENTS

ABSTRACT..1

TABLE OF CONTENTS.. iii

LIST OF TABLES..vi

LIST OF FIGURES...vii

1 INTRODUCTION ...1

1.1 Aims and Objectives...1
1.2 Thesis Structure ..1

2 GAME PLAYING PROGRAMS AND MACHINE LEARNING ..4

2.1 Fifty Years of Computer Chess and Artificial Intelligence ..4
2.2 The Complexity of Chess and the Challenge of Perfect Knowledge ...5
2.3 Machine Learning in Games ..6

2.3.1 Samuel’s checkers player ...6
2.3.2 Neurogammon...7
2.3.3 TD-Gammon ...7

3 TEMPORAL DIFFERENCE LEARNING AND MINIMAX SEARCH.....................................9

3.1 Temporal Difference Learning...9
3.2 Comparison with other Learning Methods ..10
3.3 TD(l) and Games ...10
3.4 Minimax Search and Alpha-Beta Pruning...10

3.4.1 The principal variation...12
3.4.2 Other search regimes..12

3.5 Applying TD Learning to Complex Game Domains ..12
3.5.1 Determining weights for evaluation terms ..12
3.5.2 Using the principal position, rather than the game position ..14

3.6 Learning in the Absence of Expert Knowledge...14
3.6.1 Self-play versus online play..15
3.6.2 Why is search needed in some domains, but not others?..16
3.6.3 Learning in deterministic and non-deterministic games...16

4 A PLATFORM FOR EXPERIMENTAL WORK..18

4.1 The Basic Minimax Search Engine..18
4.1.1 The horizon evaluation and quiescence search...18
4.1.2 Transposition tables ...18

4.2 Multiple Probes of Transposition Tables...19
4.2.1 Hash table saturation ...19
4.2.2 The transposition table experiment..20
4.2.3 The test set used in the experiment...20
4.2.4 Search depths..20
4.2.5 Experimental issues ..21
4.2.6 Results ...22

4.3 Selective Search..24
4.3.1 Alpha-beta is not selective search..25
4.3.2 Selective search methods..25
4.3.3 Search extension heuristics as selective search ..25

4.4 Search Extension Benefits: Comparison and Quantification...26
4.4.1 The performance of search extension heuristics ...26

Table of Contents

iv

4.4.2 The extension rules and test domain..26
4.4.3 The baseline search, horizon evaluation and quiescence search27
4.4.4 Measuring performance ...27
4.4.5 The test set...28
4.4.6 The search extension heuristics ...29
4.4.7 Search extension results ...31
4.4.8 Discussion ...37

4.5 Benefits of the Preliminary Experiments...39
4.6 Shogi and the Shogi-Playing Search Engine ...39

5 LEARNING CHESS EVALUATION COEFFICIENTS...40

5.1 The Relative Value of the Pieces ...40
5.2 Temporal Difference Learning in Chess..40
5.3 The Basic Learning Experiment...41

5.3.1 The search engine ...42
5.3.2 Experimental details ...42
5.3.3 Basic learning results ...42
5.3.4 Basic results from matches using learnt values...44

5.4 Experiments at Various Depths..44
5.4.1 Matches at various depths..46

5.5 Learning Without Search..46
5.6 Discussion ...47

6 LEARNING IN SHOGI..48

6.1 Shogi: One Step Beyond ..48
6.2 The Relative Value of Shogi Pieces...49
6.3 The Shogi-Playing Search Engine ...49
6.4 Applying Temporal Difference Learning to Shogi ...50
6.5 Results from Learning ..50

6.5.1 Weight traces ..51
6.5.2 Main piece values ...52
6.5.3 Promoted piece values..52

6.6 Testing Learnt Values in Match Play...53
6.7 Variation of Learnt Values with Search Depth ...56

6.7.1 Scaling variation with depth ..57
6.7.2 Match results at various depths ...57

6.8 Learning without Search...58
6.9 Discussion ...58

7 LEARNING MORE COMPLEX WEIGHT SETS...60

7.1 Weights for Piece-Square Tables...60
7.2 Weights for Pawn Advancement and Piece Centrality ...60

7.2.1 Weights for pawn ranks ..60
7.2.2 Weights for piece centrality..61
7.2.3 Match results...63
7.2.4 Calculating ‘average’ values ...63

7.4 Weights for Half-board and Full-board Sets ...64
7.4.1 Match results using piece-square values ...67
7.4.2 Ensuring variation in the matches ...68

7.5 Learning Weights for other Evaluation Terms..68
7.6 Learning the ‘Steepness’ of the Squashing Function ..69

8 TEMPORAL COHERENCE AND PREDICTION DECAY ..72

8.1 Control Parameters for TD(l) ..72
8.2 Temporal Coherence: Adjustments to Learning Rates ...73
8.3 Prediction Decay: Determining l ..75

8.3.1 Setting the temporal discount parameter using prediction decay75
8.4 Delta-bar-delta ..77
8.5 Test Domain One: A Bounded Random Walk ...77

8.5.1 Results from the bounded random walk...78

Table of Contents

v

8.6 Test Domain Two: Learning the Values of Chess Pieces ..82
8.6.1 Results from single runs ...83
8.6.2 Results from the average of 10 runs...85

8.7 Discussion ...87

9 CONCLUSIONS..89

9.1 Possible Future Work ...93

REFERENCES ..94

APPENDIX A: EXPERIMENTAL DETAILS FROM CHAPTER FOUR......................................100

A.1 Test Positions used in the Transposition Table Experiments ..100
A.2 Details from the Search Extension Experiments ..101

APPENDIX B: EXPERIMENTAL DETAILS FROM CHAPTER FIVE..104

APPENDIX C: EXPERIMENTAL DETAILS FROM CHAPTER SIX ..105

APPENDIX D: EXPERIMENTAL DETAILS FROM CHAPTER SEVEN....................................107

APPENDIX E: RANDOM EVALUATIONS IN CHESS..109

E.1 Introduction...109
E.2 The First Experiment ..109

E.2.1 Results of the first experiment ..110
E.3 Two Additional Experiments ...110
E.4 Further Details of the Experiments ..111

E.4.1 Handling of the game-terminal positions ..111
E.4.2 Draws by repetition ..113
E.4.3 Length of games..114

E.5 Numerical Results...115
E.6 Interpretation of the Random Evaluation Results ...115
E.7 Why Does the Effect Occur?..116
E.8 Possible Applications of the Effect..117
E.9 Discussion ...118

List of Tables

vi

LIST OF TABLES

Table 4.1: Average node counts per position for a single probe, by table size30
Table 4.2: Average individual percentage saving (and standard deviation), by table size30
Table 4.3: Average individual percentage saving (and standard deviation), by saturation factor.........31
Table 4.4: Average number of c-nodes explored (in 1000s) by search depth..44

Table 5.1: Learnt values for each run, averaged over the final 20% of the runs....................................58
Table 5.2: Learnt values for each run, normalised to pawn = 1..59
Table 5.3: Match results for each trial vs. values (1:3:3:5:9)..60
Table 5.4: Learnt piece values from depths 1,3,5..61
Table 5.5: Learnt piece values from depths 2,4,6..61
Table 5.6: Match results vs. ‘standard’ at various depths ...62

Table 6.1: Shogi match results ...74
Table 6.2: Mini-tournament cross-table...75
Table 6.3: Individual learning run match results against YSS values ..75
Table 6.4: Average piece values (before normalisation)...77
Table 6.5: Match results from depths 1 to 4 ..78

Table 7.1: The average weights learnt in the pawn ranks plus piece centrality runs83
Table 7.2: Composite values for piece locations...84
Table 7.3: Match results using pawn rank and piece centrality values...85
Table 7.4: Percentage ‘frequency of occurrence’ for each piece location during the learning runs86
Table 7.5: Match results using half-board piece-square values ..91
Table 7.6: Examples of material advantages and their corresponding predictions95

Table A.1: Full results from the search extension experiments...137

Table B.1: Final values for individual chess runs, at various depths ..138

Table C.1: Main piece values for each of the five runs (a-e) at depths 1 to 4.......................................139
Table C.2: Promoted piece values for each of the five runs (a-e) at depths 1 to 4139
Table C.3: Piece values used in matches..140

Table D.1: The pawn rank and piece centrality bonuses used by the weight set Central.....................141
Table D.2: Chess piece values learnt using piece-square tables..141
Table D.3: Half-board piece-square values ..142
Table D.4: Full-board piece-square values ...142

Table E.1: Comparison of lookahead-random and lookahead-zero at various depths150
Table E.2: Comparison of ctree-random and ctree-zero at various depths ...150
Table E.3: Comparison of material-balance random and material balance zero at various depths150

List of Tables

vii

LIST OF FIGURES

Figure 3.1: A minimax search tree incorporating alpha-beta pruning ...15
Figure 3.2: A minimax search tree with perfect move ordering...15

Figure 4.1: Individual iteration savings plotted against saturation factor..31
Figure 4.2: Average percentage saving by table size, for saturation factor 1 to 10.................................32
Figure 4.3: C-nodes to solution (overall) ..45
Figure 4.4: C-nodes to solution (depths 6-7) ..45
Figure 4.5: C-nodes to solution (depths 8-9) ..46
Figure 4.6: C-nodes to solution (depths 10+)..46
Figure 4.7: Effective branching factors (depths 6-7)..47
Figure 4.8: Effective branching factors (depths 8-9)..48
Figure 4.9: Effective branching factors (depths 10+) ...48
Figure 4.10: Singular detection and null move variants (overall) ..50

Figure 5.1: Graph showing the conversion of position value into prediction probabilities56
Figure 5.2: Graph of learnt values from a typical single run..58
Figure 5.3: Normalised learnt piece values from 5 runs at search depth 4 ..59
Figure 5.4: Learnt piece values from depths 1,3,5..61
Figure 5.5: Learnt piece values from depths 2,4,6..62
Figure 5.6: Failure to learn from entirely random play ..63

Figure 6.1: Typical weight traces (main pieces) ...69
Figure 6.2: Typical weight traces (promoted pieces)..70
Figure 6.3: Normalised piece values for 5 runs (main pieces) ...71
Figure 6.4: Normalised learnt values for 5 runs (promoted pieces)...72
Figure 6.5: Value sets tested in match play (main pieces) ...74
Figure 6.6 Value sets tested in match play (promoted pieces)..74
Figure 6.7: Main piece values learnt at depths 1 to 4 ...76
Figure 6.8: Promoted piece values learnt at depths 1 to 4 ..76

Figure 7.1: Indexing for the pawn weights ...82
Figure 7.2: Indexing for the piece centrality weights ...83
Figure 7.3: Composite pawn rank and piece centrality values...84
Figure 7.4: ‘Typical’ piece values calculated from Tables 7.2 and 7.4 ...86
Figure 7.5: Indexing for the half-board weights ...87
Figure 7.6: Pawn piece-square values (half-board) ..88
Figure 7.7: Knight piece-square values (half-board) ..88
Figure 7.8: Bishop piece-square values (half-board)..88
Figure 7.9: Rook piece-square values (half-board)...88
Figure 7.10: Queen piece-square values (half-board)...88
Figure 7.11: Queen piece-square values (full-board) ...88
Figure 7.12: Average relative piece values from half-board and full-board runs......................................90
Figure 7.13: Piece weight traces from an experiment at MIT (reproduced with permission)93

List of Tables

viii

Figure 7.14: Various values of steepness and the resulting predictions ..94
Figure 7.15: Steepness traces converging from different starting points...95

Figure 8.1: Fit of the prediction quality temporal decay to observed data ..102
Figure 8.2: A bounded random walk...104
Figure 8.3: Weight movements from a typical run using a fixed a of 0.1 (random walk)105
Figure 8.4: Weight movements from a typical run using a fixed a of 0.01 (random walk)105
Figure 8.5: Weight movements from a typical run using temporal coherence (random walk).............106
Figure 8.6: Weight movements from a typical run using delta-bar-delta (random walk).....................106
Figure 8.7: Performance averaged over 10 runs for the various learning methods (random walk)......108
Figure 8.8: Weight trace B compared from three different learning rate methods (random walk)109
Figure 8.9: Weight movements from a typical single run using a fixed a of 0.05 (chess)111
Figure 8.10: Weight movements from a typical single run using temporal coherence (chess)112
Figure 8.11: Weight movements from a typical single run using delta-bar-delta (chess).......................113
Figure 8.12: Average weight movements from 10 runs using a fixed a of 0.05 (chess)114
Figure 8.13: Average weight movements from 10 runs using delta-bar-delta (chess)............................114
Figure 8.14: Average weight movements from 10 runs using temporal coherence (chess)....................115
Figure 8.15: Progress in the chess domain averaged over 10 runs...116

Figure E.1: Percentage scores for lookahead-random playing against lookahead-zero145
Figure E.2: Percentage score for LR v. LZ, CR v. CZ, and MR v. MZ ...146
Figure E.3: Schematics: root-random, lookahead-random, and lookahead zero....................................148
Figure E.4: Average length of games, by experiment...152

Introduction

1

1 INTRODUCTION

1.1 Aims and Objectives
Temporal Difference learning is a natural method of reinforcement learning applied to
prediction sequences. Sutton (1988) introduced the TD(l) method which is an
elegant integration of supervised learning with TD learning and which enabled
Tesauro’s backgammon program (1992, 1994) to reach World Championship
standard. The aim of the research presented in this thesis was to adapt and improve
on the methods that were used successfully for backgammon and apply them to other
complex games that are less amenable to simple pattern-matching approaches. The
methods used were designed to be highly game-independent and so are potentially
applicable to a wide range of two-player perfect information games. The games
chosen for investigation are chess and shogi, both of which (unlike backgammon)
require significant amounts of computational effort to be expended on search in order
to achieve expert play. The improved methods were also tested in a non-game
domain.
An important additional aim of the research was for the programs to learn about the
chosen domains with as little input of external knowledge as possible. A primary
objective was for the programs to learn to improve their playing performance by
exploring the domain on their own, rather than by being taught. Hence the focus of
this work is on learning from self-play, without access to any form of expert
knowledge such as well-informed opponents or recordings of play between experts.
This method is of greater potential value for problems where existing expertise is not
available, or where the computer program may be able to go beyond the level of
existing knowledge.
A further aim of the work presented here was to reduce the amount of computational
effort that was involved in learning useful values for the test domains. This aim can
be achieved by either reducing the computational cost of each training sequence, or by
reducing the number of training sequences required. To reduce the cost of each
training sequence (game) investigations were carried out into methods of enhancing
the primary experimental platform to increase the efficiency of the searches it
conducted. These experiments influenced the design of the search engines used in the
learning experiments and resulted in platforms that were both more efficient and more
robust.
Of equal importance to engine efficiency is the question of the number of training
sequences required for effective learning. Tesauro’s world championship standard
backgammon program was trained on 1,500,000 games, but such large numbers of
training games are not feasible in the more computationally demanding domains of
chess and shogi. Research was conducted into methods of automatically setting and
adjusting the major control parameters for the learning algorithm, thus reducing the
numbers of training sequences required.

1.2 Thesis Structure
Chapter two considers the long and illustrious history of game-playing computer
programs. Such programs have been a primary area of interest for research in
artificial intelligence throughout much of the last fifty years. Recently, there has been

Introduction

2

renewed interest in games from the AI community, as witnessed by the First
International Conference on Computers and Games (van den Herik and Iida 1999),
and a session devoted to games playing programs at the Sixteenth International Joint
Conference on Artificial Intelligence (IJCAI’99). Machine learning techniques for
game-playing programs date back to Samuel (1959), and have recently been attracting
more interest. Chapter two also discusses the history of temporal difference learning
methods, and in particular their successful application to backgammon.
Chapter three introduces temporal difference learning as a concept, and then describes
Sutton’s TD(l) formalism. The methods used in this thesis to apply TD learning to
complex game domains are described, as are the search techniques commonly used in
such domains. We also discuss why this thesis concentrates on learning without
access to expert knowledge, and why lookahead search is required in the chosen test
domains.
The fourth Chapter describes the search platform that was used as the primary test bed
for the experimental work The basic search engine is described, as are a number of
sophisticated enhancements to the basic engine which have the capacity to greatly
improve the efficacy of the search. The work on multiple probes of transposition
tables resulted in a paper published in the International Computer Chess Association
(ICCA) Journal (Beal and Smith 1996). Various selective search techniques are
discussed, and one such set of methods, search extension heuristics, are considered in
detail. A selection of the research described in the search extension section was
published in the ICCA Journal (Beal and Smith 1995). The application of the
methods described in this Chapter to other domains is discussed.
Chapter five describes extensive experiments using TD(l) to learn the relative values
of chess pieces. Precise details are given of how the temporal difference learning
platform described in Chapter three was combined with the search engine described in
Chapter four. Results from these learning experiments are presented, as are results
from matches designed to verify that the values learnt compared well with hand-rafted
values. The experiments include using various search depths and comparison is made
with programs using little or no search. The research and experimental results
presented in this Chapter led to the publication of two papers, the first published in the
ICCA Journal (Beal and Smith 1997) and the second accepted for publication by
Information Sciences Journal (Beal and Smith 1999c).
Chapter six takes the methods that were successfully applied to chess in the previous
Chapters, and applies them instead to the more computationally demanding domain of
Shogi. An introduction to the game of Shogi is provided, and the major differences
between shogi and chess are described, and their implications for learning discussed.
Results are presented from a number of experiments that apply TD methods to the
learning of shogi piece values, and also to the learning of more sophisticated
positional features. The research described in this Chapter formed the basis of two
papers, one published in the conference proceedings of the First International
Conference on Computers and Games (Beal and Smith 1998b), and the other accepted
for future publication in the journal Theoretical Computer Science (Beal and Smith
1999a).
The seventh Chapter describes the application of TD methods to learning more
complex weight sets. Results are presented from experiments that successfully learn
weights for a variety of evaluation coefficients, and also for learning one of the
internal parameters of the squashing function described in Chapter three. Some of the
results presented in this Chapter were included in a paper accepted for publication by
Information Sciences Journal (Beal and Smith 1999c).

Introduction

3

Chapter eight is the most important Chapter of this thesis. It describes novel
extensions of the temporal difference learning method which automatically set and
subsequently adjust the two major control parameters used by TD(l). The main
performance advantage comes from the learning rate adjustment, which is based on a
new concept we call temporal coherence. Experiments are described which compare
the performance of the temporal coherence algorithm with human-chosen parameters
and with an earlier method for learning rate adjustment. The application of these
parameter-adjusting methods to other domains is discussed. The research and
experimental results described in this Chapter led to a paper presented at the Sixteenth
International Joint Conference on Artificial Intelligence (IJCAI'99) (Beal and Smith
1999b).
The final Chapter presents the conclusions of this thesis, and discusses areas for
possible future work. There then follows a list of references used in the thesis, and
appendices containing experimental details. Appendix E is a lightly edited version of
a co-authored paper (Beal and Smith 1994) resulting from research undertaken prior
to my PhD which turned out to be relevant to issues arising in Chapters 3, 5 and 7.

Game Playing Programs and Machine Learning

4

2 GAME PLAYING PROGRAMS
AND MACHINE LEARNING

2.1 Fifty Years of Computer Chess and Artificial Intelligence
Creating a machine with the necessary qualities required for playing chess (which
requires discovering what these qualities are) has been a major interest of many of the
major figures in the history of computing.
Charles Babbage (1792-1871), in his Passages on the Life of a Philosopher (1864),
described the possibility of making his Analytical Engine play chess and formulated
some simple rules (including lookahead) that such a chess playing automaton would
be required to consider.
 Alan Turing is often considered as the founding father of artificial intelligence. In his
seminal paper, Computing Machinery and Intelligence (Turing, 1950) he introduced
his “imitation game”, which subsequently became known as simply the Turing Test.
This paper mentions chess as one of the domains suitable for the comparison of
human and machine thinking. Turing (1953) subsequently wrote a simple chess
playing program called TUROCHAMP, and simulated by hand its simple one-ply
search plus evaluation. Levy and Newborn (1991) present the moves of a game
played by Turing’s program.
Other famous names from the field of AI who produced early chess-playing programs
include Donald Michie, John McCarthy, and Newell and Simon.
Much of the research conducted in the field of game-playing programs can be traced
back to a milestone paper by Shannon (1950) in which he described two possible
strategies for computer chess. The first, which Shannon called “type–A”, was
essentially a brute force method consisting of a fullwidth minimax search and static
evaluation. Shannon himself pointed out that such a search would be hugely
computationally expensive because all lines of play would be searched to the same
depth, and in some positions long forcing sequences would need to be considered.
Shannon’s “type-B” strategy involved searching some lines more deeply than others
(i.e. selective search) and also introduced the concept of quiescence (see Chapter 3).
After fifty years of progress and innovation, computer chess remains an active
research area. Whilst the best programs are now as strong as the best humans, their
play is far from perfect. The enormous size and complexity of the chess search space
ensures that it will remain unsolved for the foreseeable future.
Whilst there is still an undeniable link between artificial intelligence and computer
chess (most introductory AI textbooks have a section on computer chess), modern
high-performance programs use little by way of AI techniques. The success of
minimax, and in particular alpha-beta pruning, means that most competitive
performance programs rely more on what is sometimes referred to as Brute Force and
Ignorance (BFI). Human expert knowledge is applied to the identification and
weighting of suitable evaluation terms for use by a powerful search engine, and little
success has been had by those who have attempted to model the thought processes of
human masters.
Now that programs have reached the strength of Grandmasters, questions arise about
the limitations of human expert knowledge. The ability for machines to learn about
evaluation functions for themselves, in the context of their own search regimes, is one
obvious next step forward.

Game Playing Programs and Machine Learning

5

2.2 The Complexity of Chess and the Challenge of Perfect
Knowledge

Over the last 100 years, some chess commentators have suggested that Grandmaster
play is approaching perfection. They cite the preponderance of draws of the top level
of play, and wonder if the top players now understand the game so well that they will
only lose by making gross mistakes. As long ago as 1928 World Champion
Capablanca wrote:

“Of late we have lost a great deal of the love for the game, because we
consider it as coming to an end exceedingly fast. In effect, if one were
satisfied to draw, we believe that it would not be impossible to draw all
the games. To avoid drawing variations one might have to enter into
inferior lines of play which might lead to disaster against a first-class
opponent. At present there may not be more than one or two players in the
world who might do that, but within ten years there will probably be three
or four.” (Reinfeld 1953, p. 160).

Some have considered increasing the complexity of the game by making the board
larger and adding extra pieces (this was Capablanca’s preferred solution). Others
have suggested alterations to the rules or starting position (e.g. former World
Champion Fischer, Pritchard 1994). In the aftermath of the 1997 match in which the
World Champion Gary Kasparov was defeated by the computer Deep Blue, it has
been suggested that chess now holds less challenge for researchers (Pitrat 1998).
Evidence against the propositions that chess play is approaching perfection and that
chess is now less of a research challenge may be obtained from endgame analyses.
With the advent of endgame tablebases constructed by retrograde analysis (e.g.
Thompson, 1987), perfect information about non-trivial chess positions became
available. The play of grandmasters in such endings, once assumed to be near perfect,
was shown not only to be sub-optimal, but in many cases to include mistakes that
might have resulted in won endings being drawn, and draw endings being lost. Even
for the relatively simple 4-man ending of king and queen versus king and rook, the
widely accepted methods (e.g. Keres 1973) were found to be insufficient to assure a
win for the stronger side against perfect defence. Indeed, Grandmaster Walter
Browne was once famously unable to win this ending against a tablebase (Kopec
1990). Despite thorough study of the endgame he struggled in the re-match, requiring
exactly 50-moves to win from a position that would require only 31 moves with
perfect play. Even programs with specialised endgame heuristics (which compare
well with strong human play) find it difficult to make progress against the tablebase
(Walker 1996). Some of the more complicated 5-man endings, e.g. king, queen and
pawn versus king and queen (Roycroft 1986), require optimal play of such a complex
and seemingly method-less nature that they may well be beyond the bounds of human
understanding (Michie 1990). Levy and Newborn (1991) provide an equally baffling
153 ply sequence of optimal play extracted from the king, bishop and knight versus
king and knight tablebase.
The above is not meant to belittle the achievements of great human players, but rather
to highlight the rich complexity of the game, and to suggest that chess is much further
from being ‘solved’ (in the lay sense) than has often been suggested in the past.
Indeed, the sheer complexity of chess may well have been grossly underestimated.
The fact that mere 5-man endgames are now known to be so complex and
troublesome for humans implies that 32-man endings such as the chess starting
position will remain challenging for the foreseeable future.

Game Playing Programs and Machine Learning

6

2.3 Machine Learning in Games

2.3.1 Samuel’s checkers player
The work of Arthur Samuel with his programs that learnt to play checkers (draughts)
was years ahead of its time and was the earliest example of machine learning in
games (Samuel 1959).
Samuel wrote a checkers-playing program for the IBM 701 in 1952, and his first
learning program in 1955. He constructed a checkers program instead of a chess
program because the relative simplicity of checkers made it easier to concentrate on
the learning aspects of the program (Samuel 1959). Samuel’s programs used search
methods similar to those described by Shannon (1950) (see section 2.1), incorporating
minimax search with a polynomial evaluation function.
There were two forms of learning used by Samuel’s programs, the first of which he
called rote learning. This consisted of storing every board position reached during
play along with its associated value as determined by the minimax search. If a
previously stored position was encountered during a search its stored value would be
used as its evaluation. This effectively increased the program’s search depth, as the
stored value represented the result of one or more previous searches. The stored
values were decremented by a small amount every time the score was backed up a ply
as part of the minimax search. This ensured that the program chose the shortest path
to a favourable position. The rote learning program was trained by a combination of
self-play, play against various humans, and supervised learning from records of
games between human experts. Samuel found that this method resulted in slow but
significant learning, especially in the opening and endgame, and produced a program
that performed like “a better-than-average novice” (Samuel 1959).
A second, more sophisticated, form of learning was used by Samuel (1959) to modify
the parameters of the program’s evaluation function. This was a temporal difference
method (although Samuel himself did not use that term) which was a predecessor of
the TD methods used by Tesauro in TD-Gammon (Tesauro 1992). Samuel’s program
learnt via self-play, and sought to minimise the difference between successive
evaluations of positions that occurred in the course of these games.
A significant feature of Samuel’s temporal difference method was that the learning
did not make direct use of the actual results of games, as the known game-theoretic
values of the game-terminal positions were not used. The adjustments made to the
weights made by the learning process were driven by reducing the difference between
successive evaluations, but because game-terminal positions were not taken into
account, this could be achieved by finding a set of weights that ensured all positions
were evaluated identically. Whilst such a set of weights would satisfy the learning
process, it would be useless for producing improved play. Samuel was aware of this
potential problem, and to alleviate it fixed the weight of the most significant
evaluation feature, piece advantage. This measured the number of pieces the program
had relative to its opponent, giving higher value to kings, and is a powerful heuristic
in checkers which has a high correlation with winning the game. The fixing of this
weight to a large positive constant meant that the program’s play was determined by
seeking to maximise the value of this feature. As Sutton (1997) points out, it would
still have been possible for the program to learn a useless set of evaluation weights by
setting the adjustable weights so that they always cancelled out the piece advantage
term.

Game Playing Programs and Machine Learning

7

Samuel’s program had a set of 38 carefully chosen weighted evaluation terms, (e.g.
centre control), of which a subset of 16 where used at any one time. In the course of
learning, features which were found not to lead to consistency of evaluation were
replaced by others drawn from the “reserve pool”. At times during the learning
process when the program was not improving, Samuel found it useful to reset the
largest weight to zero. His justification was that this prevented the weight set from
settling into locally optimal values. Given that learning was driven only by producing
consistent evaluations, with no regard for the outcomes of the games, it is also
possible that this drastic method helped to prevent the program from adopting weight
sets that produced consistent evaluations that did not correlate with winning the game
(Sutton 1997).
Samuel’s program learnt well enough to beat its creator regularly, but its playing
strength did not approach the strength of human masters. Nevertheless, Samuel’s
achievement in producing a successful learning program is one of the notable early
successes in the fields of both machine learning and game-playing programs.

2.3.2 Neurogammon
Neurogammon was written by Gerald Tesauro (1989) and was a backgammon-
playing program that was the direct predecessor to Tesauro’s TD-Gammon program.
Neurogammon was a multi-layered neural network whose input representation
included both the raw board position and a set of carefully chosen evaluation features
that utilised the knowledge of expert human players. It learnt via supervised learning,
training on a set of expert game records and adjusting its weights using the back-
propagation algorithm (Rumelhart, Hinton and Williams 1986). Neurogammon
reached the strength of a “strong-intermediate” human player, and decisively won the
backgammon tournament at the 1989 International Computer Olympiad (Tesauro
1989).

2.3.3 TD-Gammon
Tesauro’s TD-Gammon (Tesauro 1992,1994,1995) was a notably successful
application of machine learning techniques. Learning via self-play, it utilised little
domain specific knowledge, yet learned to play backgammon at a level close to that of
the world’s best human players.
TD-Gammon combined Sutton’s TD(l) algorithm (Sutton 1988, see Chapter 3) with a
three-layer neural network consisting of a layer of input units, a layer of hidden units,
and an output unit. The input to the network was a representation of a backgammon
position, and the output was an estimate of the probability of winning from that
position.
The initial version of the program, TD-Gammon 0.0, used an input representation
that contained only the raw board information and did not incorporate any specially-
crafted evaluation features. The program learnt only by playing against itself, and
after about 200,000 self-play games its performance was approximately equivalent to
that of Neurogammon. This was a remarkable achievement given that Neurogammon
had required substantial amounts of domain-specific knowledge, both in terms of its
carefully constructed evaluation features and the expert-level games it trained on.
Subsequent versions of TD-Gammon used the same learning methods, but the input
representation included the same set of hand-crafted evaluation features used by
Neurogammon. TD-Gammon 1.0 used 80 hidden weights instead of the 40 used by

Game Playing Programs and Machine Learning

8

the earlier version, and after 300,000 self-play training games was significantly better
than both version 0.0 and Neurogammon.
Version 2.1 incorporated a simple two-ply selective search mechanism. This was not
part of the learning process but was used for move selection during play. After
1,500,00 self-play training games TD-Gammon 2.1 had reached a level of play
comparable to that of the best human players (Tesauro 1995).
The success of TD-Gammon has had a noticeable effect on the play of the world’s top
backgammon experts, causing them to revise their thinking about certain types of
position and even to amend the way they play certain opening rolls, the equivalent of
‘book’ chess openings (Tesauro 1995).

Game Playing Programs and Machine Learning

9

3 TEMPORAL DIFFERENCE LEARNING
AND MINIMAX SEARCH

3.1 Temporal Difference Learning
Temporal difference (TD) learning methods are a class of incremental learning
procedures for learning outcome estimates in multi-step prediction problems. Each
prediction is a single number, derived from a formula using adjustable weights, for
which the derivatives with respect to changes in weights are computable. Whereas
earlier prediction learning procedures were driven by the difference between the
predicted and actual outcome, TD methods are driven by the difference between
temporally successive predictions (Sutton, 1988). Each pair of temporally successive
predictions gives rise to a recommendation for weight changes. Kaelbling et al.
(1996) give a survey of a wider range of reinforcement algorithms, including TD
methods.
Sutton’s TD(l) algorithm is based on the following formalism. Let P1 ...Pt be a set of
temporally successive predictions, indexed from time 1 to time t. The algorithm
assumes each prediction is a function of a vector of adjustable weights W, so a
prediction at time i could be written as Pi(W). The algorithm further assumes that the
prediction function is differentiable so there exist partial derivatives of the prediction
value with respect to each weight element. —wPi denotes the gradient, or vector of
partial derivatives of prediction P at time i, with respect to weight w.
Using this notation, the weight adjustments for Sutton’s TD(l) algorithm can be
expressed as:

()Â
=

-
+ —-=D

t

k
kw

kt
ttt PPPw

1
1 la (3.1)

where a is a parameter controlling the learning rate, and l is Sutton’s recency
parameter, that introduces an exponential weighting with recency of predictions
occurring k steps in the past.
The process can be applied to any initial set of weights. Learning performance
depends on l and a , which have to be chosen appropriately for the domain.
TD(l) learning enabled Tesauro’s backgammon program to reach master level
(Tesauro 1994). The methods used by Tesauro are discussed later in this Chapter.
TD(l) has some problems however. The learning rate parameter a is hard to get right.
It needs to be as high as possible for rapid learning, but high rates lead to high levels
of erratic movements, even after optimum values might have been reached. In effect,
high learning rates lead to high levels of noise in the weight movements, and this
means that the process does not produce stable values.
On the other hand, learning rates that are too low can lead to orders of magnitude
more observations being required to reach optimum weight values. Practical
experience with the TD(l) method indicates that very different values of a are
required in different domains, as shown by the different rates used in, for example,
Sutton (1988, 1992).
An original method for determining both a and l is presented in Chapter 8.

Game Playing Programs and Machine Learning

10

3.2 Comparison with other Learning Methods
Prediction-outcome learning methods are driven by the difference between prediction-
outcome pairs. For example, one might make a prediction after every move and
compare this prediction with the actual outcome of the game. The resulting error term
can then be used to make adjustments to the prediction. Obviously this method can
only be applied once the result of the game is known.
In contrast, the TD method is driven by an error term generated by the comparison of
successive predictions, and need not wait for the actual outcome of the game. Sutton
(1988) shows that TD methods make more efficient use of their experience than
conventional prediction-learning methods. They converge faster and produce more
accurate predictions. In addition Sutton shows that TD methods are easier to compute
because they are incremental and do not require a final outcome.

3.3 TD(l) and Games
Perhaps the most successful application of Sutton’s TD(l) method was Tesauro’s
backgammon program, TD-Gammon, which used TD(l) to train a three-layer neural
network (see section 2.3).
Schraudolph, Dayan and Sejnowski (1994) used TD(l) to train a neural-network to
play Go on a small 9x9 board via randomised self-play. This met with only limited
success, producing a program that was no stronger than a weak human beginner and
requiring 659,000 training games to reach this standard. The use of carefully
designed network architectures, and knowledge-intensive training strategies (such as
playing training games against a top commercial go program) allowed a subsequent
program to achieve a slightly better standard of play after 3,000 training games. The
program was never scaled up from 9x9 Go to a full-size 19x19 board, and the far
greater complexity of the 19x19 game suggests that performance on a conventional
board would be well below that achieved on the much simpler 9x9 board.

3.4 Minimax Search and Alpha-Beta Pruning
All two-player, finite, zero-sum, deterministic, perfect-information games can in
theory be solved by application of the minimax algorithm. In order to solve such
games, minimax requires that all game-terminal positions that might be reached from
the starting position be considered, and their known game-theoretic value (e.g. in
chess one of win, loss or draw) be passed back towards the starting position, assigning
a value to all intermediate positions en-route. Once a game-theoretic value has been
assigned to the starting position, the game is solved. The outcome of the game with
perfect play for both sides is known, as is the sequence of moves required to achieve
that value. In the case of complex games the combination of the game’s branching
factor and the distance from the starting position of the game-terminal positions
results in a combinatorial explosion that makes such an approach to solving these
games infeasible.
Given that the game-terminal positions are too far from the root of the search to be
examined exhaustively, it is possible to search only a fraction of the overall game-
space. The same minimax method of ‘backing-up’ values from distant positions can
used be used in conjunction with an heuristic evaluation of positions at any depth in
the search tree, allowing for the search of arbitrarily sized subtrees, and providing an
heuristically chosen ‘best’ move. The resulting minimax searches have been found to
be remarkably successful in practice, even when the evaluation used is a crude

Game Playing Programs and Machine Learning

11

estimate. Beal and Smith (1994) demonstrate that minimax search produces better
than random play even when the evaluation function is replaced by a random number
generator (see Appendix E). Minimax search forms the basis of many game-playing
programs, including those discussed in this thesis. [Strictly speaking, minimax search
is usually implemented as ‘negamax’ (Knuth and Moore 1975), which passes back the
negative of the subtree value. This simplifies the program structure as the search
engine is always trying to maximise this value.]
An examination of the minimax algorithm reveals that there are some sections of the
search tree that need not be considered because they have no effect on the final
outcome of the search. Alpha-beta pruning removes from the search tree those lines of
play that are not relevant to the evaluation of the root position. Figure 3.1 gives an
example of a minimax search tree, and shows that in this example, alpha-beta pruning
reduces the number of positions for which an evaluation is required from 8 to 7, with
node L being cut off.ABCDEFGHJKLMNPQ415362784568646

Figure 3.1: A minimax search tree incorporating alpha-beta pruning.
The most important method of reducing the size of a search using alpha-beta pruning
is to improve the ordering so that stronger moves are tried before weaker moves, thus
maximising the number of cut-offs that the alpha-beta mechanism is able to make.
ABCDEFGHJKLMNPQ415362784568646

Figure 3.2: The same search tree as Figure 3.1, but with perfect move ordering.
Figure 3.2 shows essentially the same search tree as Figure 3.1, but with perfect move
ordering. In this example the number of evaluations required is reduced to 5, with
node P being cut off as well as the entire sub-tree of E-K-L.

Game Playing Programs and Machine Learning

12

Most chess playing programs achieve good move ordering by using iterative
deepening in conjunction with transposition tables (see section 4.1). Other methods
for selecting likely good moves include the killer heuristic (Frey 1977) and history
tables (Schaeffer 1983). Typically the remaining moves are sorted so that captures
are tried before non-captures (Slate and Atkin 1977).
In addition to providing information about the move that was found to be best on
previous iterations of the search, the transposition table allows nodes that have
previously been evaluated at the current depth of search to have those values recalled
so that their subtrees need not be searched again. Unlike the move-ordering benefits
of transposition tables, in the chess domain this usually provides only a modest
increase in efficiency, except in some endgame positions where the number of
possible transpositions (the same position reached via different move sequences) can
increase dramatically.

3.4.1 The principal variation
The effect of the full-width minimax search algorithm is to select a sequence of
moves that represents best play by both sides (as defined by the evaluation function).
This line of play is referred to as the principal variation. The evaluation score from
the position at the end of the principal variation (the principal position) is ‘backed up’
to the root of the search. Thus from a given position, a minimax search returns a
value that corresponds to the evaluation of the position at the end of the principal
variation.

3.4.2 Other search regimes
Over the years very many modifications have been made to the conventional minimax
plus alpha-beta search regime applied to chess. Examples of the more successful
enhancements are MTD (Plaat et al. 1994) and the popular Principal Variation Search
(Marsland 1983). A number of best-first search methods have been proposed,
including SSS* (Stockman 1979) and Berliner’s famous B* algorithm (1979). A
discussion of selective search is included in Chapter 4.
The experiments reported in this thesis were conducted using the basic iteratively-
deepened depth-first, minimax plus alpha-beta algorithm, in an attempt to keep the
method as game-independent as possible. Most of the methods presented here could
be easily adapted to fit other, more specialised, search regimes.

3.5 Applying TD Learning to Complex Game Domains
In order to use temporal difference methods, the evaluation score for the position
selected by each move is regarded as a prediction of the final outcome of the game.
To be more precise, it is the evaluation score from the position at the end of the
principal variation (the principal position) which is ‘backed up’ to the root of the
search, and used as a prediction to be compared with future values.

3.5.1 Determining weights for evaluation terms
Central to all heuristic search, whether single-agent or adversarial, is an evaluation
function. This estimates the distance to goal in single-agent searches, or the value of a
game-state in competitive (zero-sum) tasks. The function is typically a polynomial
formed from linearly weighted evaluation terms:

Game Playing Programs and Machine Learning

13

Â
=

=
n

i
iicwxv

1

)((3.2)

where c is a vector of n evaluation terms computed for the state x.
Setting the weights for evaluation terms has always been a significant problem,
although often overshadowed by other concerns.
Game playing programmers have tried many schemes for automatically determining
appropriate weights. Fürnkrantz (1996) gives a good summary of learning in game
playing, including weight-learning algorithms.
Recently, one of the IBM programmers of Deep Blue, the program/hardware
combination that defeated the human World Champion in a match in 1997 published a
method to optimise linear discriminants for master-level moves (Anantharaman
1997). His method utilises the move-choice decisions of master players, aiming to
obtain similar decisions. The learning optimises a linear combination of Pscore and
Mscore, where Mscore is the number of move choices that agree, and Pscore the
number of positions which the discriminant and chess master agree are worse than the
move chosen. The end result is that the method determines evaluation weights for
Deep Blue’s evaluation function.
However, methods that do not require existing human expertise are required in
unfamiliar domains, or if the method is aimed at levels of expertise which exceed
human abilities.
To apply TD(l) to game-playing there are some important requirements of the
prediction function that need to be considered. The first of the requirements is that
the function for predicting the game outcome should integrate smoothly with end-of-
game values. This implies that the value for checkmate should be close to that for
being heavily ahead in the summation of evaluation terms. Moreover, an additional
pawn advantage when heavily ahead in material should have little effect on the
prediction, whereas the gain of a pawn in an otherwise level position should have a
relatively large effect on the prediction.
Another related requirement is that the prediction values should approximate the
utility of the game result. For games such as chess and shogi, the utility is 1 for any
win, 0 for any loss. (This contrasts with games such as bridge and backgammon,
where winning a game brings a variable amount of reward.)
The foregoing requirements can be met by using a squashing function, which converts
from the conventional polynomial evaluation function typically used in game-playing
programs, to a probability of winning. It is convenient to use a standard sigmoid
squashing function. The prediction P, the probability of winning from a given position
x, is determined by using the function:

()()xvSxP =)((3.3)

where v is the evaluation value of position x. In typical games programs the
evaluation function is often a polynomial (3.2).
S is defined by:

ve
vS -+

=
1

1
)((3.4)

The sigmoid function (3.4) has the advantage that it has a simple derivative:

()SS
dv

dS
-= 1 (3.5)

Game Playing Programs and Machine Learning

14

Therefore the partial derivative of the prediction with respect to an individual weight
wi is:

() i
ii

cSS
w

v

v

S

w

S
-=

∂

∂

∂

∂
=

∂

∂
1 (3.6)

The derivative of S appears in classical supervised-learning procedures as well as
TD(l). The effect of the derivative in the weight adjustment formula is that weights
receive adjustment in proportion to their effect on the prediction. On other words,
weights that have little influence on the prediction are adjusted less than weights to
which the prediction is more sensitive.
The function S can be elaborated to include an additional parameter to adjust the
‘steepness’ of the sigmoid. Section 7.6 describes some experiments to determine the
usefulness of this modification.

3.5.2 Using the principal position, rather than the game position
An important aspect of applying TD(l) to minimax search is selecting the correct
position to use in the computation of weight adjustments. When performing minimax
search to make move choices, the evaluation score from the position at the end of the
principal variation (the principal position) is backed up to the root of the search.
Let g1, g2, g3 ... gn be the positions of game G.
Let h1, h2, h3 ... hn be the principal positions identified by the minimax searches from
g1, g2, g3... gn.
Thus

()()ii hvSP = (3.7)

At the end of the game, the outcome is defined by the rules of the game, thus gn = hn
= {0 | 0.5 | 1} where {0 | 0.5 | 1} means one of the values 0, 0.5, or 1.
It is the value from the principal position that is the prediction of the final outcome of
the game, to be compared with future values by the temporal difference method.
Consequently, the computation of partial derivatives must be performed with
evaluation terms calculated at the principal position hi , not at the position in the
game gi.
There is a minor technical issue that arises here. In some positions, the principal
position may be selected from an equivalence class of positions with equal scores, due
to the existence of more than one move with the best score at some nodes along the
principal variation. To be precise, in such cases the principal variation is selected
from a principal tree. The selection will be determined by the move order at those
nodes with multiple best moves. In such cases, the partial derivative at Pi may be
multi-valued. It is possible to define an algorithm that either disregards these cases,
or examines all the principal positions of the equivalence class and computes the sum
of all the partial derivatives. However, the simpler approach of accepting an arbitrary
choice of principal position in these cases works well in practice.

3.6 Learning in the Absence of Expert Knowledge
A major aim of the research presented in this thesis was for the learning to occur with
as little input of expert domain-specific knowledge as possible. The primary
consequence of this is that all our training takes the form of self-play games, where

Game Playing Programs and Machine Learning

15

the learning program plays against an identical version of itself. We chose not to aid
the learning by playing training games against well-informed opponents, nor by
replaying recordings of games between experts. The objective was for the programs
to learn to improve their playing performance by exploring the domain on their own,
rather than by being taught. In addition, all of the learnt weights were learnt ‘from
scratch’ without any domain-specific knowledge being represented in their initial
values. These knowledge-free methods are of greater potential value for problems
where existing expertise is not available, or where the computer program may be able
to go beyond the level of existing knowledge.

3.6.1 Self-play versus online play
The method of applying TD(l) to minimax searches described in Chapter 3 was first
published (Beal and Smith 1997) in the ICCA Journal. The same method was later
reported to be successful in improving weights for a complex chess evaluation
function consisting of positional terms as well as piece values in the program
KnightCap (Baxter, Trigell and Weaver 1998) that was trained by playing games on
the Free Internet Chess Server (FICS, fics.onenet.net) against human opponents.
The program’s blitz rating rose from Elo 1650 to 2150 after 308 games in one
experiment, and after approximately 900 games in a second experiment. The rise of
500 rating points is good, but the final rating of 2150 for blitz chess (at which
computers traditionally excel) is well below that achieved by conventional chess-
playing programs.
Baxter et al. made use of online play against expert human opponents, whereas our
experiments focus of learning in the absence of any domain specific knowledge and
so training occurs via self-play. Training games against human experts require the
availability and co-operation of both the experts and the chess server operators,
whereas self-play is completely self-contained and requires no human input
whatsoever. Baxter et al. (1998) report that they found self-play to be ineffective for
learning when compared with on-line play against human opponents. However, they
used only a purely deterministic move choice for their self-play games, and so found
that training produced a large number of substantially similar games (Baxter et al.
1997). The little variation that occurred was accounted for by changes in the
evaluation weights between games. This method of self-play is clearly inferior to the
randomised move choice used in the experiments reported in this thesis, and so the
conclusion of Baxter et al that self-play is insufficient for adequate learning must be
called into question. Indeed, our TD minimax methods in conjunction with self-play
have been used successfully in the world-class competitive chess program Cilkchess
(see section 7.5).
The quality of the games produced by play against human experts is one reason why
online play produces faster (in terms of number of games played) learning than self-
play. Baxter et al. note that an important feature of play against different human
opponents is that their program is forced into positions that it evaluates highly but
subsequently discovers are losing. These are precisely the types of position that
learning programs need to see to learn rapidly and they occur more frequently when
the program is being beaten by human experts than in the course of randomised self-
play. Thus online play is learning by being taught as opposed to learning by
exploration which is the focus of this thesis. The methods of this thesis are designed
to be as domain-independent as possible, and so suitable for application to games (e.g.
Shogi) for which large numbers of online human ‘teachers’ may not be available.

Game Playing Programs and Machine Learning

16

There is also the theoretical question of how learning is to proceed once the program’s
level of play exceeds that of the best human players. For the domain of chess such a
problem may well become a reality in the foreseeable future.
Baxter et al. comment that they found it necessary to provide piece weights as initial
knowledge in order to obtain good performance. The performance of a program that
was not seeded with carefully chosen ‘intelligent’ material weights was greatly
inferior, achieving a rating of only Elo 1300 after 1000 games. In contrast, the
experiments presented in this thesis achieved excellent performance gains without any
knowledge being represented in the starting weights.
Baxter et al. also observe that another reason for the rapid rate of improvement of
their program was that all the non-material weights were initialised to zero, rather
than small random values. The means that “small changes in these parameters could
cause very large changes in the relative ordering of materially equal positions. Hence
even after a few games [the program] was playing a substantially better game of
chess.” (Baxter, Tridgell and Weaver 1998 pg. 93). Experiments with random
evaluations (Beal and Smith 1995) showed that even a set of randomly chosen
positional weights would perform better than a set of all-zero weights (see Appendix
E). Thus Baxter et al. were starting from a low-performance initial state, with easy
initial improvements possible.

3.6.2 Why is search needed in some domains, but not others?
In some games domains the use of search algorithms is not required to produce expert
level play. In backgammon, pattern matching techniques have proved themselves
capable of producing extremely strong programs (see Chapter 2).
In domains such as chess and shogi the tactical complexity of the games makes a
successful program that did not use search in some way inconceivable. Chess
programs have very successfully used full-width minimax search with alpha-beta
pruning (see section 4.1), and top commercial shogi programs rely on deep searches
to avoid costly tactical errors and to detect mating sequences (Rollason 1999).
Other game domains have features that make the use of search, especially full-width
search, impractical. The most notable of these is Go, where the high branching factor
makes full-width search prohibitively expensive, and the lack of an obvious core
evaluation term (such as piece count in chess) makes static evaluation of positions
problematic. Nevertheless, search is used extensively in Go for calculating local
tactical sequences, and the top commercial Go programs are increasingly turning
towards selective search techniques for calculating global board sequences (Reiss
1999).

3.6.3 Learning in deterministic and non-deterministic games
Randomisation of the move selection during self-play in deterministic games such as
chess and shogi is necessary to ensure that as large a section of the state space as
possible is explored during learning. Such randomisation is not required in
backgammon, because the stochastic nature of the die rolls naturally result in a large
amount of variability in the positions reached during training games.
Learning in non-deterministic games such as backgammon is also made easier
because the true expected outcome of a position given perfect play by both sides is a
real-valued function with a great deal of smoothness and continuity (Tesauro 1995).
This means that small changes in the position produce small changes in the
probability of winning. In deterministic games such as chess and shogi the outcome

Game Playing Programs and Machine Learning

17

given perfect play (the game-theoretic value) is discrete (win, lose, draw) and
therefore much more likely to be discontinuous and lack smoothness, with the result
that such a function is much harder to learn.

A Platform for Experimental Work

18

4 A PLATFORM FOR EXPERIMENTAL WORK

This Chapter describes the minimax search platform that was used as the primary
platform for our experimental work, and then goes on to investigate improvements to
the basic engine.
As all other programmers of sophisticated minimax search engines have discovered:
(a) the construction of an efficient and robust engine is a non-trivial problem; and (b)
minimax search is very good at concealing obscure errors and bugs. Hence these
preparatory experiments served not only as worthwhile research in their own right
(both sections 4.2 and 4.4 were published in the ICCA Journal), but also as a
development and testing ground for the engine that was to become the primary
vehicle for the learning experiments presented in Chapters 5 through 8.
Section 4.2 reports on experiments with increasing transposition table efficiency;
section 4.3 discusses issues related to selective search; and section 4.4 describes
experiments with heuristic rules for search efficiency.
Chapters 5 to 8 concerning the learning algorithms can be read more or less
independently from this Chapter. A reader with limited time who wishes to focus on
the learning algorithms only could proceed directly to Chapter 5.

4.1 The Basic Minimax Search Engine
The basic search engine used for most of the experiments in this thesis is similar to
that described by Slate and Atkin (1977) in their famous program Chess 4.5, which
became a standard model for many subsequent programs. It uses a full-width
iteratively deepened search, with alpha-beta pruning and a captures-only quiescence
search at the full-width horizon (Marsland 1992). Methods other than full-width
search (i.e. selective search) are discussed in section 4.3. The search was made more
efficient by the use of a hash table that stores previous iteration results and detects
transpositions (a transposition table). A simple method for improving the efficacy of
transposition tables is investigated in section 4.2. An additional enhancement to the
move ordering (thus improving the effectiveness of alpha-beta, see section 3.4) was
provided by the implementation of a history table (Schaeffer 1983) which was used
instead of the killer heuristic (Marsland 1992).
Various different evaluation functions were used for scoring positions. In some of the
experiments we did not use a full positional evaluator, but only material scores.

4.1.1 The horizon evaluation and quiescence search
The searches all used a captures-only quiescence search at the search horizon. The
quiescence tree consisted of all capture moves, with the side to play having the option
of ‘standing pat’ instead of being forced to make an unfavourable capture. Pawn
promotions are considered to be captures as they alter the material balance. The
leaves of this capture tree are then scored according to the evaluation function.

4.1.2 Transposition tables
Conventional game-playing programs using minimax search will sometimes
encounter the same position more than once, via a different sequence of moves. These
transpositions can be detected by the use of a transposition table, thus avoiding
duplicating search effort by repeating what has already been calculated. In addition,

A Platform for Experimental Work

19

when using iterative deepening the transposition table can be used to aid move-
ordering, thus increasing the number of alpha-beta cut-offs (see section 3.4) and
reducing the size of the search tree.
Transposition tables are implemented as hash tables according to Zobrist (1970). The
hash values are calculated incrementally as part of the move-making process, and the
n least significant bits of the hash value (the hash index) are used as an index into a
hash table of size 2n. The remaining bits (the hash key) are used to distinguish
between different positions that generate the same hash index. The hash key is stored
in the table along with information about the position, including a move and a value
(Marsland 1986).
If two different positions encountered during the search process generate the same
hash values, then both the index and key for these two positions will be the same.
This is a potentially serious problem, but the frequency of such false-match errors can
be reduced to negligible proportions by increasing the number of bits in the hash
value.
Hash collisions (Knuth 1973) occur when two positions generate the same hash index
but different hash keys. There are then two positions competing for a single entry in
the table, and a replacement scheme is needed to determine which entry is kept, and
which discarded. In such cases, information is lost and the search becomes less
efficient. Transposition tables are usually made as large as memory capacity will
allow, but they are rarely large enough to store the entire search tree. Typically (and
especially with very fast processors or relatively small memories) only a fraction of
the values encountered can be stored, resulting in numerous hash collisions. Under
these conditions, search efficiency varies considerably with the choice of replacement
scheme used to decide which entries are kept. In the next section we examine a
simple method for reducing hash collisions, based on multiple probes of the table.

4.2 Multiple Probes of Transposition Tables
Hyatt, Gower and Nelson (1990) describe making up to eight probes of the
transposition table in conjunction with a specialised replacement rule. This section
describes experiments to investigate the performance of varying numbers of probes
over a range of table and search sizes. The results show that considerable efficiency
savings can result from the use of multiple probes, which can be of the order of 15%
when the ratio of nodes searched to table size is high. These results also suggest
significantly better performance than a two-level system (Breuker, Uiterwijk and Van
den Herik, 1994).

4.2.1 Hash table saturation
If the hash table is sufficiently large for all the nodes encountered in the search to fit
comfortably inside the table, then the number of collisions will be relatively small.
When the number of nodes in the search exceeds the number of entries in the table,
the table becomes saturated. We define the saturation factor of a table as the number
of nodes in the search divided by the number of entries in the table.
We examine a simple method for improving decisions about which entries are
retained in the table, based on multiple probes of the table. Once the table becomes
saturated (saturation factor >1), the multiple probes allow us to consider a number of
entries for replacement, and replace the least important entry (as determined by the
replacement scheme). With a saturated table, one is not trying to locate a vacant slot
(there will be few if any), but rather trying to ensure that the most important

A Platform for Experimental Work

20

(expensive to reproduce) entries are not replaced. If the saturation factor of the hash
table is less than 1, the multiple probes help to find unoccupied entries in the table.
The main benefits of multiple probes occur when the table is highly saturated.

4.2.2 The transposition table experiment
This section examines the performance of a simple multiple-probe scheme, using
varying table sizes, on a number of chess middle-game positions. Multiple probes of
the table are shown to perform significantly better than the conventional single probe.
The evaluation function used in these experiments consisted of a material and a
positional component. The positional component was restricted to the sum of piece-
square table values and was dominated by the material component. The contents of
the piece-square table were derived from centre control and mobility, and were
calculated at the root of the search.
All positions visited during the full-width portion of the search were considered for
inclusion in the transposition table. Positions visited during the captures-only
quiescence search were not stored in the table. The table was used both to detect
transpositions, and to aid move ordering as part of the iterative deepening process.
Each entry in the table contained: the hash key; the value of the position; a bound flag
indicating whether the value represents an exact value, or an upper or lower bound;
the best move from the position; and the depth of the full-width subtree searched to
produce the entry.

4.2.3 The test set used in the experiment
There are a large number of test sets of positions that are readily available. The
majority of these sets (e.g. Lang and Smith, 1993) are ‘problem’ positions where the
task is to find the best/winning move. The experiments presented in this Chapter are
concerned not with issues of move selection (indeed, the move chosen from a given
position is identical with every scheme), but rather the efficiency with which the
choice is made.
Breuker et. al. (1994, 1996) give a test set comprising many successive positions from
a small number of games. In their experiments they measure the effects of the
transposition table persisting from move to move, and so successive positions are
required. In our experiments we wished to have a greater variety of positions and so
chose each position from a different game.1

The test set used in this section comprises 30 middlegame positions (see Appendix A)
and was derived from 30 different games at the 10th VSB tournament, 1996. This
tournament featured 10 Grandmasters, including Kasparov, Kramnik and Anand, with
an average ELO grade of 2679. Each test position is the White to play position after
Black’s 20th move. Of these 30 positions, 3 were searched to depth ten, 18 to depth
nine, 8 to depth eight, and 1 to depth seven. The test set is also available online at
http://www.dcs.qmw.ac.uk/~martins/research/vsb.txt

4.2.4 Search depths
The maximum search depth of each position was set to ensure that the maximum
saturation factor was kept within an order of magnitude across the test set, for a given
hash table size. (If all of the positions had been searched to the same depth, the

1 For comparison purposes we tested the 18 position test set given by Breuker et. al. (1994). The results were very

similar to those presented in this paper.

A Platform for Experimental Work

21

average cost in terms of node-counts would have been dominated by the positions
with the largest branching factors, and hence the largest saturation factors.)
Of course, because iterative deepening was used, positions that were searched to
depth 10 were also searched to depths 1 through 9, and these results were used to
calculate savings at lesser saturation levels (see Table 4.3).

4.2.5 Experimental issues
To understand the results and the impact of our experiment we identify and discuss
some important issues below.
4.2.5.1 Measure of computational cost
We used the number of nodes visited during the search as our measure of
computational cost. This includes both interior and leaf nodes, and all nodes visited
during the quiescence search.
4.2.5.2 The replacement scheme
As noted in section 4.1.2 above, when a hash collision occurs it is the replacement
scheme that determines which position is kept and which is discarded. (We say the
replacement scheme determines priority for a position.) We used the traditional, basic
scheme where the priority of a position is set by the depth of the subtree searched
beneath that position (Marsland 1986, Hyatt et al. 1990). This scheme is based on the
idea that deeper subtrees usually take more computational effort to reproduce than
those searched to a shallower depth. If both competing positions have subtrees of
equal depth, the new position replaces the old position in the table.
4.2.5.3 Multiple probes of the table
Standard implementations of transposition tables make a single attempt to place the
new entry into the table. We examined a simple multiple-probe scheme, whereby N
probes of consecutive entries in the table are made in order to find an entry with a
lower priority that may be overwritten.
Efficient implementation of multiple probes of the hash table typically need only
execute a single memory-read-and-compare operation for each probe. This means
that even 8 or 16 probes use only a tiny percentage of the average time spent making
move and processing a position.
When a new position (the candidate position) is considered for inclusion in the
transposition table, the hash index of the position is used to find the corresponding
entry in the table. This entry, plus its N-1 immediate successors, are examined and
the entry with the lowest priority score is chosen (the potential victim). The potential
victim then has its priority score compared with that of the candidate position, and if
the candidate position is of equal or higher priority then it replaces the victim in the
table. We examined the performance of 1,2,4,8, and 16 probes. (n.b. 1 probe is
equivalent to the commonly used single-probe method).
4.2.5.4 Two-level transposition tables (Twin)
Breuker et al. (1994) describe a two-level transposition table, based on a very similar
scheme proposed by Ebeling (1986). This transposition table has two table positions
per entry. The first table position is handled using the depth-only replacement scheme.
When a first table position is overwriten, it is moved into the second table position. If
the new position does not replace the first able position (using the depth-only
replacement scheme), then it is always stored in the second table position, and so
replaces any other position that might be there. Breuker et al. (1994) call this
replacement scheme TWODEEP. In the results that follow, we refer to this scheme as
Twin.

A Platform for Experimental Work

22

4.2.5.5 Time Stamping
We did not address the issue of entries persisting from move to move, and the hash
table was cleared before each test position.
4.2.5.6 Table Sizes
To assess the effects of transposition table size on our results, we conducted our
experiments using six different table sizes, ranging from 16K (1K=1024) to 1024K
entries.
4.2.5.7 Move ordering
In order to measure the effect of move ordering on our results, we performed some
experiments with the history heuristic disabled. The average search cost per position
was more than doubled, but the savings achieved by the multiple-probe schemes were
only marginally greater. From this we infer that move ordering does not play a
significant part in our results, and that programs using more sophisticated move-
ordering techniques than ours would still benefit from the use of multiple
transposition-table probes.

4.2.6 Results
All of our results are compared to a baseline of conventional single-probe searches.
Therefore, we first present the baseline node counts (Table 4.1), and then the
percentage savings for the various multiple-probe schemes (Table 4.2).

16K 32K 64K 128K 256K 512K 1024K
34,760,717 30,083,815 25,943,307 22,299,509 19,572,931 17,374,383 15,853,931

Table 4.1: Average node counts per position for a single probe, by table size.
Table 4.1 shows the average search cost (measured in nodes per position) using a
single probe, for each of the seven table sizes. From this Table we can see a reduction
in search cost per doubling of table size of the order of 12%. Ebeling (1970) reported
a 7% reduction per doubling. The difference may well be due to the greater hash
table saturation factors included in our experiments.

16K 32K 64K 128K 256K 512K 1024K
P=2 11.6% (5.2) 10.4% (4.6) 10.7% (5.9) 12.7% (6.4) 13.4% (5.5) 12.3% (5.1) 10.5% (4.2)
P=4 14.9% (6.2) 12.9% (5.6) 14.0% (7.6) 17.1% (8.8) 18.1% (6.2) 15.2% (5.7) 12.5% (4.8)
P=8 15.9% (6.2) 13.8% (6.5) 15.4% (8.1) 19.4% (9.2) 19.6% (6.4) 15.9% (6.0) 13.0% (4.8)
P=16 15.9% (6.4) 14.3% (7.1) 15.9% (8.4) 20.6% (9.5) 19.9% (6.6) 16.0% (6.0) 12.5% (5.4)
Twin 0.3% (12.5) 3.5% (5.1) 3.8% (4.2) 1.7% (5.1) 1.8% (4.0) 1.7% (4.3) 0.8% (6.6)

Table 4.2: Average individual percentage saving (standard deviation), by table size.
Table 4.2 shows the averages of the individual percentage saving compared with a
single probe, for each of the multiple-probe schemes (P = 2, 4, 8, 16 and Twin), and
across all table sizes. Shown in brackets are the standard deviations of these savings.
We can see that substantial benefits may be obtained by using a multiple-probe
scheme, and that the more probes used, the greater the saving. Using 4 or more
probes instead of a single probe results in savings greater than those achieved by
doubling the size of the table. There is a diminishing return, so that 16 probes
perform only slightly better than 8 probes. The results from the Twin scheme showed
less saving than expected, but are within one standard deviation of those obtained by
Breuker, Uiterwijk and Van den Herik (1996).

0 to 0.1 0.1 to 1 1 to 10 10 to 100

A Platform for Experimental Work

23

P=2 0.1% (0.2) 1.8% (2.2) 6.7% (4.4) 10.8% (5.8)
P=4 0.1% (0.2) 1.9% (2.3) 8.0% (5.1) 13.9% (7.3)
P=8 0.1% (0.2) 1.9% (2.3) 8.4% (5.4) 15.0% (7.7)
P=16 0.1% (0.2) 1.9% (2.3) 8.4% (5.6) 15.4% (7.9)
Twin 0.1% (0.2) 1.3% (1.8) 0.8% (3.6) 0.0% (5.0)

Table 4.3: Average individual percentage saving (standard deviation), by saturation factor.
Table 4.3 combines results from all search iterations completed during the
experiments, across all table sizes grouped into saturation factor bands: 0 to 0.1; 0.1 to
1; 1 to 10; and 10 to 100. The average of the individual percentage savings compared
to a single probe (and their standard deviations) are shown. From this Table we can
see that the savings increase as the saturation of the table increases.

-10%0%10%20%30%40%0110100Saturation Factor

P
er

ce
nt

ag
e

S
av

in
g

Figure 4.1: Individual iteration savings made by eight probes (P=8) compared to a single
probe, plotted against saturation factor (all table sizes are included).

Figure 4.1 is a scatter plot of the savings made using 8 probes versus the saturation
factor (on a logarithmic scale), combining results from all table sizes. Greater savings
than those shown were achieved when the saturation factor was in excess of 100, but
as this level of saturation was only reached with table sizes of 128K and below (tiny
by the standards of modern computers), these results have been excluded.

A Platform for Experimental Work

24

Saturation Factor 1 to 10

0%

2%

4%

6%

8%

10%

12%

16K 32K 64K 128K 256K 512K 1024K
Table Size

P
er

ce
nt

ag
e

S
av

in
g

P=2

P=4

P=8

Figure 4.2: Average percentage saving by table size, for saturation factor range 1 to 10.
From Figure 4.2 we can see that within a given saturation band (in this case 1 to 10),
greater savings occur as the table size increases (i.e. greater savings are made with
large searches using large tables than with small searches using small tables).
These results of this section show that a simple multiple-probe transposition table
method can reduce average tree sizes (and hence computational effort) by 2 to 15
percent, and that this method works well for a range of hash table sizes. Moreover,
the benefits to be gained from such a method are shown to increase with the saturation
of the table, and are larger for deeper searches. As a result of these experiments, a
multiple probe scheme was incorporated as standard into the search platform used for
all subsequent experiments reported in this thesis.

4.3 Selective Search
The majority of chess programs use a fixed-depth full-width search as their primary
search regime, and the branching factor for the resulting search tree is on average
around 35. The use of alpha-beta pruning in conjunction with good move-ordering
techniques can reduce this figure to an effective branching factor in the region of 6 to
8. Although this is a substantial improvement it does not avoid the problem of
combinatorial explosion, but merely delays it. For this reason, chess programmers
have always been interested in investigating methods of reducing the size of the
search tree, and in doing so allowing deeper searches in a given amount of time.
To reduce the size of a search tree, a large number of different selective search
techniques have been attempted. Extreme forms of tree pruning were practised in the
early days of computer chess, such as Bernstein’s program of 1957 which used a
plausible move generator to select the best 7 moves in any position, and then only
searched these (Beal 1989). Such harsh methods were shown to be ineffective once
full-width search became popular.
Over the years there have been numerous attempts to construct knowledge-based
chess playing programs. For example, George and Schaeffer (1991) report using a
chess advice system to enhance their more conventional chess playing program. Such
knowledge-based systems have yet to prove successful, and the bulk of research in
computer chess is still based on search methods sometimes referred to as BFI (Brute
Force and Ignorance).

A Platform for Experimental Work

25

Other domains (e.g. Go) have game trees with branching factors so great that brute-
force search is not a feasible approach. Selective search methods represent one
possible approach to solving this problem and represent a step away from the
‘ignorance’ of brute-force methods, introducing a modicum of knowledge into the
search in an attempt to improve its performance.

4.3.1 Alpha-beta is not selective search
It should be noted that selective search consists of pruning methods fundamentally
different to that of alpha-beta. Alpha-beta is performing exactly the same
computation as full-width minimax search, it is just pruning off branches of the tree
that are irrelevant to the computation. This is sometimes referred to as a backward-
pruning of the tree. Selective search techniques on the other hand perform a different
computation to full-width minimax search. Of course, selective searches often
themselves use alpha-beta pruning, but as Beal (1989) points out, the issue at stake is
which tree should alpha-beta be used on: “what shape and size should the search tree
be, or in other words, which moves should be considered for searching” (Beal 1989,
pg. 67).

4.3.2 Selective search methods
It is clear that the major problem with forward-pruning of the search tree is that a
good move might be excluded from the search. To avoid this happening at an early
stage in the search (where of course it is most harmful), numerous selective search
methods have been tried. A few examples of such methods are given below.
Tapered forward pruning (e.g. Marsland 1986) uses a shallow full-width search, after
which only the N-best moves at each node are considered, with N decreasing as the
search deepens.
Best-first search is a form of selective search that is closer to the methods used by
human chess players. Berliner (1979) suggested the B* algorithm, which estimates
pessimistic and optimistic bounds for a position, and Palay (1983) later modified B*
to replace these bounds with probability distributions which were found by shallow
depth-first searches. This modified B* was tested on the 300 positions from
Reinfeld’s Win at Chess (1945) and solved 81% of them (Palay 1983). The major
problem with best-first searches is that the tree needs to be stored as it is searched.
These techniques are unlikely to become popular among computer chess programmers
unless a method can be found to guide the search and prevent the tree from growing
exponentially as the search deepens (Kaindl et al. 1986).

4.3.3 Search extension heuristics as selective search
It is possible to view selective search from two perspectives. On the one hand we can
regard it as forward-pruning branches of the search tree, throwing away what is not
wanted and continuing the search along the remaining branches. Techniques such as
tapered-forward pruning seem best thought of in this fashion. On the other hand, we
can equally well think of selective search extending the search down certain carefully
chosen branches, whilst stopping short down others. The selection of which moves to
extend is what search extension heuristics are concerned with.

A Platform for Experimental Work

26

4.4 Search Extension Benefits: Comparison and Quantification
This section considers several search extension rules and one pruning rule that have
been described in the literature. An experiment was performed to see how effective
each rule was in isolation and in various combinations. This experiment was
performed on a fixed test set of positions, and results were measured using node
counts. The emphasis of the work was to make repeatable measurements on well-
defined tasks, for future comparison with other search extension rules. In the chosen
test domain chosen some extension rules were strongly advantageous compared with
fixed-depth search, but disadvantageous in combination with others. Notably,
singular extensions were strongly beneficial if added to a fixed depth search, but
detrimental if added to a search already using check extensions, recaptures and null
moves.

4.4.1 The performance of search extension heuristics
Over the past thirty years there have been numerous papers on computer chess that
describe search extension rules used in various chess programs. Most of them report
on performance improvements obtained within a particular program containing many
other heuristics. More often than not, they do not give the games or set of positions
on which they were tested. Although many valuable ideas have been successfully
conveyed this way, experiments using well-defined test sets and simpler, well-
specified programs have the advantage that the research community can more readily
compare results and explore the circumstances in which different heuristics do well or
poorly.
This section reports on an experiment to examine, on a well-defined test domain,
three search extension rules and one pruning rule that have appeared in the literature.
They were examined singly, including variants using alternative definitions, and in
many combinations.
The goal of search extension mechanisms (and of ‘forward’ pruning rules) is to obtain
better cost-effectiveness from searches by searching deeper down some lines than
others, using some selection criterion to determine which moves are favoured. In this
sense, search extension rules and ‘forward’ pruning rules all produce selective
searches. (As noted in section 4.3.1, alpha-beta pruning is a separate matter, and can
always be operated within the tree determined by the selection rules, no matter what
the shape of the selected tree).
Selective searches can be compared with fixed-depth searches by examining the effort
required to make significant discoveries. Clearly, for the same total effort to do a
fixed-depth search, a selective search will search deeper down some lines and stop
before the fixed-depth horizon down others. If the selection rule is beneficial, the
selective search will, averaged over a large number of positions, consume less effort
than the fixed-depth search to make the same discoveries.

4.4.2 The extension rules and test domain
For our experiment we chose to examine three simple-to-specify extension rules and
one pruning rule that have been reported in the literature, and are commonly used in
chess programs. They were: (1) check extension - moves out of check are not
counted towards depth; (2) singular extensions - moves which are the only way to
obtain the best minimax value; (3) capture or recapture extensions - if a move is a
qualifying capture or recapture it does not count towards depth. The pruning rule (4)
was a form of null-move pruning. It was tested on its own, and in various

A Platform for Experimental Work

27

combinations with the extension rules. All of the rules were tested in more than one
variant using alternative definitions.
We examined how effective these different rule combinations are at bringing
tactically significant variations within the scope of a given search effort. For this
purpose we selected as a test domain 563 positions where a tactical combination was
present, at varying depths, taken from the book 1001 Winning Chess Sacrifices and
Combinations (Reinfeld 1995). The positions to be used for our experiment were
selected by performing an iterative-deepening full-width fixed-depth search on every
WCSAC position, and retaining for the test set all those which had a well-defined
tactical solution and could be solved in less than 36,000,000 nodes of search effort.
(The positions selected are given in Appendix A, and are also available online at
http://www.dcs.qmw.ac.uk/~martins/research/wcsac563.txt)

This choice was intended to ensure that all positions in the test set would be solved by
all variants of the searches. This meant we could use average effort-to-solution as our
criterion of effectiveness rather than number-of-positions-solved. Effort-to-solution
was preferred over number-solved, because effort-to-solution gives credit for all
reductions in search effort, and makes a useful comparison between alternative
regimes that solve a given problem.

4.4.3 The baseline search, horizon evaluation and quiescence search
The baseline search used in these experiments consists of a full-width search as
described in section 4.1.
The searches all used a simple captures-only quiescence search as the horizon
evaluation. The quiescence tree consisted of all capture moves, with the side to play
having the option of ‘standing pat’ instead of being forced to make an unfavourable
capture. Pawn promotions are considered to be captures because they alter the
material balance. The leaves of this capture tree are then scored according to the
material balance at that position. For these experiments we did not use a full
positional evaluator, but only material scores.
For the purposes of this experiment, we regarded the whole quiescence search as
being a ‘horizon evaluation’. The various search extension rules being investigated
were only applied in the main part of the search - they were not applied within the
quiescence search.

4.4.4 Measuring performance
The ‘gold-standard’ method for measuring performance is for the program to play a
large number of rated tournament or match games, and measure its performance on
the internationally recognised ELO rating scale. To obtain a useful rating by this
method would be extremely time-consuming, especially if dozens of putative program
enhancements need to be compared in various combinations. Other methods of
evaluation are required. Two other commonly used techniques are playing a modified
version of a program against a copy of its old unmodified self, (e.g. Anantharaman et
al. 1988), and measuring the program’s performance by testing its ability to predict
moves made by human Grandmasters (e.g. Marsland and Rushton 1973). Both of
these approaches have been found to be problematic (Berliner et al. 1989;
Anantharaman 1991a, 1991b).
The most commonly used method for measuring the performance of a chess program
is to provide a set of chess problem positions, and see how well it performs in trying
to find the solution. There are a number of such test sets available, ranging in size

A Platform for Experimental Work

28

from the 24-position Bratko-Kopec test to the suite of 5,500 test positions described
by Lang and Smith (1993) that were optically scanned from a number of chess books.
The test-sets approach suffers from potential difficulty in comparing results. Results
have often been given in terms of number of positions solved within a given effort
budget, usually CPU time. However, this does not discriminate well between
algorithms which solve nearly all the test, and does not discriminate at all between
algorithms which solve the complete set. Moreover, measuring CPU time, whilst the
best choice for determining competitive effectiveness for given hardware, does not
allow comparisons between algorithms on different hardware, and hence between
algorithms past and present. For these purposes, node counts are preferable.
Ye and Marsland (1992) used a hit ratio combining number of position solved with
node counts. This discriminates between algorithms which solve all or nearly all the
test set, but it is not clear how an effort limit can be set so that solving one extra
problem is weighted fairly against a reduction in the effort overall.
Bearing in mind all these considerations, we chose to measure total-effort-to-solution
for a specific test set, preferably one widely available or used already by other
researchers. We avoided the problem of assigning effort-to-solution to situations
when the algorithm cannot find a solution within an affordable time for the
experiment by allowing the test set to consist only of positions solvable by all variants
of the search algorithms.
The effort of finding the solution to a problem is taken to be the number of capture-
tree positions (c-nodes) visited during the search, up to and including the iteration in
which the correct move was found. This definition counts whole iterations only (the
search has to prove there was no better move, not merely prefer it for a while), and to
qualify as solved the search had to identify the correct move with the correct amount
of gain.

4.4.5 The test set
We obtained problems from 1001 Winning Chess Sacrifices and Combinations
(Reinfeld 1955). This (WCSAC) test set is available in machine-readable form, (Lang
and Smith 1993) with the target move specified along with each position.
To ensure that our test set consisted only of solvable positions and that each position
had a well-defined solution, a preliminary program scanned all 1001 problems and
selected positions that satisfied the following constraints:
(a) There had to be a single move that was tactically better than all its alternatives,

and this move had to match the solution given by Reinfeld (1955). In cases
where the best move found by the program differed from that given by the book
(suggesting either multiple solutions or an error in the book), the position was
excluded from the test set.

(b) The fixed-depth search had to return a stable evaluation for the target move. We
defined stability as the search returning an evaluation that remained at the same
value over 3 consecutive iterations, once the Reinfeld move had been found.
This value was recorded as a target gain that had to be found by a search, as
well as the target move to count as a solution of the problem.

(c) The position had to be such that all the search algorithms could find the
specified target move, within a predetermined limit of 36 million capture-tree-
generation nodes (c-nodes). This number is arbitrary and was chosen to allow
the experiment to complete in reasonable time on the machines used.

A Platform for Experimental Work

29

Any problem that was solved by the fixed-depth search within the first three iterations
(i.e. a problem of depth 1, 2 or 3) was excluded, as these were regarded as being too
simple to be of much interest.
The final test set consisted of 563 problems, of which 206 were of depths 4-5 (as
measured by the fixed-depth search); 176 were of depths 6 or 7; 136 were of depths 8
or 9; and 45 were of depth 10 or greater. Of these 563 problems, 99 had a solution
that led directly to checkmate. These positions are detailed in Appendix A.

4.4.6 The search extension heuristics
Search extension heuristics can be domain-specific or domain-independent. Other
things being equal, domain-independent heuristics are more useful. Two of the
heuristics investigated here are domain-independent and, although the others are
domain-specific, they are potentially applicable to a wide range of other games.
The extension heuristics were implemented so that they were applied at all levels of
the main search tree. This means that any given path down the search tree may be
extended more than once, and in some cases many times. All extensions are exactly
one ply, in other words if an extension is applicable that move does not count towards
depth. To prevent the search from being extended explosively, each move is only
extended by one ply, even if more than one extension rule calls for its extension.
4.4.6.1 Check extensions
Check extensions extend the search down lines containing checks. This heuristic is
known to be widely used in chess programs. We implemented it in two forms. In the
first, moves out of check are not counted towards depth (e.g. Levy et al. 1989). In the
second, it is the checks themselves that are not counted towards depth.
We found the two versions of the rule to have very similar performance effects,
provided that the first tests for eligible moves at depth 0 (i.e. test for in-check before
the node is declared to be a horizon node). From the programming point of view, this
interferes with a uniform definition that depth-0 nodes are always horizon nodes, but
it is still straightforward to program. It is arguable that the first definition is
marginally more natural from a human perspective, whereas the second happens to
have a cleaner mathematical description. After establishing that the performance
effects were similar, we used the first form when testing rule combinations.
4.4.6.2 Capture extensions
The simplest form of capture extensions is to extend on all captures, i.e. no captures
count towards depth. We initially included this in the experiment, but found that the
effect was surprisingly bad. The cost to solution increased for nearly all positions in
the test set, often by more than a factor of ten. We therefore eliminated this extension
rule from the main experiment as it would have required excessive computer time to
obtain detailed numbers.
4.4.6.3 Recapture extensions
A more refined idea is to extend only on selected recaptures (e.g. Berliner 1989). The
basic idea is to extend only on captures (including promotions) that return the value of
the current search to the root value stored by the previous iteration. In intuitive terms,
this will have the effect that each pair of captures making a level exchange of material
(i.e. capture and recapture) will receive an extra ply (from the recapture) whereas
meaningless sacrificial sequences will not be extended.
Berliner (1989 p. 287) gives a rule which can be paraphrased as: “We know the
expected value of the search from the previous search. A recapture is any capture that
produces an evaluation within a quarter-pawn window of the expected value.” Our
experiment uses material-only evaluation, so the rule requires a recapture to achieve

A Platform for Experimental Work

30

the material score exactly. Our results (given in Table 4.4 and the Figures 4.3 to 4.9)
fail to show a consistent benefit, although the overall average is slightly positive.
The above rule does not say whether the evaluation after the capture means the
backed-up value from the search subtree that follows, or a static evaluation, or some
other evaluation (e.g. capture tree or equivalent). We tried many variations on this
theme in an attempt to identify a version that showed a clear benefit, but were unable
to find a version better than the one reported in Table 4.3. Our best rule requires both
the static evaluation and the subtree-search result to achieve the expected root result.
Under our version of the recapture rule, a move is considered a recapture if it is a
capture or a pawn promotion, and the static material balance after it equals the stored
root value R, and the search after the recapture returns a value of R.
The search used to detect recaptures is identical to the main search. Thus, there is
opportunity for numerous recursive levels of recapture detection. A separate node
count was maintained to establish the cost of the recapture detection search (this cost
is included in the total count reported). The results show that these overhead nodes
are a relatively small proportion of the search effort.
4.4.6.4 Recapture variations
We examined the performance of the recaptures rule without the static material
balance requirement, and found that the number of extensions became excessive in
many positions, and the resulting combinatorial explosion led to a greatly degraded
performance.
We also examined other methods for detecting suitable recaptures, including use of
the current search bounds for a recapture-detection search, and also performing just a
capture-tree search below each candidate move instead of a full search of depth d-2.
These methods performed less well than our chosen criteria for recapture detection,
and are not included in the results presented here.
4.4.6.5 Singular extensions
Singular extensions are a domain-independent heuristic, first described by
Anantharaman et al. (1988). The concept is that a move is singular if there is no other
move that achieves the same result. In practice, a move is described as singular if a
search of that move to a certain depth returns an alpha-beta value significantly better
than that returned by any of the other moves from a search of equal depth. In the
context of our material-only evaluation, we define significantly better as simply
meaning greater.
At a search depth d, the move m that is to be tested for singularity is that move which
was previously found to be the best from the current position by a search of depth d -
r. This move and its value v are usually available from the hash table. We then
perform a search of depth d - r to verify that none of the alternative moves has an
alpha-beta value equal or greater than v.
Note that we are not required to establish an exact value for these moves, only to
verify that they all have values less than v. This enables us to use a minimal search
window of [v - 1, v], thus maximising the number of alpha-beta cutoffs in the search.
If v is an upper bound, then the position is what Anantharaman et al. (1988) call a
fail-low node, and as the position was rejected by the earlier search, the move m is not
tested for singularity.
The singular-detection search is performed in a manner identical to that of the main
search. The extension rules that are operating in the main search are also employed in
the singular detection search. This means that any given singular detection search
may recursively spawn other singular detection searches lower in the tree.

A Platform for Experimental Work

31

We implemented two versions of singularity detection in the context of our full-width
search, one which tested for the singularity of a move with a search at the current
depth - 1 (i.e. r = 1) and the other at depth - 2 (r = 2). We found that d - 1 performed
significantly better than d - 2, despite the fact that it incurred a much higher cost for
detecting singularity. These two variations are shown in the results as SingEx(1) and
SingEx(2) respectively.
If, when testing for singularity, a move is found that produces a value of greater or
equal value to the previous-best move, then we refer to that move as a singular
exterminator. This singular exterminator is stored in a separate entry in the hash
table, and in subsequent iterations can be recalled to be the first move tried in
singularity detection, thus reducing the average cost of singular detection searches just
as trying the previous-best move from earlier iterations reduces the average cost of
regular searches.
4.4.6.6 Null moves
Null move pruning is another domain-independent heuristic that has been found to be
an effective pruning method in many programs. The basic idea is to obtain, at low
cost, a lower bound on the search value by performing a reduced-depth search after
making a null move. There are several variants reported in the literature. Beal (1989)
describes a radical approach called null-move quiescence which applies the same
search depth to null moves at all levels in the tree. Goetsch and Campbell (1990)
describe a more popular form in which the search depth after the null move is one less
than after regular moves. Donninger (1993) describes a similar technique, but allows
recursive application of null moves.
For these experiments we tried null move at reduced depths 1 and 2, and allowed
recursive application. They appear as Null (1) and Null (2) respectively in the result
tables.

4.4.7 Search extension results
In this section we present the results for the various rules and rule combinations, with
a breakdown according to the depth of the problem.
4.4.7.1 Search efficiency
The hash table had space for 256k entries. Although not large by modern standards,
this ensured running without virtual-memory paging on the machines used for the
experiment, and was sufficient for all but the largest searches to complete without
significant loss of efficiency due to hash table saturation. The search engine used
was the same as the one described in section 4.1, and so the results are derived from
reasonably efficient search implementations.
4.4.7.2 Results for each rule and rule combination
We first compared every variant of the extension and pruning rules with the baseline
fixed-depth search. We then carried forward one version of each rule into various
combinations with other rules. Table 4.4 lists the results for each rule on its own, and
also the results for rule combinations. Overall results are given in the last column,
with a breakdown according to the problem depths in the columns headed 4,5 6,7 8,9
and 10+. The numbers are average tree sizes for each problem, measured in
thousands of c-nodes.
The first line in the Table (no extensions) shows an average size of 739,000 nodes.
This is the largest entry in the Table, which means all the extensions produced some
benefit. The first section of the Table shows each rule applied separately. Here it can
be seen that check extensions are the most effective, reducing the average tree size to
89,000 or 84,000 depending on which definition of check extension was used.

A Platform for Experimental Work

32

It can also be seen from Table 4.4 that tree sizes increase as expected with increasing
depth of problem, averaging around an order of magnitude increase for each depth
band of 2 ply. It should be noted that the figures for depth band 10+ are more erratic,
being based on fewer positions. Line two of the Table gives the number of positions
in each depth category.
Looking at the combinations, it can be seen that the best combination overall is
checks, recaptures and null-move pruning (average 31,000 nodes) and the simpler
checks and null-move pruning is second best with 47,000 nodes overall.

Depth of search (in ply) 4,5 6,7 8,9 10+ all

Number of positions (see 4.4.5): 206 176 136 45 563

Extension(s) applied:

None 5 58 938 6,164 739
Checks (1) 2 17 256 262 89
Checks (2)* 2 16 234 271 84
Recapts 6 65 1,012 4,936 661
SingEx (1) 6 55 789 1,880 360
SingEx (2)* 6 86 1,286 2,115 509
Null (1)* 4 33 381 3,029 346
Null (2) 4 23 198 915 130

Checks+Recapts 2 20 180 149 62
Checks+SingEx 2 23 178 403 83
Checks+Null 2 9 141 116 47
Recapts+SingEx 6 69 976 1,412 372
Recapts+Null 4 26 259 991 151
SingEx+Null 7 38 344 736 156
Checks+Recapts+SingEx 3 26 265 344 101
Checks+Recapts+Null 2 11 75 105 31
Checks+SingEx+Null 3 17 120 358 64
Recapts+SingEx+Null 6 48 422 552 163
Checks+Recapts+SingEx+Null 3 20 145 340 70

* These extension heuristic variants were not carried forward into combinations.

Table 4.4: Average number of c-nodes explored (in 1000s), by search depth and by the
extension(s) applied. (Appendix A contains a fuller table giving node counts
for singular and recapture detection components as well.)

4.4.7.3 The bar chart view, and variation with depth of problem
It is easier to see the relationship between these numbers using bar charts. Figure 4.3
presents the last column of Table 1 as a bar chart. Here we can see, for example, the
relative disappointment of re-capture extensions on their own, and easily identify the
best rule combination (which includes re-captures) of Checks, Recapts and Null. It
should be noted that the total length of the bar represents the search cost. The shading
distinguishes between main search and auxillary searches to detect singular moves
and recapture moves. All nodes count as part of the search effort.
Figures 4.4 to 4.6 show bar charts for the various depths of problems, in order to see
whether the relationship between rule combinations looks the same with deeper
problems as when averaged over all depths. It can be seen that the checks, recaptures
and singular extensions show greater relative advantage on the deeper problems,
whereas null-move pruning stays about the same. These differences between problem
depths are mainly a consequence of the exponential nature of the search trees, which
cause increasing numerical changes as extensions or pruning operate on larger and
larger subtrees. This continual exponential change means that node counts and
ordinary averages are an inconvenient method of comparison.

A Platform for Experimental Work

33

69,739

163,433

64,107

30,614

100,611

156,214

151,396

372,378

46,910

82,947

62,259

129,510

360,176

661,226

88,887

738,960

0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000

None

Checks

Recapts

SingEx

Null

Checks+Recapts

Checks+SingEx

Checks+Null

Recapts+SingEx

Recaps+Null

SingEx+Null

Checks+Recapts+SingEx

Checks+Recapts+Null

Checks+SingEx+Null

Recapts+SingEx+Null

Chck.+Rcpt.+SingEx+Null

C-nodes to solution

Main search

Singular detection nodes

Recapture detection nodes

Figure 4.3: C-nodes to solution (overall).
57,56316,65364,71755,06923,26319,78922,5139,29468,81326,04537,97426,16110,55617,04848,23019,983010,00020,00030,00040,00050,00060,00070,00080,000NoneChecksRecaptsSingExNullChecks+RecaptsChecks+SingExChecks+NullRecapts+SingExRecaps+NullSingEx+NullChecks+Recapts+SingExChecks+Recapts+NullChecks+SingEx+NullRecapts+SingEx+NullChck.+Rcpt.+SingEx+NullC-nodes to solutionMain searchSingular detection nodesRecapture detection nodes

Figure 4.4: C-nodes to solution (depths 6-7).

A Platform for Experimental Work

34

145,299

421,994

120,453

74,740

264,912

343,603

259,312

976,091

140,783

177,606

180,101

197,845

788,802

1,011,942

256,297

938,020

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

None

Checks

Recapts

SingEx

Null

Checks+Recapts

Checks+SingEx

Checks+Null

Recapts+SingEx

Recaps+Null

SingEx+Null

Checks+Recapts+SingEx

Checks+Recapts+Null

Checks+SingEx+Null

Recapts+SingEx+Null

Chck.+Rcpt.+SingEx+Null

C-nodes to solution

Main search

Singular detection nodes

Recapture detection nodes

Figure 4.5: C-nodes to solution (depths 8-9).

6,163,974

261,505

4,935,880

1,879,844

915,340

149,016

403,320

115,929

1,412,164

991,379

735,651

344,303

105,361

357,950

551,898

339,507

0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000 6,000,000 7,000,000

None

Checks

Recapts

SingEx

Null

Checks+Recapts

Checks+SingEx

Checks+Null

Recapts+SingEx

Recaps+Null

SingEx+Null

Checks+Recapts+SingEx

Checks+Recapts+Null

Checks+SingEx+Null

Recapts+SingEx+Null

Chck.+Rcpt.+SingEx+Null

C-nodes to solution

Main search

Singular detection nodes

Recapture detection nodes

Figure 4.6: C-nodes to solution (depths 10+).
The relative performance of these rules with depth of problem is important, because
our experiment was limited to depths somewhat smaller than typical searches in
present-day programs. This was because of decisions to obtain search effort counts

A Platform for Experimental Work

35

for inefficient as well as efficient searches, and to require 2 additional plies of search
depth after the problem was solved in order to give confidence of a stable evaluation
and genuine solution.
A better way to assess how the performance of the extensions varies with depth of
problem is to examine average branching factors instead of node counts. Section
4.4.7.4 discusses one way to obtain approximate branching factors. Although
branching factors also vary slightly with depth of problem, they are very stable
compared with node counts.
4.4.7.4 Effective branching factors
Another way of presenting these results is to introduce an effective branching factor
(EBF). The EBF is a measure of the size of the search tree solving a position, namely
the branching factor of a uniform tree having the same number of nodes and reaching
the same maximum depth. EBFs are potentially more useful than node counts in
estimating the scaling effect of selective search rules when applied to problems of
greater depth.

3.84

2.60

3.80

3.46

3.18

2.65

2.69

2.43

3.57

3.20

3.16

2.79

2.47

2.60

3.26

2.66

1.00 1.50 2.00 2.50 3.00 3.50 4.00

None

Checks

Recapts

SingEx

Null

Checks+Recapts

Checks+SingEx

Checks+Null

Recapts+SingEx

Recaps+Null

SingEx+Null

Checks+Recapts+SingEx

Checks+Recapts+Null

Checks+SingEx+Null

Recapts+SingEx+Null

Chck.+Rcpt.+SingEx+Null

Effective Branching Factor

Main search

Cost of detection

Figure 4.7: Effective Branching Factors (depths 6-7).

A Platform for Experimental Work

36

2.60

3.11

2.54

2.43

2.71

3.07

3.15

3.43

2.38

2.65

2.61

3.11

3.40

3.80

2.56

3.81

1.00 1.50 2.00 2.50 3.00 3.50 4.00

None

Checks

Recapts

SingEx

Null

Checks+Recapts

Checks+SingEx

Checks+Null

Recapts+SingEx

Recaps+Null

SingEx+Null

Checks+Recapts+SingEx

Checks+Recapts+Null

Checks+SingEx+Null

Recapts+SingEx+Null

Chck.+Rcpt.+SingEx+Null

Effective Branching Factor

Main search

Cost of detection

Figure 4.8: Effective Branching Factors (depths 8-9).

2.20

2.52

2.20

2.04

2.24

2.56

2.75

2.80

2.04

2.20

2.13

2.74

2.85

3.30

2.16

3.38

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

None

Checks

Recapts

SingEx

Null

Checks+Recapts

Checks+SingEx

Checks+Null

Recapts+SingEx

Recaps+Null

SingEx+Null

Checks+Recapts+SingEx

Checks+Recapts+Null

Checks+SingEx+Null

Recapts+SingEx+Null

Chck.+Rcpt.+SingEx+Null

Effective Branching Factor

Main search

Cost of detection

Figure 4.9: Effective Branching Factors (depths 10+).
In the EBFs presented in Figures 4.7 to 4.9 an adjustment has been made to reduce the
distortion caused by relative lack of alpha-beta cutoffs in very shallow searches. At
the first ply of search, no alpha-beta cutoffs are possible, so every move has to be

A Platform for Experimental Work

37

searched. This means that the EBF for ply 1 will be much higher than for subsequent
plies, and problems solved in fewer iterations will have a disproportionately high EBF
using this method of calculation.
In order to compensate for this approximately, we calculated the average number of
legal moves for every position in the test set, which came to 40. The effect on the
EBF of the first iteration was then reduced by calculating the root to solution depth
minus one:

1
40

-d
c (4.1)

where d is the depth to solution, and c is the total number of c-nodes.
The resulting EBF Figures 4.7 to 4.9 provide an alternative way of interpreting the
results. They show that the reduction in EBF achieved by the rules and rule
combinations are remarkably independent of depth of problem. For example,
comparing the no extensions versus check extensions for depths 6,7 and depths 10+
we see that the no-extensions branching factor drops slightly from 3.84 to 3.38
(presumably due to increasing opportunities for transpositions to occur in deeper
searches), but that the reduction in branching factor due to adding check extensions is
very stable, moving only from 1.24 to 1.22. It is not safe to draw too much from these
figures, as the EBFs are an approximate measure only. However, it does give some
indication that the performance of these rules will be similar (in branching factor
terms) when tested on deeper problems than those in our test set.

4.4.8 Discussion
4.4.8.1 Alternative rule definitions
Singular extensions were tried in two versions: (1) with the singularity test using
searches one ply fewer than the regular search; and (2) using searches two plies
fewer. The search using two plies less is computationally much cheaper, but also
much less accurate.

129,510

345,690

508,793

360,176

0 100,000 200,000 300,000 400,000 500,000 600,000

SingEx (1)

SingEx (2)*

Null (1)*

Null (2)

C-nodes to solution

Main search

Singular detection

Figure 4.10: Singular detection and null move variants (overall).
Figure 4.10 shows that testing using 1-ply depth reduction produces better results,
even though nearly 70% of the total effort goes into testing for singularity. With 2-
ply reduction, the cost of singularity detection reduces to 40% of the total, but that
total is 40% larger due to less effective extension decisions.
Singular extensions using depth-1 searches were carried forward into combinations
with other rules, as was null-move pruning using depth-2 searches.
Similarly, null move pruning was tried in two versions: (1) with the null-move
searched using one ply fewer than the main search; and (2) two plies fewer. The
shallower the search depth after the null move, the cheaper the test, but the greater the

A Platform for Experimental Work

38

risk that threats will be overlooked, resulting in a need for greater depth in the main
search before the position is evaluated correctly. Figure 4.10 shows that for null-
move pruning on our test set, 2-ply depth reduction saved more than it cost, with the
total effort reduced to 40% of the 1-ply version.
4.4.8.2 Effects of each rule independently
Figure 4.3 shows that all the rules tested have beneficial effects when added to the
baseline fullwidth search. These range from recaptures, which averaged a 10%
reduction, to check extensions, which produced a large 88% overall reduction in tree
sizes.
The breakdown according to depth category (Table 4.4) shows that check extensions,
singular extensions, and null moves have large gains in all depth categories.
Recapture extensions are not consistently beneficial: they showed a net loss on depth
categories up to depths 8,9, and only a (relatively modest) gain for depths 10+.
The 10+ depth category has to be treated with some caution, since it consists of fewer
problems than the others - only 45 positions compared with 136 in depth category 8,9.
Check extensions and singular extensions show increasing benefit with problem
depth. Null move pruning shows variation with depth but no consistent trend.
The extent and consistency of the check extensions might appear surprising, since
only 99 of the 563 problems are checkmate problems. The others involve material
gain only. The advantage in these cases comes from lines that use checks to make
double attacks or undermine defences. In any case, these results suggest that check
extensions deserve their widespread use in chess programs.
4.4.8.3 Extensions in combination
Figure 4.3 shows that singular extensions added to a fixed-depth search produced an
overall reduction of about 30%. Figure 4.3 also shows that adding singular extensions
to a search already including check extensions only produced a further reduction of
7%. Table 4.4 shows that this reduction came mainly from problems of medium
depth (8,9) with increases in effort when adding singular extensions to check
extensions on shallower and deeper problems.
Singular extensions produced even less advantage on searches already combining
check extensions with other rules. In particular, adding singular extensions to a
search using check extensions, recapture extensions and null move pruning resulted in
considerably worse performance in all depth categories.
The augmentation of check extensions with a rule similar to singular extensions was
reported as beneficial as a specialised aid to detecting mating sequences in the
quiescence search (Beal 1984). This used the special case of singular ‘out-of-check’
moves which have close to zero-cost detection, and therefore might be expected to
show more net benefit.
One factor that would perhaps reduce the measured benefit of singular extensions in
our experiment compared with results reported by Anantharaman, Campbell and Hsu
(1988), is that they reduced the cost of singularity detection by not testing moves at
the root which, as they have the largest sub-trees, have the highest cost to test. We
performed singularity detection at all nodes, including the root.
Considering the extent of variation between problems, our overall conclusion is that
singular extensions added no significant advantage to searches that already included
check extensions. In contrast, null-move pruning shows a benefit in all combinations
tested.
Table 4.4 and Figure 4.3 show that recapture extensions achieved a benefit when
added to fixed-depth search, when added to check extensions alone, and when added
to an existing combination of check extensions and null-move pruning, but a loss

A Platform for Experimental Work

39

when added to every other combination. The benefit or loss from recapture
extensions was relatively small and varied with depth category. The overall
conclusion has to be that no significant advantage or disadvantage was observed.
4.4.8.4 Overall comments regarding search extensions
The experience with singular extensions and check extensions is a reminder that
performance advantages from selective search techniques are always highly sensitive
to the combination of co-existing selection rules and the choice of tests. It is
necessary to perform thorough tests with all combinations before concluding any
overall utility from any selection rule.
It is perhaps surprising that the singular extension and recaptures rules we have
examined do not show clearly decisive benefits, since they have been used in many
chess programs. Of course, the experiments reported here have been limited to
tactically decisive problems with material-only evaluations. Singular extensions and
recapture extensions might have been expected to work well on tactical sequences, so
part of the result is unexpected.

4.5 Benefits of the Preliminary Experiments
The investigation of search engine improvements in sections 4.2 to 4.4 was
worthwhile (and resulted in two publications). As a result of this experience we
obtained not only the more sophisticated engine containing the search enhancements,
but also simple robust versions of the search engine and tools for collecting and
processing search statistics. After this early work, we were able to conduct the
published learning experiments using the simplest feasible engine that was robust and
had been well tested.

4.6 Shogi and the Shogi-Playing Search Engine
The search-related methods described in this Chapter are all essentially game-
independent. As a result, many of the above techniques would be useful in the
construction of programs to play other games.
In addition to conducting experiments in the well-established domain of chess, we
also investigated shogi, another complex game that is considered by many researchers
to be the next challenge beyond chess for computer game-playing (Matsubara, Iida
and Grimbergen, 1996). The features of shogi that provide this challenge and the
results of experiments conducted in this domain are described in detail in Chapter 6.

Learning Chess Evaluation Coefficients

40

5 LEARNING CHESS EVALUATION COEFFICIENTS

This Chapter introduces the main topic of this thesis – learning evaluation coefficients
in a complex domain. The methods for utilising temporal difference learning in
complex game domains detailed in Chapter 3 are combined with the chess-playing
platform described in Chapter 4. We describe experiments where we attempt to learn
the relative values of chess pieces. The learning is obtained entirely from a series of
randomised self-play games, without access to any form of expert knowledge. The
learning system does not benefit from seeing the play of a well-informed opponent
against it, nor does it examine games played by experts. The only chess-specific
knowledge is provided by the rules of the game. We show that we are able to learn
suitable piece values, and that these values perform at least as well as piece values
widely quoted in elementary chess books.
A combination of machine-learning methods, including TD learning, was earlier used
to learn chess piece values (Levinson and Snyder 1991), and coarse-grained piece
values (Christensen and Korf 1986).
The same method of applying TD(l) to minimax. as described in Chapter 3 and first
published by Beal and Smith in 1997, was later reported to be successful by Baxter,
Tridgell and Weaver (1998). They improved weights for a complex chess evaluation
function consisting of positional terms as well as piece values, when playing online
against knowledgeable opponents (see section 3.6), but they provided piece weights
as initial knowledge in order to obtain good performance.

5.1 The Relative Value of the Pieces
Probably the first heuristic to be taught to most beginners is the value of the pieces:
that knights and bishops are worth about three pawns; rooks about five pawns; and the
queen about nine pawns (the king is not given a value as it cannot be captured). Thus
under this scheme, it would be considered a fair exchange to trade a rook for a bishop
and two pawns, or a queen for two bishops and a knight.
This simple numerical scheme provides a crude evaluation of how ‘good’ (i.e. likely
to lead to victory) a given position is. Such a scheme (or others very similar) provides
the backbone for the evaluation function of almost all chess-playing computer
programs’, including IBM’s Deep Blue. For high performance play the basic scheme
is augmented with numerous, often very elaborate, additional scoring terms.
The material-only scheme forms one of the simplest examples of evaluation functions
described in section 3.4.1. The experiments presented in this Chapter are concerned
with finding suitable weights for each of the five piece types: pawn, knight, bishop,
rook and queen.

5.2 Temporal Difference Learning in Chess
The TD learning process is driven by the differences between successive predictions
of the probability of winning during each game. Throughout the course of a single
game, a record is kept of the value returned by the search after each move, and the
corresponding principal position (see section 3.5.2).
In principle, TD(l) weight adjustments can be made after each move or at any
arbitrary interval, but for game-playing tasks the end of every game is the most

Learning Chess Evaluation Coefficients

41

convenient point to actually alter the evaluation weights. The update rule for applying
weight adjustments at the end of each game is:

Â
=

D+¨
T

t
twww

1

(5.1)

where T is the time index at the end of the game.
As described in section 3.4, a sigmoid squashing function is used to convert the
evaluation score of the principal position (i.e. the leaf of the principal variation) into a
prediction of the final outcome of the game. We sometimes refer to these predicted
outcomes as prediction probabilities as they are in the range 0-1.
The use of this squashing function ensures that weights having little effect on the
prediction are adjusted less than weights to which the prediction is more sensitive.

00.51-707P(win)0.77+ 2 Pawns

-• ¨ +• Æ

v (value of position)

Figure 5.1: Graph showing the conversion of position value into prediction probabilities
(including an example using piece values learnt in Run A from section 5.3).

Figure 5.1 shows the conversion of position value into prediction probability. The
example score of 2 pawns (using pawn = 0.60 from Run A in section 5.4) is converted
into a probability of winning of 0.77. Of course, the resulting probabilities for any
given material advantage will vary according to the piece values that have been learnt.
For example, using the values from Run B, 2 pawns advantage converts into a
probability of winning of 0.74.

5.3 The Basic Learning Experiment
As outlined in section 3.5, the piece values being learnt are used to evaluate the leaves
of a minimax search tree, and temporal difference learning is used to adjust these
values over the course of a series of games.
We attempted to learn suitable values for five adjustable weights (pawn, knight,
bishop, rook and queen). To demonstrate that the values learnt are reasonable, we
played matches between two programs that differed only by one using the piece
values learnt during the experiments and the other using values given in many
elementary chess books of pawn=1, knight and bishop=3, rook=5 and queen=9. The
programs using the learnt values consistently score well over fifty percent in matches
of this sort.

Learning Chess Evaluation Coefficients

42

5.3.1 The search engine
The search engine used in the experiments was described in section 4.1. The piece
values being learnt (those for pawn, knight, bishop, rook and queen) were used as the
evaluation function. The material balance for a position was calculated as the sum of
all the values of the side to move’s remaining pieces, minus the sum of all the values
of the opponent’s remaining pieces.

5.3.2 Experimental details
The games reported on in this section were played using a four-ply fixed-depth
search. At the start of each learning experiment the piece values were all initialised to
1. For these experiments we used TD(l) control parameters of a = 0.05 and l = 0.95.
To prevent the same games from being repeated, the move lists were randomised.
This has the effect of selecting at random from all tactically equal moves, and has the
added benefit of ensuring that a wide range of different types of position are
encountered. It should also be noted that these experiments have learnt values within
a material-only evaluation function. We would expect the material values learnt to be
at least slightly different if the evaluation function included positional scoring terms
(see Chapter 7).

5.3.3 Basic learning results
We conducted five runs (A-E) of 10,000 games each. Each run differed only in
choice of the initial seed for the random number generator, ensuring that each
consisted of entirely different game sequences.01234567891011120200040006000800010000QueenRookBishopPawnKnightGames

Figure 5.2: Graph of learnt values from a typical single trial (Run A). The absolute values have been
normalised so that the average value of a pawn over the last 2,000 games is fixed at 1.

Figure 5.2 shows the evolution of the piece values for a single run over 10,000 games.
From the graph it can be seen that the value of the queen is quickly established to be
greater than that of the other pieces, and that after a few hundred games the relative
ordering of the pieces has been established. There are a few minor fluctuations,
where the value for knight is briefly above that of bishop, but these are quickly
remedied. The four other runs (B-E) differed from this only in the choice of the

Learning Chess Evaluation Coefficients

43

random number seed, and they all produced learning traces very similar to those
shown here.
Table 5.1 shows the piece values learnt. To avoid fluctuations in the weights due to
noise from the stochastic component of the search engine, these values were
calculated by averaging over the last 20% of games in each of the five runs.

Pawn Knight Bishop Rook Queen
Run A 0.60 1.66 2.02 2.75 6.61
Run B 0.58 1.49 1.93 2.92 6.43
Run C 0.53 1.60 1.93 2.81 6.79
Run D 0.58 1.56 2.02 2.81 6.64
Run E 0.57 1.47 1.78 2.92 6.36

Table 5.1: Learnt values for each trial, averaged over the final 20% of the runs.
The absolute values of the weights could conceivably drift to be all very large, or all
very small. What matters most, however, are their values relative to one another,
because when the learnt piece values are used by a playing program, the value of the
pieces relative to each other determines move choice. (Thus the same games would
be played with pieces values of 2:4:6:8:10 as with 1:2:3:4:5) Table 5.2 presents the
results normalised so that pawn equals one, allowing direct comparison between the
runs.

Pawn Knight Bishop Rook Queen
Run A 1.00 2.76 3.36 4.57 11.00
Run B 1.00 2.56 3.31 5.00 11.01
Run C 1.00 3.01 3.62 5.29 12.76
Run D 1.00 2.71 3.50 4.87 11.51
Run E 1.00 2.58 3.13 5.13 11.17

Table 5.2: Learnt values for each run, normalised to pawn=1.
012345678910111213PawnKnightBishopRookQueenRun ARun BRun CRun DRun E

Figure 5.3: Normalised learnt piece values from 5 runs at search depth 4.
From Figure 5.3 we can see that similar piece values were learnt by each of the five
runs, and that the relative values of the pieces in each case are similar to the widely
quoted values taught to human beginners. By `similar' we mean similar in the context
of piece values being learnt by self-play from zero initial knowledge. In this context,

Learning Chess Evaluation Coefficients

44

the play is dominated by relative orderings of pieces and piece combinations, rather
than numerical totals.

5.3.4 Basic results from matches using learnt values
To verify that the final values were reasonable, five matches were played between two
identical search engines, one using the values (1:3:3:5:9) and the other using the
newly learnt weights from one of the five runs.
A match consisted of 2,000 games, alternating black and white. Games that ended in
mate were scored as 1 point for the winning side. Games that ended in a draw
according to the laws of chess (stalemate, repetition, insufficient material) were
scored as 1/2 point for both sides. Games that were unfinished after 400 ply (200
moves each) were scored as win for one side only if both programs’ evaluation
functions agreed that side was ahead on material, otherwise the game was scored as a
draw.

Played Won Lost Drawn Percent.
Run A 2,000 1,116 782 102 58%
Run B 2,000 1,117 766 117 59%
Run C 2,000 1,114 777 109 58%
Run D 2,000 1,112 781 107 58%
Run E 2,000 1,117 762 121 59%

Table 5.3: Match results for each trial vs. values (1:3:3:5:9).
From Table 5.3 we can see that each of the five runs produced final piece values that
performed better than the elementary textbook values. Moreover, the performance of
each set of learnt values was very similar, suggesting that the choice of seed for the
random number generator does not play a significant part in the learning process.

5.4 Experiments at Various Depths
We repeated the basic experiment with five other search depths for the chess program.
The runs contain a lot of internal variety because the chess playing program chooses
randomly between materially-equal values, producing a variety of games for any
given set of material values. This variety enables the learning process to achieve
values that reflect values averaged over all positions. Nevertheless, to confirm that
the results were not critically dependent on the random choices, we again ran each
depth experiment with five different random-number seeds.

Depth 1 Depth 3 Depth 5
Pawn 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Knight 1.86 (0.09) 1.75 (0.10) 2.14 (0.12)
Bishop 2.11 (0.15) 2.31 (0.08) 2.49 (0.13)
Rook 3.34 (0.20) 3.88 (0.20) 4.06 (0.32)
Queen 7.26 (0.64) 8.08 (0.19) 8.11 (0.35)

Table 5.4: Learnt piece values from depths 1,3,5
Depth 2 Depth 4 Depth 6

Pawn 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Knight 2.75 (0.22) 2.72 (0.17) 2.91 (0.08)
Bishop 3.52 (0.33) 3.38 (0.19) 3.49 (0.09)
Rook 4.84 (0.35) 4.97 (0.27) 5.08 (0.09)
Queen 11.04 (0.55) 11.49 (0.74) 10.68 (0.28)

Table 5.5: Learnt piece values from depths 2,4,6
Tables 5.4 and 5.5 shows the average values learnt at depths 1,3,5 and 2,4,6
respectively. In both cases the values are normalised to pawn=1 for ease of

Learning Chess Evaluation Coefficients

45

comparison. The absolute values learnt in each run are presented in Appendix B.
It is a well known feature of minimax searches to fixed depths that there are often
fluctuations of behaviour with the parity of ply (Beal and Smith 1995). This is
probably caused by evaluations being biased either towards or against the player to
move. The direction of bias, and its magnitude, depend on the nature of the
evaluation function and the characteristics of the game. This makes comparison of
values learnt at even depths of search with those learnt at odd depth problematic. For
this reason, the results are presented in two sections: depths 1,3,5 and depths 2,4,6.01234567891PawnKnightBishopRookQueenDepth 1Depth 3Depth 5

Figure 5.4: Learnt piece values from depths 1,3,5.0123456789101112131PawnKnightBishopRookQueenDepth 2Depth 4Depth 6

Figure 5.5: Learnt piece values from depths 2,4,6.
In Figures 5.4 and 5.5 the standard deviation from the different random seeds is
shown as a vertical line embedded in the top of each bar. The Figures show that the
learnt values vary a little from run to run, and with search depth, but that the average
value for each type of piece is quite close to the standard values often told to
beginners.

Learning Chess Evaluation Coefficients

46

5.4.1 Matches at various depths
As in the basic experiment we ran matches between the learnt values and the 1:3:3:5:9
values to determine whether the learnt values are better, worse, or equivalent to the
human values as told to beginners. The matches were conducted using a fixed search
depth equal to that used to determine the learnt values (i.e. the depth 4 matches used
the values learnt at depth 4 in conjunction with a search depth of 4-ply for both sides).
Table 5.6 shows that the learnt values are clearly superior at all depths.

Depth Win Loss Draw Score
1 1,003 828 169 54%
2 1,052 899 49 54%
3 1,028 644 328 60%
4 1,117 777 106 59%
5 1,053 552 395 63%
6 1,147 665 188 62%

Table 5.6: Match results vs. ‘standard’ at various depths.
This result has to be interpreted with the caveat that the superiority is only shown
under the particular conditions of this experiment. The program evaluated positions
using material alone, and the optimum material values might be different if positional
terms are included in the evaluation. (In Chapter 7 we consider learning larger weight
sets, including some positional terms, and find that the material weights learnt in this
context are similar.)
Further evidence of ply-parity effects can been seen in the number of drawn games
shown in Table 5.6. Matches that used even depths of search tended to produce fewer
drawn games than those conducted using odd search depths.

5.5 Learning Without Search
Given that learning from a depth 1 search produces adequate results, this begs the
question as to whether search is needed at all. In order to demonstrate that some level
of search is required for successful learning, we conducted experiments whereby the
program attempted to learn from games played with no search at all, and with the
moves chosen entirely at random. These runs failed to learn any useful values, even
after 10,000 games. Given that there was no feedback of any kind from the piece
weights into the move selection, this result is not surprising. Figure 5.6 presents the
weight traces from one such run.

Learning Chess Evaluation Coefficients

47

01234560200040006000800010000GamesPawnBishopQueenRookKnight

Figure 5.6: Failure to learn from entirely random play.
Beal and Smith (1994) observe that random play is very different from random
evaluations, and demonstrate the counter intuitive result that a deep minimax search
on random evaluations produces play vastly superior to the random selection of
moves. A lightly edited version of this paper is contained in Appendix E.
We also investigated search regimes that invested less computational effort than the
depth 1 plus quiescence search described above, namely a quiescence-only search and
one that used 1 ply search without quiescence. Both the quiescence-only and 1-ply-
no-quiescence runs learnt much more slowly and erratically than depth 1 plus
quiescence, and had not approached stable values by the end of the runs. We interpret
these results as being due to the quality of play being too poor to inform the learning.
When an advantage was obtained by one side, the subsequent play was not good
enough to consistently convert that advantage into a win. Inspection of a few sample
games lent support to this interpretation.

5.6 Discussion
The experiments presented in this Chapter demonstrated the use of temporal
differences to learn relative piece values that are at least as good (under our test
conditions) as the widely-quoted values in elementary text books. These values were
successfully learnt without any domain-specific knowledge being supplied.
The same method could be applied directly to many other two-person, perfect
information games, e.g. checkers and Chinese chess. Chapter 6 describes the
application of these methods to the game shogi. As well as learning piece values, the
same method could be used to optimise weights for other evaluation function terms,
such as mobility, centre control etc. This topic is addressed in Chapter 7.

Learning in Shogi

48

6 LEARNING IN SHOGI

The previous Chapter presented results from the application of Temporal Difference
learning in the chess domain. To widen our testing beyond chess alone, we also
investigated shogi - another complex game that has some similarities to chess, but
also major differences that make it harder to create programs that play it. This
Chapter reports on experiments to determine whether sensible values for shogi pieces
can be obtained in the same manner as for chess pieces. As was the case with the
chess experiments presented in Chapter 5, the learning is obtained entirely from
randomised self-play, without access to any form of expert knowledge. The piece
values are used in a simple search program that chooses shogi moves from a shallow
lookahead, using pieces values to evaluate the leaves, with a random tie-break at the
top level. Temporal difference learning is used to adjust the piece values over the
course of a series of games. The resulting learnt piece values were tested in matches
against hand-crafted values, including a set of values used by the 1997 World
Computer Shogi Champion.

6.1 Shogi: One Step Beyond
Shogi is a traditional Japanese board game, and considered by many researchers to be
the next challenge beyond chess for computer game-playing (Matsubara, Iida and
Grimbergen, 1996). In Japan the game has a very high profile, with top shogi
professionals being regarded as national celebrities. Shogi belongs to the same family
of games as western chess and Chinese-chess (Xiangqi), the most noticeable
differences being that in shogi captured pieces are not eliminated from the game, but
kept in hand by the capturing player, and may later be returned (dropped) on almost
any vacant square. A further significant difference from western chess is that all
pieces apart from the king and gold are eligible for promotion once they reach the
promotion zone (the last three ranks of the board). Pawns, lances, knights and silvers
may all promote to golds upon entering the promotion zone, whereas rooks and
bishops promote to more powerful pieces. An introduction to the rules of shogi and
some elementary strategic advice is given by Fairbairn (1989)
The re-introduction of captured pieces in shogi means that there is no loss of material
as the game progresses. This makes the division of the game into stages (e.g.
opening, middlegame and endgame) less feasible, and also means that it is extremely
rare for a game not to end with a win for one side. The introduction of piece drops
also causes the game tree to have a much larger branching factor than chess, making
the game much less amenable to full-width searching techniques.
The final frontier for computer game playing programs is likely to be Go (also known
as Wei chi in Chinese and Badduk in Korean). With its average branching factor in
excess of 200, and games typically taking over 200 moves for completion, the size of
its search space is significantly greater than either chess or shogi. But what makes Go
such a challenge is the lack of a natural evaluation function, such as material. Despite
considerable effort in the field (Müller 1999), the best Go playing program has only
reached the strength of a weak human amateur.

Learning in Shogi

49

6.2 The Relative Value of Shogi Pieces
Sensible values for chess pieces are fairly widely known. However, the choice of
suitable values for shogi pieces is a problem for game programmers, because shogi
experts prefer not to allocate values to the pieces. Unlike the situation in chess, there
is no generally-agreed standardised set of values for shogi pieces that is given as
advice for beginners. Hence shogi programmers have more need for machine
learning to generate material values for use in evaluation functions.
Note that in Shogi, unlike chess, the value of a piece is not the same as the change in
the material balance when a piece is captured. For example, when capturing an
opponent’s promoted rook the change in material balance needs to take into account
both the loss of the promoted rook to the opponent, and also the gaining of a rook in
hand for the capturing side. The adjustable weight associated with rooks represents
the value of a rook, and does not represent the effect of a rook capture, which would
change the material balance by twice that value.
The focus of this work is on learning from self-play alone, with no knowledge input.
This is of greater potential value for problems where existing expertise is not
available, or where the computer program may be able to go beyond the level of
existing knowledge.
The experiments presented in this Chapter were designed to discover whether the
same TD technique that had performed well in the chess domain would perform as
satisfactorily in the more demanding domain of shogi, and whether it would yield
sensible values for shogi pieces.

6.3 The Shogi-Playing Search Engine
The shogi experiments used a search engine derived from the chess platform
described in Chapter 4. This included a fixed-depth, iteratively-deepened full-width
search, with a captures-and-promotions-only quiescence search at the full-width
leaves. To prevent undue search effort being expended in the quiescence search, it
was limited to a depth of eight plies. (We performed some test runs with an unlimited
quiescence search, and obtained essentially identical results, but at much greater
computational cost.) As in the chess engine described in Chapter 4, null-move
pruning was used in the main search to reduce the size of the search tree, and the
search was once again made more efficient by the use of a transposition table. A
similar evaluation function to that used in the basic chess experiments described in
Chapter 5 was used, and consisted of the material score only. To ensure variations in
the games the move choice at the root was made randomly from the best of the
materially-equal moves.
The thirteen piece values being learnt (seven main piece types and six promoted
types) were used by the evaluation function. The material balance for a position was
calculated as the sum of all the values of the side to move’s pieces (including pieces
in hand), minus the sum of all the values of the opponent’s pieces. It would be
possible to learn separate values for pieces on the board and those in hand, and further
discrimination would be possible depending on the quantity of each piece type held in
hand. In order to simplify the experiments a single value was used for each piece type
both on the board and in hand.

Learning in Shogi

50

6.4 Applying Temporal Difference Learning to Shogi
The experiments were designed to test the TD methods described in Chapter 3 to the
task of learning suitable piece values for a shogi-playing program. Many learning
runs were performed to explore the behaviour of the TD(l) method using a variety of
search depths. Suitable values for the learning rate, and values for l, were determined
by some preliminary test runs. All games were played using the shogi engine
described in section 6.3, with a main search varying in depth between one and four
plies. To prevent the same games from being repeated, the move lists were
randomised, resulting in a random choice being made from all tactically equal moves.
This has the added benefit of ensuring a wide range of different types of position are
encountered.
During each game a record was kept of the value returned by the search after each
move, and the corresponding principal position. These values are converted into
prediction probabilities by the squashing function given in equation (3.4), and then
equations (3.1) and (5.1) are used to determine adjustments to the weights at the end
of each game.
Once again the experiments learn values for the pieces entirely from randomised self-
play. This method has the advantage that it requires no play against well informed
opponents, nor is there any need for games played by experts to be supplied. The
piece weights are learnt ‘from scratch’, and do not need to initialised to sensible
values. The only shogi-specific knowledge provided is the rules of the game. Whilst
each learning run consists of several thousand games, this represents a relatively short
amount of machine time, and the entire run can be completed without any external
interaction.
In the experiments reported here we used a value for l of 0.95, and a variable value of
a that decreased during each learning run, from 0.05 to 0.002. At the start of each run
all weights were initialised to 1, so that no game-specific knowledge was being
provided via the initial weights.

6.5 Results from Learning
We present results from five separate learning runs of 6,000 games each. The learning
runs were identical except that a different random number seed was used in each one,
ensuring that completely different games were played in each. We shall refer to these
learning runs as Run A through Run E.

Learning in Shogi

51

6.5.1 Weight traces
0123456780200040006000GamesRookBishopSilverGoldKnightLancePawn

Figure 6.1: Typical weight traces (main pieces).
Figure 6.1 shows the weight traces for un-promoted pieces for a typical learning run
(Run C) of 6,000 games. A decaying learning rate was used for the first half of the
run, decreasing from 0.05 to 0.002. Once the learning rate reached 0.002, it remained
constant for the remainder of the run. Very similar results were achieved using a
fixed learning rate of 0.002, but the runs required more games to achieve stable
values.
From Figure 6.1 we can see that the relative ordering of the main pieces has been
decided after about 4,000 games, and that pieces remain in that relative order for the
remainder of the run. During the last 2,000 games there is still considerable drift in
the values. Some random drift is to be expected as a result of the random component
included in the move choice. We averaged the values over the last 2,000 games in
order to obtain values for testing against other weight sets.0246810120200040006000GamesRookBishopPawnKnightSilverLance

Figure 6.2: Typical weight traces (promoted pieces).

Learning in Shogi

52

Figure 6.2 shows the weight traces for promoted pieces from Run C. Comparing
Figures 6.1 and 6.2 we can see that the promoted piece traces appear more stable than
the main piece traces. This is because adjustments to the promoted piece types occur
less frequently during the course of a game. Indeed, some games may not contain a
single instance of a given promoted piece type. There is no trace for gold, because
they do not promote.

6.5.2 Main piece values
Figure 6.3 shows relative values for the seven main piece types, from each of the five
learning runs. To avoid fluctuations in the weights due to noise from the stochastic
nature of the game-playing process, these values represent the average over the last
2,000 games in each of the five runs.
It is the relative values of the pieces that governs move selection, not the absolute
values. Normalising the values so that rook=5 enables us to readily compare the
values from the five runs1.0123456PawnLanceKnightSilverGoldBishopRookRun ARun BRun CRun DRun E

Figure 6.3: Normalised learnt values for 5 runs (main pieces).
From Figure 6.3 we can see that each of the five runs has learnt the same ordering of
the pieces (pawn, lance, knight, silver, gold, bishop, rook). In addition, the relative
magnitude of the learnt values is fairly consistent across the five runs.

6.5.3 Promoted piece values
Figure 6.4 shows the normalised relative values for the six promoted piece types
(golds do not promote). The values for promoted bishops and rooks are substantially
more that for their un-promoted counterparts.
When promoted, pawns, lances, knights and silvers all promote to piece types that
move in exactly the same way as a gold. Despite this it can be seen from Figure 5 that
the learnt values for these promoted types differ considerably. This might be due to in
part to low numbers of promotions in the games, which leads to higher run-to-run
variance and to end-of-run values which are not yet settled.

1 In chess, one often refers to the values of pieces in terms of pawns, e.g. “A knight is worth three

pawns”. In shogi, there is no such commonly used metric. However, in certain rare situations
(Fairbairn 1989) the rules of shogi state that rooks are to be scored as five points each, and all other
pieces as one point each. We chose the five-point rook score as our reference value for normalising.

Learning in Shogi

53

In particular, the value learnt for promoted pawns is consistently greater than those
learnt for promoted lances, knights, or silvers. This is probably partly because the act
of promoting a pawn has the additional benefit of making all empty squares in that
file available for the subsequent dropping of a pawn in hand. (The rules of shogi
prohibit dropping a pawn into a file that already contains a friendly un-promoted
pawn.)
Another issue that might affect values of promoted pieces is the value to the opponent
if they are captured. For example, a promoted pawn gives the opponent only a lowly
pawn in hand, whereas a captured promoted silver gives the opponent a silver in hand.
Thus the promoted pawn is more expendable than a promoted silver, even though
their capabilities on the board are the same.

0123456789PawnLanceKnightSilverGoldBishopRookRun ARun BRun CRun DRun EUnpromoted Rook Value

Figure 6.4: Normalised learnt values for 5 runs (promoted pieces).

6.6 Testing Learnt Values in Match Play
To test the effectiveness of the learnt values in our domain, a number of matches were
played between identical search engines using various different piece values. The
search engines were the same as those used for the learning experiments, but the piece
weights were fixed to a given set of piece values and were not adjusted during the
match.
Each match consisted of 2,000 games, alternating Black and White (Sente and Gote).
Games that ended in mate were scored as 1 point for the winning side. Games that
were unfinished after 600 ply (300 moves each) were scored as _ point for each side.
We ran two set of matches. The first was effectively a mini-tournament to compare
the average values from all five learning runs with values obtained from other
sources. The second set compared each of the five sets of learnt values with the best
of the values from other sources.
Since there is no generally-agreed set of values in shogi for comparison, the shogi
learnt value set was tested in match play against three other value sets: Beginner;
Gnu-derived; and YSS. The values used in each of these sets are presented in table
form in Appendix C.
The Beginner piece values were decided by a shogi beginner (but experienced game
programmer), guided by advice from Leggett (1966).
The Gnu-derived piece values were derived from those used by the widely available
program Gnu Shogi (Mutz 1994). This program uses four different sets of piece

Learning in Shogi

54

values, depending on the stage of the game, as determined by various heuristics. In
order to achieve a direct and straightforward comparison with other value sets we
chose to ignore these game stages. Whilst it might have been possible for us to devise
a weighted combination of the four sets, for the sake of simplicity we chose to define
the Gnu-derived values simply as their average.
The YSS piece values are those published on the WWW by the author of YSS 7.0,
winner of the 7th World Computer Shogi Championship (Yamashita 1997).
The evaluation functions of Gnu Shogi and YSS also contain more sophisticated
positional terms, e.g. king safety. In both programs, piece values are fundamental and
typically the largest component of the overall evaluation score for a position.
(Positional factors can also reward material possession indirectly. We ignored this
secondary effect for these value sets.) It is possible that optimum material values for
a search using positional terms are different from those for a material-only search.
However, we found in experiments in chess not yet published that the material values
learnt in conjunction with positional scores for piece-square combinations were
similar to those learned for material-only. We believe the optimum values for a
program using sophisticated positional scores in addition to the material scores would
be fairly close to our learnt values. The aim of the matches was primarily to
demonstrate the adequacy of the method, rather than claim superiority of our values in
all contexts.
The Learnt piece values are the average of the values presented in Figures 6.3 and 6.4.

0123456PawnLanceKnightSilverGoldBishopRookBegin.GnuYSSLearnt

Figure 6.5: Value sets tested in match play (main pieces).

Learning in Shogi

55

0123456789PawnLanceKnightSilverGoldBishopRookBegin.GnuYSSLearntUnpromoted rook value

Figure 6.6: Values sets tested in match play (promoted pieces).
Figures 6.5 and 6.6 show the pieces values used in the matches, again normalised to
rook=5.

Side 1 Side 2 Games Win Loss Draw %
Learnt vs. Beginner 2,000 1,206 718 76 62%
Learnt vs. Gnu 2,000 1,170 766 64 60%
Learnt vs. YSS 2,000 1,071 871 58 55%
YSS vs. Beginner 2,000 1,113 835 52 57%
YSS vs. Gnu 2,000 1,146 784 70 59%
Gnu vs. Beginner 2,000 1,018 911 71 53%

Table 6.1: Shogi match results.
Table 6.1 gives details of the matches played in the mini-tournament, and Table 6.2
shows the cross-table of results. The Learnt values performed better than any of the
other value sets under our test conditions, scoring 55%, 60% and 62% against the
YSS, Gnu-derived, and Beginner value sets respectively.

Learnt YSS Gnu Beginner
Learnt x 55% 60% 62%
YSS 45% x 59% 57%
Gnu 40% 41% x 53%
Beginner 38% 43% 47% x

Table 6.2: Mini-tournament cross-table.
The Learnt values were the average of the five learning runs. To verify that each of
the individual learning runs learnt reasonable weights, each was pitted in a match
against the YSS values, which performed the best of the three non-learnt sets. Table
6.3 shows the results from these matches, and shows that each of the five learning
runs produced values that beat the YSS values under out test conditions.

Games Win Loss Draw Percent
Run A 2,000 1,062 871 67 55%
Run B 2,000 1,044 888 68 54%
Run C 2,000 1,009 915 76 52%
Run D 2,000 1,070 852 78 55%
Run E 2,000 1,004 925 71 52%

Learning in Shogi

56

Table 6.3: Individual learning run match results against YSS values.
The shogi piece values were learnt from self-play without any domain-specific
knowledge being supplied. Although shogi experts are traditionally reluctant to
assign values to the pieces, we believe that our learnt values would be recognised by
human experts as reasonable for use in a shogi program.

6.7 Variation of Learnt Values with Search Depth
Figure 6.7 shows the average piece values learnt at each of the four depths,
normalised so that rook=5. The standard deviation from the five different random
seeds is shown as a vertical line embedded in the top of each bar. This Figure shows
that the values learnt for the main piece types are fairly consistent across search
depths, with the relative ordering of the pieces being the same in every case. The raw
results used to construct this Figure are given in Appendix C.01234561PawnLanceKnightSilverGoldBishopRookDepth 1Depth 2Depth 3Depth 4

Figure 6.7: Main piece values learnt at depths 1-4, normalised to rook=5.
The search depths used for learning runs refer to the main search prior to the
quiescence search. Thus ‘depth 1’ means 1 ply of main search followed by the
quiescence search. The results show that the values are fairly consistent over search
depths from depth 1 upwards.012345678910PawnLanceKnightSilverBishopRookUnpromoted rook valueDepth 1Depth 2Depth 3Depth 4

Figure 6.8: Promoted piece values learnt at depths 1-4, normalised to rook=5.

Learning in Shogi

57

6.7.1 Scaling variation with depth
Table 6.4 gives the average piece values (before normalisation) for each of the four
depths, for both the main and promoted piece types. Golds never promote, and so
have no entry in the promoted section. Comparing the depth 2 values with those from
depth 4, it can be seen that the absolute values obtained using better quality of play
(depth 4) are greater than from the lesser depth2. The same scaling variation with
depth can be seen when comparing depths 1 and 3. Note that although the absolute
values differ from depth 2 to depth 4, the relative values (which determine move
choice) are very similar, as can be seen in Figure 6.7.

Pawn Lance Knight Silver Gold Bishop Rook
Main Depth 1 0.08 0.17 0.21 0.34 0.38 0.47 0.60

Depth 2 0.12 0.29 0.30 0.48 0.57 0.72 0.94
Depth 3 0.13 0.28 0.33 0.64 0.77 0.92 1.25
Depth 4 0.13 0.29 0.34 0.57 0.67 0.82 1.09

Promoted Depth 1 0.22 0.12 0.14 0.24 - 0.94 1.08
Depth 2 0.73 0.52 0.55 0.65 - 1.32 1.66
Depth 3 0.70 0.32 0.50 0.23 - 1.68 2.02
Depth 4 0.71 0.60 0.69 0.77 - 1.35 1.66

Table 6.4: Average piece values (before normalisation).
The fact that the relative values vary little with an increase in search depth is
encouraging for the use of this method by competitive shogi programs, which
typically operate with a search depth greater than four plies. The computational cost
of such searches makes learning runs of thousands of games at those depths
infeasible, but these experiments show that shallower searches may well be able to
produce results that are useful at deeper depths. It appears that some of the promoted
piece values have not yet stabilised. For example, one would expect the value of a
promoted pawn to be greater than that of a gold. Although they move in an identical
manner, when a promoted pawn is captured the opponent gains in hand a less valuable
piece than when a gold is captured. From Table 1 it can be seen that whilst this is the
case at depths 2 and 4, it is not the case at depths 1 and 3. A likely explanation is that
promoted pieces appear on the board much less frequently than the main piece types
and captures involving promoted pieces occur with a much lower frequency than
those involving the main pieces (it is the material imbalances resulting from captures
that drive the learning process). Comparisons such as the example above (the choice
of capturing promoted pawn or gold) do not occur sufficiently often in runs of 6000
games for the learning process to come to an informed decision. It is precisely
because such positions occur so infrequently that the slight inconsistencies in values
of promoted have only a minor effect on the match results presented below, in which
the values of the main piece types play a dominant role.

6.7.2 Match results at various depths
The value sets Beginner, Gnu and YSS and the format of the matches were as
described in section 6.6.
The matches were conducted using a fixed search depth equal to that used to
determine the learnt values (i.e. the depth 4 matches used the values learnt at depth 4
in conjunction with a search depth of 4-ply plus quiescence for both sides).

2 We do not compare values from odd and even depths as it is well known that search evaluations oscillate with

odd and even depths and this effect interacts with the scaling variation.

Learning in Shogi

58

YSS Gnu Beginner
Depth 1 51% 52% 55%
Depth 2 54% 59% 62%
Depth 3 58% 64% 76%
Depth 4 55% 60% 66%

Table 6.5: Match results from depths 1-4
The results of the matches played are given in Table 6.5. Full details of the matches
can be found in Appendix C. The learnt values from depths 1-4 consistently
performed better than any of the other value sets under our test conditions, scoring
51%, 54% and 58% and 55% against the YSS value set, which was the best of the
opponent value sets. The YSS and Gnu value sets were selected by their authors for
use in their particular programs, yet are being tested in the context of our search
regime. Thus these results indicate the adequacy of the learnt values, rather than
superiority over the other values under all conditions.

6.8 Learning Without Search
Shogi is a game domain, like chess, for which it appears that a significant amount of
computational effort must be invested in tactical search in order to achieve high levels
of play (Rollason 1999). Despite the fact that deep searches are required for highly-
skilled play, our experiments show that relatively shallow searches, even as shallow
as one-ply full-width plus quiescence, are sufficient for learning good material values.
As in the chess domain, this invites the question as to whether or not search is
required at all for successful learning, the implication being that if search is not
required, the computational cost of the learning sequences would be greatly reduced.
In Chapter 5.5 we showed that in the chess domain there was a minimum level of
search (in that case one-ply plus quiescence) that was required for effective learning.
Similar experiments were conducted in shogi. We performed learning runs that used
no search at all, a quiescence-only search, and one that used 1 ply search without
quiescence. As with chess, we found that random move selection failed to produce
any sensible learning, producing weight traces similar in nature to those shown in
Figure 5.4.. The quiescence-only and 1-ply-no-quiescence runs learnt slowly and
erratically, and had not approached stable values by the end of the runs. We conclude
from these experiments that for shogi, as for chess, there is a minimum quality of play
that is required to inform the learning process

6.9 Discussion
This Chapter described the application to shogi of the TD learning for minimax
searches described in Chapter 3. The shogi piece values were learnt from self-play
without any domain-specific knowledge being supplied. Although shogi experts are
traditionally reluctant to assign values to the pieces, we believe that our learnt values
would be recognised by human experts as reasonable for use in a shogi program. The
values learnt using various depths of search all performed well in matches under our
test conditions, and the consistency of the relative values across the search depths
indicates that a one-ply plus quiescence search is already sufficient to learn reasonable
values. This is encouraging for the potential application of this method to the learning
of weights for use by deep-searching, high-performance programs. It indicates that
the learning process can use much shallower, faster searches than the playing
program, and thus obtain values from large numbers of training games in a reasonable
time.

Learning in Shogi

59

It should be noted that these experiments have learnt material values within a
material-only evaluation function. We would expect the material values learnt to be
somewhat different if the evaluation function included positional scoring terms. Also,
our results were obtained using a specific set of search parameters (selectivity,
quiescence details, etc). These could influence the optimum values, although we
would expect changes to search parameters to have less effect on learnt values than
additional evaluation terms. The method could be applied to any other set of search
parameters, and other search engines. It is also applicable to learning an appropriate
weight for positional evaluation terms, and we expect it to be useful in learning
weights for more sophisticated evaluation functions in both chess and shogi.
Significantly, the shogi experiment was in a domain where human expertise was
unable to provide the knowledge required. In such domains, computer methods that
learn from their own experiences are highly desirable. The values learnt in the shogi
experiment are already of some interest to commercial shogi programmers (Rollason
1999).

Learning More Complex Weight Sets

60

7 LEARNING MORE COMPLEX WEIGHT SETS

In this Chapter we consider the application of our methods to more complex weight
sets, including one used by a high-performance competitive program. Chapter 5
reported results from programs that use material piece counts, plus a random tie-
breaker, to choose moves. This achieves a low level of play compared with expert
humans. (Nevertheless, as can be seen from Figure 5.3, the learnt chess values
correspond fairly well with expert human judgements.) Performance programs
typically have far more evaluation terms, incorporating a variety of positional terms,
each requiring an appropriate weight to be determined.

7.1 Weights for Piece-Square Tables
In many games the value of a piece can vary according its location on the board. In
games such as chess and shogi, control of the centre of the board is important,
whereas in games like go and othello, the corners of the board have increased value.
A standard component of typical chess programs is piece-square tables. In the piece-
square tables a separate adjustment weight can be given for each square that a piece
might be on. In order to test TD learning on larger weight-sets, we ran experiments to
learn piece-square weights.
Of the many possible ‘positional’ evaluation features, we chose piece-square tables as
being one of the most domain-independent. Other positional evaluation features for
chess, such as pawn structure or king-safety, are less easily applicable to other game
domains. Piece-square tables have the additional attraction of allowing the relatively
simple introduction of a large number of new weights to the learning process,
allowing us to verify that our learning methods are able to cope with significant
numbers of weights without being swamped.
Learning a full set of piece-square values results in the addition of 64 new weights for
each of knight, bishop, rook and queen, and 48 new weights for pawns (which never
occupy ranks 1 or 8). This increases the number of adjustable weights to be learnt
from 5 to 309.
As intermediate steps between learning a small weight set (piece values alone) and
sets as large as 309 weights (piece-square tables), we tried sets of 27 weights (pawn
ranks plus piece centrality ‘rings’, i.e. radial distance from the centre), and 157
weights (‘half-boards’). Half-board weight sets were created by reflecting the board
so that squares in files a-d shared a weight with the mirrored square in files e-h,
resulting in only 32 weights per piece type. TD learning produced successful weight
values for all these weight sets. As might be expected, the half-board and full-board
weight sets produced the best playing performance.

7.2 Weights for Pawn Advancement and Piece Centrality

7.2.1 Weights for pawn ranks
Many games such as chess, draughts and shogi include rules allowing for the
promotion of pieces to more powerful piece types once they have advanced
sufficiently far up the board. In such games, advancing pieces eligible for promotion

Learning More Complex Weight Sets

61

towards their ‘promotion zone’ can be a powerful strategy. As an initial step beyond
material only learning, we learnt values rewarding (or punishing) pawn advancement
in chess. In this simple experiment we ignored files, and adjusted a single weight for
every rank it was possible for a pawn to be on (ranks 2-7). This resulted in 6 pawn-
rank weights being learnt, in addition to the 5 material weights, for a total of 11
adjustable weights.

7 7 7 7 7 7 7 7

6 6 6 6 6 6 6 6

5 5 5 5 5 5 5 5

4 4 4 4 4 4 4 4

3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2

Figure 7.1: Indexing for the pawn weights.
Figure 7.1 shows the indexing for the pawn advancement weights, using the in the
range 2-7 (ranks 1 and 8 never contain pawns). As might be expected, the program
quickly learnt that advancing pawns up the board was advantageous. Of course, the
primary reason that pawn advancement is beneficial is the possibility of promotion to
a highly valued queen once the final rank is reached.

7.2.2 Weights for piece centrality
As a simple measure of centrality, we divided the board into four ‘rings’ as shown in
Figure 7.2. Four separate weights representing centrality were maintained for each of
the piece types: knight, bishop, rook and queen, resulting in 16 additional weights.
This results in a total of 27 weights, (5 piece values, 6 pawn ranks, 16 piece centrality
weights)1.

1 1 1 1 1 1 1 1

1 2 2 2 2 2 2 1

1 2 3 3 3 3 2 1

1 2 3 4 4 3 2 1

1 2 3 4 4 3 2 1

1 2 3 3 3 3 2 1

1 2 2 2 2 3 2 1

1 1 1 1 1 1 1 1

Figure 7.2: Indexing for the piece centrality weights.
We conducted 6 learning runs at search depth 4, using different random number
seeds. Each run consisted of 10,000 games. The search engine was that used for the
experiments in Chapter 5, except for inclusion of the additional terms in the
evaluation function.

Pawn Knight Bishop Rook Queen
Piece values 0.83 1.58 1.72 2.43 4.52

Pawn ranks Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7

1 It is a well known feature of chess that king centrality is detrimental in the opening and middlegame,
but beneficial in the endgame. The evaluation function used in these experiments does not distinguish
between stages of the game, and so no attempt was made to learn a weight for king centrality.

Learning More Complex Weight Sets

62

Pawn -0.33 -0.31 -0.25 -0.17 0.25 0.63

Piece centrality Ring 1 Ring 2 Ring 3 Ring 4
Knight -0.17 0.15 0.21 0.40
Bishop -0.04 0.25 0.25 0.27
Rook 0.15 0.40 0.46 0.47
Queen 0.58 0.75 0.83 0.78

Table 7.1: The average weights learnt in the pawn ranks + piece centrality runs.
Table 7.1 shows the average weights learnt over the six runs. As they stand, these
raw weights are hard to compare with other weight sets, especially as one needs to
combine the weights for value of a piece and its location. One way to simplify this is
to add the piece value weights into the positional weights, resulting in a single term
for each piece location. Table 7.2 and Figure 7.3 present such values, normalised so
that the value of a pawn on the 2nd rank equals 1.

Pawn ranks Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7
Pawn 1.00 1.06 1.17 1.33 2.18 2.96

Piece centrality Ring 1 Ring 2 Ring 3 Ring 4
Knight 2.86 3.51 3.62 4.01
Bishop 3.39 3.98 3.98 4.02
Rook 5.21 5.72 5.84 5.86
Queen 10.31 10.67 10.82 10.72

Table 7.2: Composite values for piece locations, normalised so that a pawn on rank 2 = 1.

0123456789101112

R
el

at
iv

e
P

ie
ce

 V
al

ue

234567PawnKnightBishopQueenRookPawn rankRing 1Ring 2Ring 3Ring 4

Figure 7.3: Composite pawn rank and piece centrality values, normalised so that a pawn on rank 2 = 1.
Figure 7.3 shows the composite pawn rank and piece centrality values learnt using
search depth 4. Similar results were obtained at other search depths. This Figure
shows clearly how pawn advancement is valued. A pawn on the seventh rank (one
square away from promotion) is valued at approximately three times that of a pawn on
its starting square, and more than a knight on the edge of the board. From the Figure
we also can see that pieces generally perform better when stationed in the centre of

Learning More Complex Weight Sets

63

the board. This is especially true for knights, whose mobility can be maximised only
in the central two rings. It is interesting to note from Table 7.2 that a knight on one of
the four central squares is valued slightly higher than a bishop that is not in the centre
of the board.

7.2.3 Match results
The learnt weights were tested in match play against two separate opponents, None
and Central. None consisted of the piece weights for depth 4 as presented in Chapter
5, with no additional positional terms. Central consisted of None augmented by pawn
rank and piece centrality values suggested by a computer chess expert (see Appendix
D).

Match Win Loss Draw Score
Learnt vs. None 1,847 106 29 94.0%
Learnt vs. Central 1,190 716 94 61.9%
Central vs. None 1,846 113 40 93.3%

Table 7.3: Match results using pawn rank and piece centrality values.

7.2.4 Calculating ‘average’ values
Comparing these results with those of Chapter 5 (e.g. Figure 5.3), we can see that
these values are very similar to those learnt in the absence of any positional terms.
One slight difference is that the values are slightly higher, e.g. a rook is worth
between 5.21 and 5.86 pawns depending on its location, compared with the value of
4.97 learnt in Chapter 5. What needs to be remembered is that the values presented
here are normalised so that a pawn on the second rank (i.e. its starting square) has a
value of one. Pawns that have advanced up the board have a higher value. In order to
directly compare the values of this section with those of Chapter 5, we would need to
select a method of normalisation so that the value of ‘an average pawn’ is set to 1.
Simply averaging the values for each of the pawn ranks would be unsatisfactory as
pawns only infrequently reach ranks 6 and 7.
One way to attempt such a calculation, in order to make these results more
comprehensible for human chess players, is to count how often each piece type
appears in each of its specified locations during the course of the learning and
compute an average value weighted by ‘frequency of occurrence’.

Pawn ranks Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7
Pawn 40.7% 27.2% 23.6% 6.5% 1.6% 0.5%

Piece centrality Ring 1 Ring 2 Ring 3 Ring 4
Knight 22.6% 23.8% 36.9% 16.7%
Bishop 37.4% 30.5% 22.8% 9.3%
Rook 65.1% 15.8% 14.7% 4.4%
Queen 38.9% 31.3% 25.5% 4.3%

Table 7.4: Percentage ‘frequency of occurrence’ for each piece location during the learning runs.
Table 7.4 presents location counts, expressed as percentages2, for the learning runs
described above. These values enable us to calculate a weighted average of the piece
values in Table 7.2, resulting in ‘typical’ values for each piece type. Figure 7.4
presents these new piece values.

2 The percentage figures are rounded to one decimal place and might not sum to exactly 100%.

Learning More Complex Weight Sets

64

1.00

3.16 3.40

4.90

9.56

0

1

2

3

4

5

6

7

8

9

10

11

Pawn Knight Bishop Rook Queen

Figure 7.4: ‘Typical’ piece values calculated from Tables 7.2 and 7.4.

7.4 Weights for Half-board and Full-board Sets
The half-board set of weights produced similar weight patterns to the full-board
weight-set, except for the queen weights, which were significantly asymmetric. To
illustrate typical weight values, we present here results from the half-board weight
sets. For comparison, we also show the queen weights from the full-board weight-set.
The values presented are the average of 20 different runs, each consisting of 10,000
games.

29 30 31 32 32 31 30 29

25 26 27 28 28 27 26 25

21 22 23 24 24 23 22 21

17 18 19 20 20 19 18 17

13 14 15 16 16 15 14 13

9 10 11 12 12 11 10 9

5 6 7 8 8 7 6 5

1 2 3 4 4 3 2 1

Figure 7.5: Indexing for the half-board weights
Figures 7.6 through 7.11 give a graphical representation of the piece-square values
learnt for pawn, knight, bishop, rook and queen respectively. (The numerical details
are given in Appendix D.) The Figures are presented from White’s point of view, but
the same values also apply to Black pieces, with the board inverted.
It is interesting to note that the weight sets in Figures 7.6 to 7.11 clearly represent
some elementary chess knowledge.

Learning More Complex Weight Sets

65

87654321ABCDEFGHFigure 7.6: Pawn piece-square values (half-board)87654321ABCDEFGHFigure 7.8: Bishop piece-square values (half-board)87654321ABCDEFGHFigure 7.10: Queen piece-square values (half-board)87654321ABCDEFGHFigure 7.7: Knight piece-square values (half-board)87654321ABCDEFGHFigure 7.9: Rook piece-square values (half-board)87654321ABCDEFGHFigure 7.11: Queen piece-square values (full-board)

Learning More Complex Weight Sets

66

In Figure 7.6, we see that pawn advancement is generally rewarded, with pawns on
the seventh rank receiving a significant benefit. The largest bonus is reserved for
pawns on a7 and h7, perhaps because pawns on these squares are the hardest to
prevent from queening. Of the initial pawn double-advance moves that are possible,
we see that e2-e4 and d2-d4 are the most favoured, as is the case in human play. This
reflects both the control of the centre that these moves entail, and also the resulting
increase in mobility of queen and bishop, aiding development.
Figure 7.7 shows that it is desirable to position knights in the centre of the board, with
e6 and d6 being particularly favourable. There is a chess-player’s proverb “a knight
on the sixth is like a nail in the knee” that describes the effect that a knight in such a
position can have on the opponent’s mobility.
Comparing Figure 7.8 with Figure 7.7, we can see that bishop centrality is desirable
but less significant than the centrality of knights. In other words, the value of a knight
varies much more with its position on the board than does the value of a bishop.
Figure 7.9 shows clearly that rooks can be considered well-placed when occupying
the central files, and even more so when advanced to the seventh rank to harass the
opponent’s pawns and perhaps threaten the king. In all Figures, advancement of
pieces into the opponent’s camp is rewarded, and this is particularly noticeable in the
case of rooks. Again, this information resembles advice typically given to human
beginners.
Figure 7.10 shows the half-board piece-square values for the queen. Centrality, and
advancing into the opponent’s territory, are again rewarded. Comparison with the
full-board values shown in Figure 7.11 indicates that the queen scores more highly on
the opponent’s king-side, with threats against f7 being especially important. In the
full-board runs the queen was the only piece type that demonstrated a significant
preference for one side of the board. With all other piece types, the half-board results
were very similar to those produced by the full-board runs.
Figures 7.6 to 7.11 clearly contain human-understandable chess knowledge, and as
such compare very favourably with the piece-square weights presented by Baxter,
Tridgell and Weaver (1998) (see section 3.6) which show little in the way of
recognisable chess knowledge. For example, their piece-square tables for rooks (the
only piece type for which they present learnt piece square tables) show only a heavy
penalty for rooks on their starting squares which they suggest is a way for their
program to encourage castling.
It should be noted that piece-square tables respond to average positions of enemy
pieces. This is also true of much elementary chess knowledge. For example, the
desirability of moving rooks to the seventh rank is partly due to the opponent’s pawns
tending to be positioned there, and the opponent’s king being stationed on the back
rank. More complex evaluation terms that relate to enemy piece positions can be
expected to produce stronger playing programs. Such terms are beyond the scope of
this experiment, but suitable values for them could be learnt using methods presented
here.

Learning More Complex Weight Sets

67

0

1

2

3

4

5

6

7

8

9

10

11

12

1Pawn Knight Bishop Rook Queen

Halfboard

Fullboard

Figure 7.12: Average relative piece values from half-board and full-board runs.
Figure 7.12 shows the average piece values from the half-board and full-board runs,
and includes the standard deviation over the 20 trials. From the Figure we can see
that both sets of runs learned very similar piece values (full numerical details are
provided in Appendix C).

7.4.1 Match results using piece-square values
The learnt piece-square values were tested by playing matches against other value
sets. The match results are presented in Table 7.5.
When introducing a new term into an evaluation function used by minimax search, it
is natural to try to assess the improvement the new term makes to the performance of
the program by playing two versions of the program against each other. One side’s
evaluation function includes the new term, suitably weighted, and the other side’s
does not. Surprisingly, this does not necessarily reveal whether the new term is an
asset. Even if the new term is entirely random, it might still improve the performance
of the program (see paper Random Evaluations in Chess in Appendix E). A better
method is to play the new program against a version with a random term that is given
the same weight as the new term. This will help to determine whether or not the new
evaluation term is measuring anything worthwhile, or is no better than noise.
With the above in mind, the learnt half-board values were pitted in a match against a
program that had random values allocated to its piece-square values. This program
we called Random. Both programs used the same piece values. The random numbers
were chosen in a range similar to those found in the learnt values, and a different
random seed was used for each game in the match. The learnt piece-square values
won the match decisively, scoring 93%.
To demonstrate its significance, Random was played against another program, again
using the same piece values, but with all piece-square values set to zero (Zero).
Random beat Zero, scoring 71%. If the new terms had been compared with Zero, the
apparent advantage would have been overestimated (Table 7.5 shows that Learnt
scored 97% against Zero, compared with 93% scored against Random).
The above matches demonstrate clearly that having piece-square tables is better than
not having them, but does not indicate the absolute standard reached. To help assess
whether the learnt values are better than those that might be chosen by expert humans,

Learning More Complex Weight Sets

68

we played a match pitting the learnt values against alternative values for piece
centrality and pawn-advancement (Central), suggested by a computer chess expert.
In this match the learnt values again won decisively, scoring 74%.

Match Win Loss Draw Score
Learnt vs. Random 1,848 127 25 93%
Learnt vs. Zero 1,916 53 31 97%
Random vs. Zero 1,359 517 124 71%
Learnt vs. Central 1,449 475 76 74%
LCentral vs. Central 1,167 704 129 62%
Learnt vs. LCentral 1,114 691 195 61%

Table 7.5: Match results using half-board piece-square values.
The Central piece-square set contained 6 different pawn advancement values, one for
each rank, and 4 different values for the other pieces, measuring distance from the
centre. Using the methods described above, we learnt replacement weight values for
this set, called LCentral. The LCentral set scored 62% in a match against Central,
indicating that in this simplified environment also, learnt values perform better than
our human-chosen values.
Against the LCentral set, the learnt values scored a convincing 61%, demonstrating
that the half-board values contain more useful chess knowledge than just pawn
advancement and piece centrality.

7.4.2 Ensuring variation in the matches
In order to ensure that each match consisted of 2,000 different games, the scores
backed-up to the first ply of search (where the move choice is made) were randomly
varied by a small amount (1/10th pawn). This ensured that a wide variety of games
were played, and helped to reduce the danger that the self-play games were restricted
to a small section of the possible game space. Other methods of variation were tried,
including starting each game with a ballot of randomly-chosen moves, and these other
methods produced similar match results to those presented above. The figure of
1/10th of a pawn was chosen arbitrarily. Other values were used and produced
similar results.
The chess experiments seem to show that it is not necessary to perform deep searches
during the learning phase in order to learn effective weights, and that the method is
capable of handling large numbers of weights.
The piece-square weights learnt performed better than the suggestions of a human
expert, which suggests TD learning is capable of outperforming human expertise,
providing that suitable evaluation terms can be identified.

7.5 Learning Weights for other Evaluation Terms
The success of our methods in learning both piece values and piece-square values
suggests that such methods may well be useful for setting the weights in high-
performance competitive programs.
Don Dailey at MIT has applied our methods to his Grandmaster strength program
Cilkchess (http://supertech.lcs.mit) which recently achieved a creditable fourth
place in the 1999 World Computer Chess Championship (ICCA Journal, vol. 22, no.
3), only _ point behind the winner. He reports the successful learning of a large
number (over 200) of positional evaluation weights alongside piece values
themselves, and that the performance of his program when using these weights (which

Learning More Complex Weight Sets

69

have been learnt from scratch) compares well with its performance using carefully
hand-tuned weights, scoring approximately 61% in a match between the two
programs. It was intended to use these learnt weights during the World
Championship, but due to a programming error discovered at the last minute, it was
necessary to revert to the inferior hand-tuned weights. With Don Dailey’s permission
we reproduce a piece weight trace from a learning run conducted over in excess of
3,000 games. Comparing these results with our own material-only results in Chapter
5 it can been seen that Figure 7.13 is remarkably similar to our own Figure 5.2,
indicating that the introduction of over 200 additional positional terms has not had a
severely detrimental effect upon the learning of the piece weights themselves.
QueenRookBishopKnightPawn

Figure 7.13: Piece weight traces from an experiment at MIT (reproduced with permission).
On a more general note, it is reassuring to find the weight traces produced by a
different researcher, using an entirely different search engine, bear a striking
resemblance to those we present in Chapters 5 and 8. Don Dailey’s experiments were
also conducted using selfplay, and the Grandmaster strength performance of his
program Cilkchess suggests that online play against strong opponents is not required
for successful high-level learning as some have suggested (Baxter, Trigell and
Weaver 1988).

7.6 Learning the ‘Steepness’ of the Squashing Function
A possible modification of the squashing function described in Chapter 3 allows
adjustment of the ‘steepness’ of the sigmoid. In this section we describe a small
experiment to investigate how useful this might be. The sigmoid squashing function
(3.4) can easily be modified to include an additional parameter:

ve
vS

w-+
=

1

1
)((7.1)

Learning More Complex Weight Sets

70

where w controls the ‘steepness’ of the sigmoid.
Figure 7.14 shows the effect that varying this steepness parameter has on the
conversion of evaluation scores into prediction probabilities.
00.10.20.30.40.50.60.70.80.91-10-8-6-4-20246810v (value of position)

P
re

di
ct

io
n

w

 = 0.1

w

 = 0.5

w

 = 1

w

 = 2

w

 = 10

Figure 7.14: Various values of steepness and the resulting predictions.

The experiments of the preceding Chapters effectively used a steepness of 1, as the
parameter w was not used. Table 7.6 shows how the conversion of evaluation score v
(using example values from Table 5.1) into predictions vary according to the value of
the steepness parameter w.

Advantage v w = 0.1 w = 0.5 w = 1 w = 2 w = 10
1 Pawn 0.60 0.515 0.574 0.646 0.769 0.998
2 Pawns 1.20 0.530 0.646 0.769 0.917 1.000
1 Knight 1.66 0.541 0.696 0.840 0.965 1.000
1 Bishop 2.02 0.550 0.733 0.883 0.983 1.000
1 Rook 2.75 0.568 0.798 0.940 0.996 1.000
1 Queen 6.61 0.659 0.965 0.999 1.000 1.000

Table 7.6: Examples of material advantages (from Run A in Table 5.1) and
their corresponding predictions using various steepness values.

The introduction of a steepness parameter has the effect of scaling the absolute values
of the pieces, but should have little effect on the normalised final values. We
experimented with allowing this parameter to be learnt along with the piece weights,
but found that the final normalised piece values were very similar. Figure 7.15 shows
the trace of the steepness parameter over two runs, A and B. Both runs were
conducted using the same random seeds, but in A the steepness parameter was
initialised to 1 and in B it was initialised to 0.5

Learning More Complex Weight Sets

71

0

0.5

1

0 1000 2000 3000 4000Games

S
te

ep
ne

ss

Started at 1.0

Started at 0.5

Figure 7.15: Steepness traces converging from different starting points.
From the Figure we can see that the first few hundred games played were very
different, but that once the steepness values have almost converged, and
correspondingly so have the piece values, then the games played were identical. This
of course is to be expected once the relative piece values are the same, given that both
runs used identical random number seeds. This experiment suggests that the selection
of the steepness parameter is not an important factor in the learning runs, and that
steepness ≠ 1 is equivalent to scaling the weights.

Temporal Coherence and Prediction Decay

72

8 TEMPORAL COHERENCE AND
PREDICTION DECAY

This Chapter presents the most important contribution of this thesis. We describe an
extension of the temporal difference learning method, designed to greatly improve the
efficiency of the learning by reducing the number of trials required. The standard
form of the TD(l) method as described in Chapter 3 has the problem that two control
parameters, learning rate and temporal discount, need to be chosen appropriately.
These parameters can have a major effect on performance, particularly the learning
rate, which affects the stability of the process as well as the number of observations
required. Our novel extension to the TD(l) algorithm automatically sets and
subsequently adjusts these parameters. Most of this section was published (Beal and
Smith 1999b) in the Proceedings of the Sixteenth International Joint Conference on
Artificial Intelligence (IJCAI-99).
It is our aim in introducing these new methods to significantly speed up the learning
process. The main performance advantage comes from the learning rate adjustment
which is based on a new concept that we call Temporal Coherence (TC). The
experiments reported in this Chapter compare the TC algorithm performance with
human-chosen parameters and with an earlier method for learning rate adjustment, in
both a simple random-walk state-learning task and in the complex game domain of
Chapter 5. In both task domains the learning occurred without any initial domain-
specific knowledge. The results show that in both domains our method leads to better
learning (faster and less subject to the effects of noise) than the selection of human-
chosen values for the control parameters and the comparison method.

8.1 Control Parameters for TD(l)
Two major parameters that control the behaviour of the TD(l) algorithm are the
learning rate (or step-size), a, and the temporal discount parameter, l (see equation
3.1 in Chapter 3).
The choice of these parameters can have a major effect on the efficacy of the learning
algorithm. Selection of the learning rate parameter a is particularly hard to get right.
It needs to be as high as possible for rapid learning, but high rates lead to high levels
of erratic movements, even after optimum values may have been reached. In effect,
high learning rates lead to high levels of noise in the weight movements, and this
means that the process does not produce stable values.
On the other hand, learning rates that are too low can lead to orders of magnitude
more observations being required to reach optimum weight values. Experience with
the TD(l) method in practice has shown that very different values of a are required in
different domains, as shown by the different rates used in, for example, Sutton (1988,
1992).
 In practical problems, the control parameters are often determined somewhat
arbitrarily or else by trying a number of values and ‘seeing what works’ (e.g. Tesauro
1992). This was the method we used for the experiments of Chapter 5. Another
widely used method is to use a learning rate that decreases over time. This was the
method we used in Chapter 6, in an attempt to reduce the computational cost of our
experiments in shogi. However, such systems still require the selection of a suitable

Temporal Coherence and Prediction Decay

73

schedule, and in Chapter 6 we found it necessary to try a number of different
schedules and choose the one that seemed to work best in that particular domain.
Sutton and Singh (1994) describe systems for setting both a and l, within the
framework of Markov-chain models. These methods assume relatively small
numbers of distinct states, and acylic graphs, and so are not directly applicable to
more complex real-world problems. Jacobs (1988) presented the ‘delta-bar-delta’
algorithm for adjusting a during the learning process. We compared the performance
of delta-bar-delta with our algorithm on two sample domains. More recently,
Almeida et al. (1998) and Schraudolph (1998) have presented other methods for a
adaptation in stochastic domains and neural networks respectively.
We describe a new system which adjusts a and l automatically. This system does not
require a priori knowledge about suitable values for learning rate or temporal
discount parameters for a given domain. It adjusts the learning rate and temporal
discount parameters according to the learning experiences themselves. We present
results to show that this method is effective. In our sample domains the new methods
yielded better learning performance than our best attempt to find optimum choices of
fixed a and l, and better learning performance than delta-bar-delta.

8.2 Temporal Coherence: Adjustments to Learning Rates
Our system of self-adjusting learning rates is based on the concept that the learning
rate should be higher when significant learning is taking place, and lower when
changes to the weights are primarily due to noise. Random noise will tend to produce
adjustments that cancel out as they accumulate. Adjustments making useful
adaptations to the observed predictions will tend to reinforce as they accumulate. As
weight values approach their optimum, prediction errors will become mainly random
noise.
Motivated by these considerations, our Temporal Coherence (TC) method estimates
the significance of the weight movements by the relative strength of reinforcing
adjustments to total adjustments. The learning rate is set according to the proportion
of reinforcing adjustments as a fraction of all adjustments. This method has the
desirable property that the learning rate reduces as optimum values are approached,
tending towards zero at optimum values. It has the equally desirable property of
allowing the learning rate to increase if random adjustments are subsequently
followed by a consistent trend.
Separate learning rates are maintained for each weight, so that weights that have
become close to optimum do not fluctuate unnecessarily and thereby add to the noise
affecting predictions. The use of a separate learning rate for each weight allows for
the possibility that different weights might become stable at different times during the
learning process. For example, if weight A has become fairly stable after 100
updates, but weight B is still consistently rising, then it is desirable for the learning
rate for weight B to be higher than that for weight A. An additional potential
advantage of separate learning rates is that individual weights can be independent
when new weights are added to the learning process. If new terms or nodes are added
to an existing predictor, independent rates make it possible for the new weights to
adjust quickly, whilst existing weights only increase their learning rates in response to
perceived need.
The TC learning rates are determined by the history of recommended changes to each
weight. We use the term ‘recommended change’ to mean the temporal difference
adjustment prior to multiplication by the learning rate. This detachment of the

Temporal Coherence and Prediction Decay

74

learning rate enables the TC algorithm to respond to the underlying adjustment
impulses, unaffected by its own recent choice of learning rate. It has the additional
advantage that if the learning rate should reach zero, future learning rates are still free
to be non-zero, and the learning does not halt.
The recommended change for weight wi at timestep t is defined as:

Â
=

-
+ —-=

t

k
kw

kt
ttti PPPr

i
1

1,)(l (8.1)

The actual change made to weight wi after each game is:

Â
-

=

=D
1

1
,

end

t
tiii rcw a (8.2)

where ai is the individual learning rate for weight wi, and c is the learning rate for the
whole process
For each weight we are interested in two numbers: the accumulated net change (the
sum of the individual recommended changes); and the accumulated absolute change
(the sum of the absolute individual recommended changes). The ratio of net change,
N, to absolute change, A, allows us to measure whether the adjustments to a given
weight are mainly in the same ‘direction’. We take reinforcing adjustments as
indicating an underlying trend, and cancelling adjustments as indicating noise from
the stochastic nature of the domain (or limitations of the domain model that contains
the weights). The individual learning rate, ai for each weight wi, is set to be the ratio
of net recommended change to absolute recommended change:

i

i
i A

N
=a (8.3)

with the following definitions and update rules:

Â
-

=

+¨
1

1
,

end

t
tiii rNN (8.4)

Â
-

=

+¨
1

1
,

end

t
tiii rAA (8.5)

ri,t = recommended change for weight wi at prediction t
P1..Pend-1 are predictions, Pend is the final outcome

The operational order is that changes to wi are made first, using the previous values of
Ni, Ai and ai ; then Ni, Ai and ai are updated. The parameter c has to be chosen, but
this does not demand a choice between fast learning and eventual stability, since it
can be set high initially, and the ai then provide automatic adjustment during the
learning process. All the ai are initialised to 1 at the start of the learning process.
The foregoing formulae describe updating the weights and learning rates at the end of
each sequence. The method can be amended easily to update more frequently (e.g.
after each prediction), or less frequently (e.g. after a batch of sequences). For the
experiments reported in this Chapter, update at the end of each sequence is natural
and convenient to implement.

Temporal Coherence and Prediction Decay

75

8.3 Prediction Decay: Determining l
We determine a value for the temporal discount parameter, l, by computing a
quantity y we call prediction decay. Prediction decay is a function of observed
prediction values, indexed by temporal distance between them, and described in more
detail in section 8.3.1. An exponential curve is fitted to the observed data, and the
exponential constant, y, from the fitted curve is the prediction decay. We set l =1
initially and l = y thereafter.
The use of l=y has the desirable characteristics that (i) a perfect predictor will result
in y=1, and TD(1) is an appropriate value for the limiting case as predictions
approach perfection, and (ii) as the prediction reliability increases, y increases, and it
is reasonable to choose higher values of l for TD learning as the prediction
reliability improves. We make no claim that setting l=y is optimum1. Our
experience is that typically it performs better than human-guessed choices of fixed l
a priori.
The advantage of using prediction decay is that it enables TD learning to be applied
effectively to domains without prior domain knowledge, and without prior
experiments to determine an optimum l. When combined with our method for
adjusting learning rates, the resulting algorithm performs better than the comparison
method, and better than using fixed rates, in both test domains.

8.3.1 Setting the temporal discount parameter using prediction decay
Prediction decay is the average deterioration in prediction quality per timestep. A
prediction quality function measures the correspondence between a prediction and a
later prediction (or end-of-sequence outcome). The observed prediction qualities for
each temporal distance are averaged. An exponential curve is then fitted to the
average prediction qualities against distance (Figure 8.1 shows an example), and the
exponential constant of that fitted curve is the prediction decay, y . We set the TD
discount parameter l to1 initially, and l = y thereafter. In the experiments reported, y
(and hence l) were updated at the end of each sequence.
The prediction quality measure, Qd(p, p¢) we used is defined below. It is constructed
as a piece-wise linear function with the following properties:
(a) When the two predictions p and p¢, are identical, Qd = 1. (The maximum Qd is 1.)
(b) As the discrepancy between p and p¢ increases, Qd decreases.
(c) When one prediction is 1 and the other is 0, then Qd = -1. (The minimum Qd is –1.)
(d) For any given p, the average value of Qd for all possible values of p¢, such that 0

£ p¢ £ 1, equals 0. (Thus random guessing yields a score of zero.) This property
is achieved by the quadratic equations in the definition below.

We achieve these properties by defining:
()

() ˛
˝
¸

Ó
Ì
Ï

¢--

¢

<

≥
=¢

 1,1

,

:

:

5.

5.
),(

ppF

ppF

p

p
pp

d
Q (8.6)

1 By expending sufficient computation time to repeatedly re-run the experiments we were able to find

somewhat better values for l.

Temporal Coherence and Prediction Decay

76

() ()

() () Ô
Ô
Ô

˛

ÔÔ
Ô

˝

¸

Ô
Ô
Ô

Ó

ÔÔ
Ô

Ì

Ï

˛
˝
¸

Ó
Ì
Ï

-

>

£
>

˛
˝
¸

Ó
Ì
Ï

-

>

£
£

=¢

/

/1

:

:
 :

/

/1

:

:
 :

),(

ypyrp

yr

yr

yr
sp

xpxrp

xr

xr

xr
sp

ppF (8.7)

()

() () 02122221ofsolution

04212ofsolution

01522ofsolution

:where

=----++=

=+-+=

=+-=

¢-=

˜
¯

ˆ
Á
Ë

Ê pyppypy

ppxxpx

sss

ppr

p is the current prediction, p¢ is an earlier prediction, and d refers to the temporal
distance between p and p¢. Predictions lie in the range [0, 1].

It is assumed that learning occurs over the course of many multi-step sequences, in
which a prediction is made at each step; and that the sequences are independent. To
form a prediction pair, both predictions must lie within the same sequence.

dQ is the average prediction quality over all prediction pairs separated by distance d
observed so far. For this purpose, the terminal outcome at the end of the sequence is
treated as a prediction. At every prediction, values of dQ are incrementally updated.
An example graph from our experimental results is given in Figure 8.1. This example
is typical of the fit to the observed data in the game domain. The exponential curve is
fitted to the averaged prediction qualities by minimising the mean squared error
between the exponential curve and the observed dQ values. y was fairly stable in the
range 0.990 – 0.993 during the test runs.

00.510100200300400Temporal distance between predictions

P
re

di
ct

io
n

qu
al

ity

Observed data

y

 = 0.991

Temporal Coherence and Prediction Decay

77

Figure 8.1: Fit of the prediction quality temporal decay to observed data from the game
domain, at the end of a run of 2000 games.

To prevent rarely occurring distances from carrying undue weight in the overall error,
the error term for each distance is weighted by the number of observed prediction
pairs. Thus we seek a value of y which minimises:

()Â
=

-
l

d
d

d
d NQ

0

2
y (8.8)

where dQ is the average prediction quality for distance d, and Nd is the number of
prediction pairs separated by that distance, and l is the length of the longest sequence
in the observations so far. In the experiments reported here the value for y was
obtained by simple iterative means, making small incremental changes to its value
until a minimum was identified. Values for y (and hence l) were updated at the end
of each sequence.

8.4 Delta-bar-delta
The delta-bar-delta algorithm (DBD) for adapting learning rates is described by
Jacobs (1988). Sutton (1992) later introduced Incremental DBD for linear tasks. The
original DBD was directly applied to non-linear tasks, and hence more easily adapted
to both our test domains. In common with our temporal coherence method, it
maintains a separate learning rate for each weight. If the current derivative of a
weight and the exponential average of the weight’s previous derivatives possess the
same sign, then DBD increases the learning rate for that weight by a constant, k. If
they possess opposite signs, then the learning rate for that weight is decremented by a
proportion, f, of its current value. The exponential average of past derivatives is
calculated with q as the base and time as the exponent. The learning rates are
initialised to a suitable value, e0, and are then set automatically, although the meta-
parameters k, f, q and e0 must be supplied. To adapt DBD to TD domains, we
compute a weight adjustment term, and a learning rate adjustment at each timestep,
after each prediction, but we only apply the weight and learning rate adjustments at
the end of each TD sequence. DBD is very sensitive to its meta-parameters and prior
to our experiments we performed many test runs, exploring a large range of meta-
parameter values and combinations. We used the best we found for the comparison
between DBD and TC reported here. Both algorithms update the weights, and the
internal meta-parameters, at the end of each sequence.

8.5 Test Domain One: A Bounded Random Walk
The methods described in this Chapter are designed to be domain independent, and
should be applicable over a wide range of possible domains. We report first on a
simple domain, that of a bounded random walk where the task is to learn the
probability of terminating the walk at a particular state. We selected this domain
because it has been used as a test domain before, for example by Sutton (1988) and
Dayan (1992).

Temporal Coherence and Prediction Decay

78

StartABCDEFG

Figure 8.2: A bounded random walk.
All walks begin in state D. When in states B, C, D, E, and F, there is a 50% chance of
moving to the adjacent left state and a 50% chance of moving to the adjacent right
state. When either end state (A or G) is reached, then the walk terminates, with a final
outcome defined as 0 in state A, and 1 in state G. This absorbing Markov process
generated the random walks used in the experiments. Each sequence for the TD
learning process is based on one walk. The learning task is to obtain five weights, one
for each of the five internal states. These weights are estimates of the probabilities of
terminating the walk at G, starting at the given internal state.
Sutton (1988) presents this task and shows that temporal difference learning is more
effective here than the widely-used supervised learning method of Least Mean Square
(Widrow and Hoff 1960), given an appropriate choice of control parameters. His
experiments showed that the results achieved by TD(l) in this domain were sensitive
to the choice of both a and l.

8.5.1 Results from the bounded random walk
For each experiment, a set of 1,000 random walks was generated and each of the
learning procedures was then applied to the same 1,000 sequences. With this large
number of sequences, the values towards the end of the run, averaged over recent
sequences, are very close to the known theoretical value, and the weight movements
are random noise. Nevertheless, to allow for variations due to different random
sequences, each experiment was repeated 10 times using a different random number
seed. The results from each of the 10 seeds were all very similar. Figures 8.3 through
8.6 are derived from one particular starting seed, and are typical. Figure 8.7 presents
results averaged from all 10 seeds.
Figures 8.3 and 8.4 show the weight movements from typical runs, using TD with two
fixed learning rates, chosen to cover the range we found to be best from many runs,
and a fixed l (0.3) chosen as the most suitable for this task from results presented by
Sutton (1988). The five traces on each graph show the estimated values of the five
unknown states, after each of 1,000 sequences. For this task, the true values are
known, and are shown on the graphs as horizontal lines. The graphs illustrate that the
higher the learning rate, the faster the weights approach the target values initially, but
also illustrate that as the learning rate rises, the less stable the weight values become.
At high rates, it may become impracticable to extract stable weights.

Temporal Coherence and Prediction Decay

79

0.00

0.17

0.33

0.50

0.67

0.83

1.00

0 500 1000
Number of sequences

P
re

di
ct

ed
 o

ut
co

m
e

Weight F

Weight E

Weight D

Weight C

Weight B

Figure 8.3: Weight movements from a typical run using a fixed a of 0.1.

0.00

0.17

0.33

0.50

0.67

0.83

1.00

0 500 1000Number of sequences

P
re

di
ct

ed
 o

ut
co

m
e

Weight F

Weight E

Weight D

Weight C

Weight B

Figure 8.4: Weight movements from a typical run using a fixed a of 0.01.
From Figure 8.3 it can be seen that the weight adjustment made using a fixed a of 0.1
are seriously unstable, even towards the end of the run, when the average value is
close to the desired value. This learning rate is too high for obtaining stable weights.
On the other hand, Figure 8.4 shows that if the learning rate is lower, the final weights
are much more stable. However, the weights in Figure 8.4 take of the order of 500
sequences to approach the right values, whereas the high learning rate of Figure 8.3
only took around 50 sequences. This behaviour was repeated in each of the 10 runs.

Temporal Coherence and Prediction Decay

80

0.00

0.17

0.33

0.50

0.67

0.83

1.00

0 500 1000Number of sequences

P
re

di
ct

ed
 o

ut
co

m
e

Weight F

Weight E

Weight D

Weight C

Weight B

Figure 8.5: Weight movements from a typical run using temporal coherence.

0.00

0.17

0.33

0.50

0.67

0.83

1.00

0 500 1000
Number of sequences

P
re

di
ct

ed
 o

ut
co

m
e

Weight F

Weight E

Weight D

Weight C

Weight B

Figure 8.6: Weight movements from a typical run using delta-bar-delta.
Figures 8.5 and 8.6 show typical results from our temporal coherence algorithm, and
delta-bar-delta, respectively. Both of these methods automatically adjust the learning
rate. We found the delta-bar-delta algorithm to be highly sensitive to its meta-
parameters (starting rate, adjustment step size and ratio, and exponential decay factor
of weight changes). Figure 8.6 shows the best result from several runs performed
with different values of the meta-parameters, guided by the values used by Jacobs
(1988). We used parameter settings of: k = 0.01, f = 0.333, q = 0.7, e0 = 0.03 and
l=0.3. We tried a number of other parameter settings, none of which performed any
better than the chosen set.
Figure 8.5 shows that Temporal Coherence yields fast initial movement towards the
target values, and enables the weights to stay close to the target values thereafter. In
Figure 8.5, the weights approach the right values within about 50 sequences (as least
as fast as the quick but unstable learning of Figure 8.2), and become as stable as the

Temporal Coherence and Prediction Decay

81

slow learning of Figure 8.3 within about 250 sequences (twice as fast as the slow
learning rate). Figure 8.6 shows that delta-bar-delta did less well than temporal
coherence.
Figures 8.3 through 8.6 are all based on the random sequences generated with one
particular starting seed. We repeated the experiments with many starting seeds and
saw very similar results. The graphs presented here are typical. To avoid reliance on
the particular sequences involved, Figure 8.7 presents a summary of the performance
of the different algorithms, showing their progress towards the values sought. Each
trace in Figure 8.7 represents the squared error, summed over all weights, after each
sequence for a given algorithm, averaged over 10 runs2.

0.8

1

0 500 1000
Number of sequences

P
er

fo
rm

an
ce

Fixed a = 0.01

Fixed a = 0.1

DBD

TC

Figure 8.7: Performance averaged over 10 runs for various learning rate methods.
Figure 8.7 shows that the fast fixed learning rate has the best initial scores, but the
performance trace for that option shows that it never reaches accurate values. It
remains unstable and well below the other traces from about sequence 50 onwards.
Figure 8.7 shows that temporal coherence has the best overall performance. It is
almost as fast as the unstable learning rate initially, achieves a closer final approach at
the end of the runs than any of the other methods tested, and is either closer to the
right values or reaches them sooner than the other methods. These conclusions are
emphasised by Figure 8.8, which compares the trace of weight B from Figures 8.4,
8.5 and 8.6.

2 For presentation convenience, the sum-of-squared error is first normalised to the range [0,1] where 1
is the error at the start of the run, and 0 is no error (achieved when the weight equals the true value),
then charted as g, the inverse of error:

Â Â
= =

---=
5

1

5

1

22)5.0()(1
i i

iii vvwg (8.9)

wi is the weight for state i, vi is the true value for state i, 0.5 is the initial value for all weights at the
start of the run.

Temporal Coherence and Prediction Decay

82

0

0.1

0.2

0.3

0.4

0.5

0 500 1000
Number of sequences

P
re

di
ct

ed
 o

ut
co

m
e

Temporal Coherence

Fixed a = 0.01

Delta-bar-delta

Figure 8.8: Weight trace B compared from three different learning rate methods.
In this domain, unlike the more complex domains of chess and shogi, the value of the
weights does not have any effect on the sequences. For this reason, a given seed for
the random number generator ensures that each of the learning methods will have
exactly the same sequences to learn from. From Figure 8.8 it can be seen that,
especially towards the ends of the runs, the peaks and troughs in the weight traces
match up, and represent similar learning adjustments in response to the training
sequence.

8.6 Test Domain Two: Learning the Values of Chess Pieces
In addition to the simple bounded walk problem, we also tested the new methods in
the more complex domain of chess. As in Chapter 5, the chosen task was the learning
of the values of chess pieces by a minimax search program in the absence of any
chess-related initial knowledge other than the rules of the game.
The task was to learn suitable values for five adjustable weights (pawn, knight,
bishop, rook and queen), via a series of randomised self-play games. Learning from
self-play has the important advantage that no existing expertise (human or machine) is
assumed, and thus the method is transferable to domains where no existing expertise
is available. In Chapter 5 we showed that using this method it is possible to learn
relative values of the pieces that perform at least as well as those quoted in elementary
chess books. The learning performance of the temporal coherence scheme was
compared with the learning performance using fixed learning rates, and with delta-
bar-delta.
It was reported in Chapter 3 that the TD learning process is driven by the differences
between successive predictions of the probability of winning during the course of a
series of games. In this domain each temporal sequence is a set of predictions for all
the positions reached in one game, each game corresponding to one sequence in the
learning process. The predictions vary from 0 (loss) to 1 (win), and are determined by
a search engine that uses the adjustable piece weights to evaluate game positions. The

Temporal Coherence and Prediction Decay

83

weights are updated after each game. The search engine used for these experiments
was described in section 4.1.
At the start of the experiments all piece weights were initialised to one, and a series of
games was played using a four-ply search. To avoid the same games from being
repeated, the move lists were randomised. This had the effect of selecting at random
from all tactically equal moves with the added benefit of ensuring that a wide range of
different types of position was encountered.

8.6.1 Results from single runs
To visualise the results obtained from the various methods for determining learning
rates, we present graphs produced by plotting the weight movements for each of the
five piece values over the course of runs each consisting of 2,000 game sequences.
As the absolute values of the piece weights are unimportant compared with their
relative values, the graphs are normalised so that the average value of the pawn
weight over the last 10% of the game sequences is 1. This enables comparison with
the widely quoted elementary values of 1:3:3:5:9. As in the bounded walk domain,
the number of sequences in each run is large enough for the values to reach a quasi-
stable state of random noise around a learnt value. To confirm that the apparent
stability is not an artefact, each experiment was repeated 10 times, using different
random number seeds.
0123456789101112010002000Games

P
ie

ce
 W

ei
gh

ts

QueenRookBishopKnightPawn

Figure 8.9: Weight movements from a typical single run using fixed a=0.05.

Figure 8.9 shows the weights achieved using fixed settings of a = 0.05 and l=0.95
over a typical single run. In the experiments of Chapter 5 we found that these settings
offered a good combination of learning rate and stability from the many fixed settings
that were tried. A lower learning rate produced more stable values, but at the cost of
further increasing the number of sequences needed to establish an accurate set of
relative values. Raising the learning rate made the weights increasingly unstable.

Temporal Coherence and Prediction Decay

84

0

1

2

3

4

5

6

7

8

9

10

11

12

0 1000 2000Games

P
ie

ce
 W

ei
gh

ts
Queen

Rook

Bishop

Knight

Pawn

Figure 8.10: Weight movements from a typical single run using temporal coherence.
Figure 8.10 shows the weights learnt by the temporal coherence system over a typical
single run. In this Figure we can see that the learning process is essentially complete
after 500 sequences and that the weights remain fairly stable for the remainder of the
sequences. This was typical of all runs, as shown later in Figure 8.11.
The pieces values are much more stable in Figure 8.10 than Figure 8.9, and the
relative ordering of the pieces is consistent over the length of the run. In addition, the
speed of learning is significantly faster using temporal coherence than in the fixed
learning rate run where a significant amount of the learning occurring after 500
sequences.

0

1

2

3

4

5

6

7

8

9

10

11

12

0 1000 2000Games

P
ie

ce
 W

ei
gh

ts

Queen

Rook

Bishop

Knight

Pawn

Temporal Coherence and Prediction Decay

85

Figure 8.11: Weight movements from a typical single run using delta-bar-delta.
Figure 8.11 shows the results achieved from a typical run using delta-bar-delta.
Comparing this Figure with Figure 8.10, we can see that the weights produced using
DBD are much less stable than those produced by TC, and the relative ordering of the
pieces is not consistent. For this domain we used meta-parameters of: k = 0.035, f =
0.333, q = 0.7, and e0 = 0.05, guided by data presented by Jacobs (1988) and
preliminary experiments in this domain. For l, which DBD does not set, we used
l=0.95 derived from our experience with the fixed rate runs. We tried a number of
other meta-parameter settings, none of which performed better. It is possible that a
comprehensive search for a better set of meta-parameters might have improved the
performance of the delta-bar-delta algorithm, but given the computational cost of a
single run of 2,000 sequences, we were unable to attempt a systematic search of all
the meta-parameter values. Other runs with different random seeds showed similar
behaviour to Figure 8.11.
Figures 8.9 to 8.11 showed typical results obtained from single runs, determined by a
random number seed. We repeated the experiment ten times, using ten different
seeds. Figures 8.12 to 8.14 show averaged weight movements, to confirm that the
characteristics seen in the single runs represent consistent behaviour.

8.6.2 Results from the average of 10 runs
Figure 8.12 shows the average weights achieved using fixed settings of a = 0.05 and
l = 0.95 over a series of 10 runs. Figure 8.13 shows the average weights produced by
the delta-bar-delta algorithm over 10 runs.

0

1

2

3

4

5

6

7

8

9

10

11

12

0 500 1000 1500 2000Games

P
ie

ce
 W

ei
gh

ts

Queen

Rook

Bishop

Knight

Pawn

Figure 8.12: Average weight movements from 10 runs using a fixed a of 0.05.

Temporal Coherence and Prediction Decay

86

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 500 1000 1500 2000Games

P
ie

ce
 W

ei
gh

ts

Queen

Rook

Bishop

Knight

Pawn

Figure 8.13: Average weight movements from 10 runs using delta-bar-delta.

0

1

2

3

4

5

6

7

8

9

10

11

12

0 500 1000 1500 2000Games

P
ie

ce
 W

ei
gh

ts

Queen

Rook

Bishop

Knight

Pawn

Figure 8.14: Average weight movements from 10 runs using temporal coherence.
Figure 8.14 shows the average weights obtained using temporal coherence. It can be
seen from the Figure that all traces have approached their final values after about 900
sequences (some much sooner). Comparing with Figures 8.11 and 8.12 it can be seen
the TC algorithm is faster to approach final values, and more stable once they are
reached. In addition, the traces in Figure 8.14 are smoother than in Figures 8.12 and
8.13, with less variation due to noise in the individual runs.
Figure 8.15 shows the average piece values over 10 runs for the various methods,
combined into a single term measuring progress towards the values achieved at the
ends of the runs. From this Figure we can see that delta-bar-delta does not improve

Temporal Coherence and Prediction Decay

87

much on a carefully-chosen fixed learning rate, and that temporal coherence clearly
produces faster learning. The TC and fixed a final weights were not significantly
different.

0

1

0 1000 2000Games

P
ro

gr
es

s

Temporal Coherence

Delta-bar-delta

 Fixed a = 0.05

Figure 8.15: Progress in the chess domain averaged over 10 runs.
To confirm that the learning process had produced satisfactory values, a match was
played pitting the learnt values against the set 1:3:3:5:9, in the manner reported in
Chapter 5. One program used the standard values, the other used the weights learnt
using temporal coherence, as a check that the learnt values were at least as good
(under our test conditions) as the standard values. In a match of 2,000 games, the TC
values achieved a score of 58% (won 1,119; lost 781; drawn 100).

8.7 Discussion
This Chapter described new extensions, temporal coherence, and prediction decay, to
the temporal difference learning method that set the major control parameters,
learning rate and temporal discount, automatically as learning proceeds. The resulting
temporal difference algorithm does not require initial settings for a and l, and has
been tested in depth on two domains.
Results from the two domains demonstrated both faster learning and more stable final
values than a previous algorithm and the best of the fixed learning rates. In these test
domains values were learnt without supplying any domain-specific knowledge.
In our comparisons with the delta-bar-delta algorithm, we tried to find good parameter
sets for DBD, which requires four meta parameters instead of the one control
parameter, a. We tried several different (meta-) parameter sets in each domain, but
were unable to find a set of parameters that improved performance over the results
presented in sections 8.5.1 and 8.6.1 It is possible that a systematic search for better
sets of meta-parameters in each of the domains might improve performance.
However, it is a major drawback that DBD requires its meta-parameters to be tuned to
the domain it is operating in. It is part of the advantage of the methods presented here
that searches for good parameter values are not required.

Temporal Coherence and Prediction Decay

88

The experimental results demonstrate that the temporal coherence plus prediction
decay algorithm achieves three benefits: (1) removal of the need to specify
parameters; (2) faster learning and (3) more stable final values.

Conclusions

89

9 CONCLUSIONS

The aim of this thesis was to adapt and improve the temporal difference learning
methods that were used successfully for backgammon and apply them to other
complex games that require search for high-level play. A secondary aim was for the
learning to occur with as little input of external knowledge as possible.
In Chapter 3 we described how Sutton’s TD(l) could be applied to minimax searches,
involving the introduction of a squashing function to apply to the evaluation of the
search’s principal position.
The main experimental platform was introduced in Chapter 4, and a number of
sophisticated enhancements to the basic platform were discussed. The work described
in this Chapter resulted in an efficient and robust search engine that was used for most
of the experiments described in the remainder of the thesis.
The learning method described in Chapter 3 was applied successfully to the complex
domains of chess and shogi in Chapters 5 and 6. In both domains our methods were
successful in learning piece values that compared well with human chosen values.
The aim of learning about the chosen domains with minimal knowledge input was
achieved by the use of randomised self-play, and no external knowledge was required
for the learning to succeed.
In Chapter 7 experiments to learn more complex weight sets were described. Even
when the number of weights being learnt was increased to over 300, the methods of
Chapter 3 were successful in learning sensible and effective values. The results of the
experiments conducted at MIT by Don Dailey show that our methods can be
successful in competitive programs playing at the highest level.
Chapter 8 presented a major research contribution in which we described a novel
extension to Sutton’s TD(l) which automatically sets and adjusts TD(l)’s two major
control parameters. In both a simple random-walk state-learning task and a complex
game our methods of temporal coherence and prediction decay were shown to
produce both faster learning and more stable final values than carefully chosen fixed
learning rates. The faster learning is important because all the learning in the
complex domains of Chapters 5 and 6 required significant computational effort. Our
methods also performed better than an alternative method of learning rate adjustment
described in the literature.

9.1 Application Areas
In Chapter 8 we showed how the use of Temporal Coherence and Prediction Decay
leads to faster learning. In theoretical terms it is possible to make a distinction
between better learning (i.e. producing better results) and faster learning (producing
the same results in less time). In practice, faster learning will often lead directly to
better learning, because reducing the amount of time taken by each trial leaves more
time to experiment with different algorithms and architectures. In the literature,
typically only results from the most successful experiments are presented, with the
authors explaining that the architecture and/or algorithms used were arrived at after
some experimentation. It has been our experience that such “preliminary
experiments” often have a computational cost far in excess of that of the published
results. The use of Temporal Coherence and Prediction Decay not only enables faster
learning during `production' runs but also greatly reduces the computation cost of any

Conclusions

90

preliminary, more experimental, trials. This reduction in computational cost allows
more effort to be invested in experimentation with alternative algorithms,
architectures and feature sets, potentially leading to greatly improved final results.
Temporal Coherence can deliver its advantage anywhere reinforcement learning
systems can be used. Prediction Decay can be utilised wherever TD(l) is used.
Presented below are a number of practical real world domains in which the use of
Temporal Coherence and/or Prediction Decay could be expected to result in
significant improvement, not only in speed of learning, but also in improved outcomes
due to exploring more of the solution spaces.

9.1.1 Elevator Dispatching
Elevator dispatching is a difficult real-world problem that has seen the successful
application of reinforcement learning techniques. The elevator domain is especially
challenging because elevator systems operate in continuous state spaces and in
continuous time as discrete event dynamic systems. Their states are not fully
observable and they are non-stationary due to changes in the rate with which new
passengers arrive.
An example of the elevator domain (Crites and Barto 1996) consists of a 10-story
building with 4 elevator cars, and a passenger profile which dictates arrival rates for
every 5 minute interval during a typical afternoon rush hour. Each car has a small set
of primitive actions. The performance objective in this example is to minimise the
sum of the squared wait times (the time between the arrival of a passenger and his
entry into a car).
The state space for this problem is continuous because it includes the elapsed times
since elevator calls were registered, which are real-valued. Even if these real values
were approximated as discrete values, Crites and Barto (1996) estimate that the state
space would have at least 1022 states, making solving this problem by classical
dynamic programming methods completely impractical.
Crites and Barto (1996) approached this problem by using a team of reinforcement
learning (RL) agents, one controlling each elevator car. The team of agents received a
global reinforcement signal which appears noisy to each agent due to the effects of the
actions of the other agents, the random nature of the arrivals and the incomplete
observation of the state. The elevator system events occur randomly in continuos
time, which complicates the use of algorithms that require explicit lookahead as the
branching factor is effectively infinite. For this reason Crites and Barto (1996)
utilised a team of discrete-event Q-learning agents, with each agent having
responsibility for controlling a single elevator car. Q(x,a) is defined as the expected
return obtained by taking action a in state x and then following an optimal policy
(Watkins, 1989). The Q-values were stored in feed-forward neural networks which
received some state information as input, and produced Q-value estimates as output.
For the example described above, Crites and Barto (1996) achieved their best results
using networks with 47 hand chosen input units (features), 20 hidden units with
sigmoid activation functions, and 2 linear output units. After every training decision
the agent's estimate of Q(x,a) was adjusted toward the target output by error
backpropagation. The learning rate parameter was set to either 0.01 or 0.001. Crites
and Barto presented results that surpassed the performance of the best heuristic
elevator control algorithms, but found that it required "considerable experimentation"
to achieve their best results.

Conclusions

91

Temporal Coherence should significantly reduce the computational cost of training,
allowing better network architectures to be identified for the same computational cost
by using the computational savings for additional experiments. Using fixed learning
rates, each RL controller (of which there were 10) was trained by Crites and Barto on
60,000 hours of simulated elevator time, taking four days on a 100 MIPS machine.
This was just the time taken for the best, presented, results. As these results were
only achieved after “considerable experimentation”, presumably equivalent
experiments were performed many other times with different network architectures
and algorithmic parameters. Crites and Barto (1996) state “Although this [four days
on a 100 MIPS processor] is a considerable amount of computation, it is negligible
compared to what any conventional dynamic programming algorithm would require.”

9.1.2 Job-shop Scheduling
Many tasks in manufacturing industries require job-shop scheduling. The goal is to
schedule a set of tasks to satisfy a set of temporal and resource constraints while also
seeking to minimise the total duration of the schedule. It is an example of an
important industrial domain where temporal difference learning is very effective.
The NASA space shuttle payload processing (SSPP) domain (Zweben et al., 1994;
Zhang and Dietterich, 1995, 1997) requires scheduling the various tasks that must be
performed to install and test the payloads that are placed in the cargo bay of the space
shuttle. The method regularly used at the Kennedy Space Center is an iterative repair-
based scheduling procedure that combines a set of heuristics with a simulated
annealing search procedure (Zweben et al., 1994).
A typical SSPP problem involves the simultaneous scheduling of between two and six
shuttle missions, with each mission involving between 32 and 164 tasks (Zhang and
Dietterich, 1995). This results in scheduling problems containing several hundred
tasks. Most of these tasks must be performed prior to launch, but some also take
place after the shuttle has landed. Because every shuttle mission has a fixed launch
date, but no starting date or ending date, tasks required prior to launch have deadlines
but no ready times, and tasks required after landing have ready times but no deadlines.
A primary goal of the scheduling system is to minimise the total duration of the
schedule. As Zhang and Dietterich (1995) observe, this is a much more demanding
problem than simply finding a feasible schedule.
Zhang and Dietterich (1995, 1997) applied TD(l) to train a neural network to learn an
heuristic evaluation function for problems from a SSPP task. They experimented with
two different network architectures. In their earlier experiments (1995) they used a
feed-forward network with 40 sigmoidal hidden units and 8 sigmoidal output units.
They trained eight different network using all combinations of: learning rate = 0.1 or
0.05, l = 0.2 or 0.7 and two values for their probabilistic exploration schedule. They
do not provide any explanation for their choice of parameters other than observing
that preliminary experiments showed that l = 0 did not perform as well.
In their subsequent experiments Zhang and Dietterich (1996) used a larger and more
complicated time-delay neural network which included 3 hidden layers with a total of
1123 adjustable parameters. Various experiments were conducted where l was fixed
at 0.2 and 0.7 Their best results were achieved using this more complicated network,
which generally took around 10,000 training iterations before its performance stopped
changing.
This domain is another in which the use of Temporal Coherence and Prediction Decay
would be expected to produce a significant reduction in the computational cost of

Conclusions

92

individual training runs, allowing more time for experimentation with other
architectures and methods. Zhang and Dietterich found that their more complex
network produced better results, and had they been able to reduce their training times
by the use of Temporal Coherence and Prediction Decay it is quite possible that they
would have discovered a more effective network architecture.

9.1.3 Dynamic Channel Allocation Strategies
An important problem in cellular communication systems is to allocate the available
communication resource (bandwidth) so as to maximise service in an environment
where demand changes stochastically. The geographical area covered by the service
is divided up into separate cells, where each cell serves the calls that are within its
boundaries. The total system bandwidth is divided into channels, with each channel
centred around a frequency. Each channel can be used simultaneously by different
cells, providing that the cells are separated by enough geographical distance to ensure
that there is no interference between them. The minimum separation distance
between simultaneous reuse of the same channel is called the channel reuse constraint
(Singh and Bertsekas, 1997).
When a request for a call is made to the system, the cell responsible either allocates a
free channel (one that does not violate the channel reuse constraint) or else the call is
blocked from the system. An additional complexity is introduced when a mobile
caller's physical location moves from one cell to another. In this case, responsibility
for the call is passed on to the newly entered cell, which must itself allocate a channel
to the call to prevent it from being disconnected from the system. One objective of a
channel allocation strategy is to minimise the number of blocked calls. Another
objective is to minimise the number of calls that are disconnected when they are
passed on to an already busy cell. This second objective is often given a higher
weighting, as disconnecting existing calls is usually considered more undesirable than
blocking new calls (Singh and Bertsekas, 1997).
In practice, many cellular systems use a Fixed Assignment (FA) channel allocation
strategy. This means that the set of channels is divided up and allocated to cells in
such a way that all cells are able to use all channels allocated to them simultaneously
without interference. When a call arrives in a cell it is blocked unless there is an
unassigned channel available. This strategy is static and as such is unable to take
advantage of any temporal variations in demand for service, and therefore is less
efficient than dynamic channel allocation strategies. Dynamic strategies assign
channels to different cells so that every channel is available to every cell unless the
channel reuse constraint is violated. An example of a dynamical channel allocation
strategy is Borrowing with Directional Channel Locking (BDCL), introduced by
Zhang and Yum (1989) and shown by them to be superior to its competitors,
including FA.
Singh and Bertsekas (1997) formulated the channel assignment problem as a dynamic
programming problem, but note that it is too complex to be solved exactly. For this
reason they introduced approximations based on the methods of reinforcement
learning, using Sutton's (1988) temporal difference algorithm TD(0) to learn
approximations to the optimal value function. Singh and Bertsekas presented results
from a simulation of a large cellular system with approximately 7049 states, and
showed that TD(0) with a linear function approximator was able to find better channel
allocation policies than the BDCL and FA strategies.

Conclusions

93

The reinforcement learning system used by Singh and Bertsekas (1997) utilised a
linear neural network, and took two sets of features as input. The first set of input
features was the number of free channels in each cell, the second measured, for each
cell-channel pair, the number of times that channel is used in a 4 cell radius. They
found that using non-linear neural networks as function approximators did improve
performance in some cases, but at a cost of a large increase in training time. Sutton
(1999) highlights four open theoretical questions in reinforcement learning that seem
“particularly important, pressing or opportune.” One of these open theoretical
questions concerns the use of l by reinforcement learning methods. Sutton presents a
collection of empirical results in which l was varied from 0 to 1. In all cases, as in the
experiments presented in this thesis, the best performance was found at an
intermediate value of l. Similar results have been shown analytically by Singh and
Dayan (1988) but only for particular tasks and initial settings. Sutton (1999)
comments that there is no proof as yet that the use of 0 < l < 1 is better, but there is a
lot of evidence. However Sutton suggests no method for determining or adjusting l.
Singh and Bertsakas (1997) did not specify the learning rate they used. All of their
experiments were conducted using TD(0), i.e. l = 0. It is likely that the use of
Temporal Coherence to set and adjust the learning rate, and Prediction Decay to
determine a value for l, would have reduced their training time and so allowed for
more experimentation with non-linear networks.

9.2 Possible Future Work
The previous section discussed several domains in which the use of Temporal
Coherence and/or Prediction Decay could be expected to result in significant
improvements. Other directions for possible future work are outlined below.
The application of the methods described in this thesis to fully-featured competitive
game-playing programs is potentially very promising. The work of Don Dailey at
MIT described in Chapter 7 suggests that weight sets can be found using our methods
that perform significantly better than expertly hand-tuned weight sets. This might be
of particular use in games such as shogi where much less effort has been invested in
choosing weights for evaluation terms.
Preliminary experiments we conducted with the shogi engine suggest that the learning
of piece-square weights for shogi is feasible, and that additional king-proximity tables
are useful for ensuring that the short-ranged pieces common in shogi do not wander
too far from the ‘action’.
Learning values for piece combinations rather than the individual pieces themselves
might be an interesting task. For example, in chess the combination of queen and
knight is often considered stronger than queen and bishop, even though individually a
bishop is usually more valuable than a knight.
As a step beyond generating weights for given terms, the problem of identifying
suitable evaluation terms remains as a research frontier. The two-level neural-net
approach that was so successful in backgammon (Tesauro 1992, 1994) does not seem
likely to work well in complex domains such as chess and shogi, where search based
tactical expertise is required.

References

94

REFERENCES
Almeida, L.B., Langlois, T., Amaral, J.D. and Plakhov, A. (1998) On-Line Step Size
Adaptation. Technical Report RT07/97 INESC, 9 Rua Alves Redol, 1000 Lisbon,
Portugal.
Anantharaman, T.S., Campbell, M.S. and Hsu, F. (1988) Singular Extensions: adding
selectivity to brute force searching. International Computer Chess Association
Journal, vol. 11, no. 4, pp. 135-143.
Anantharaman, T.S. (1991a) Confidently Selecting a Search Heuristic. International
Computer Chess Association Journal, vol. 14, no. 1, pp. 3-16.
Anantharaman, T.S. (1991b) Extension Heuristics. International Computer Chess
Association Journal, vol. 14, no. 2, pp. 47-65.
Anantharaman, T.S. (1997) Evaluation Tuning for Computer Chess: Linear
Discriminant Methods. International Computer Chess Association Journal, vol. 20,
no. 4, pp. 224-242.
Babbage, C. (1864) Passages on the Life of a Philosopher. Longman, London.
Baxter, J., Tridgell, A. and Weaver, L. (1998) KnightCap: A chess program that
learns by combining TD(l) with game-tree search. In Machine Learning, Proceedings
of the Fifteenth International Conference (ICML '98), Madison, pp. 28-36.
Beal, D. F. (1984) Mating Sequences in the Quiescence Search. International
Computer Chess Association Journal, vol. 7, no. 3, pp. 133-137.
Beal, D.F. (1989) Experiments with the Null Move. In Beal, D.F. (ed) Advances in
Computer Chess 5, North-Holland, pp.65-79.
Beal, D.F. and Smith, M.C. (1994) Random Evaluations in Chess. International
Computer Chess Association Journal, vol. 17, no. 1, pp. 3-9.
Beal, D.F. and Smith, M.C. (1995) Quantification of Search Extension Benefits.
International Computer Chess Association Journal, vol. 18, no. 4, pp. 205-218.
Beal, D.F. and Smith, M.C. (1996) Multiple Probes of Transposition Tables.
International Computer Chess Association Journal, vol. 19, no. 4, pp. 227-233.
Beal, D.F. and Smith, M.C. (1997) Learning piece values using temporal differences.
International Computer Chess Association Journal, vol. 20, no. 3, pp. 147-151.
Beal, D.F. and Smith, M.C. (1998a) Temporal Coherence and Prediction Decay in
Temporal Difference Learning. Technical report #756, Dept. of Computer Science,
Queen Mary and Westfield College, University of London.
Beal, D.F. and Smith, M.C. (1998b) First Results from using Temporal Difference
Learning in Shogi. In van den Herik, H. and Iida, H. (eds.) Proceedings of the First
International Conference on Computers and Games (CG’98) Springer-Verlag, Berlin,
pp. 113-125.
Beal, D.F. and Smith, M.C. (1999a) Temporal Difference Learning Applied to Game
Playing and the Results of Application to Shogi. To appear in Theoretical Computer
Science.
Beal, D.F and Smith, M.C. (1999b) Temporal Coherence and Prediction Decay in TD
Learning. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI’99), Morgan Kaufman, pp. 564-569.
Beal, D.F. and Smith, M.C. (1999c) Temporal Difference Learning for Heuristic
Search and Game Playing. To appear in Information Sciences Journal.
Berliner, H.J. (1979) The B* Tree Search Algorithm: A Best First Proof Procedure.
Artificial Intelligence, vol. 12, no. 1, pp. 23-40.

References

95

Berliner, H.J., Goetsch, G., Campbell, M. and Ebeling, C. (1989) Measuring the
Performance Potential of Chess Programs. In Beal, D.F. (ed.) Advances in Computer
Chess 5, North-Holland, pp. 13-29.
Berliner, H.J., Kopec, D. and Northam, E. (1991) A Taxonomy of Concepts for
Evaluating Chess Strength. In Beal, D. F. (ed.) Advances in Computer Chess 6, Ellis
Horwood, pp. 179-191.
Berliner, H.J. (1989) Some Innovations Introduced by Hitech. In Beal, D.F. (ed.)
Advances in Computer Chess 5, North-Holland, pp. 284-289.
Breuker, D.M., Uiterwijk, J.W.H.M., and van den Herik, H.J. (1994) Replacement
Schemes for Transposition Tables. International Computer Chess Association
Journal, vol. 17, no. 4, pp. 183-193.
Breuker, D.M., Uiterwijk, J.W.H.M., and van den Herik, H.J. (1996) Replacement
Schemes and Two-Level Tables. International Computer Chess Association Journal,
vol. 19, no. 3, 175-180.
Capablanca, J.R. (1921) Chess Fundamentals, G. Bell and Sons Ltd., London.
Christensen, J. and Korf, R. (1986) A Unified Theory of Heuristic Evaluation
Functions and its Application to Learning. AAAI-86, Morgan-Kaufman, pp. 148-152
Crites, R.H., and Barto, A.G. (1996) Improving Elevator Performance Using
Reinforcement Learning. In Advances in Neural Information Processing Systems:
Proceedings of the 1995 Conference, MIT Press, Cambridge MA, pp. 1017-1023.
Dayan, P. (1992) The Convergence of TD(l) for General l. Machine Learning, vol.
8, pp. 341-362.
Donninger, C. (1993) Null Move and Deep Search: Selective Search Heuristics for
Obtuse Chess Programs. International Computer Chess Association Journal, vol. 16,
no. 3, pp. 137-143
Ebeling, C. (1986) All the Right Moves: A VLSI Architecture for Chess. Ph.D.
thesis, Carnegie-Mellon University, Pittsburgh, Pa. MIT Press, Cambridge, MA.
Fairbairn, J. (1989) Shogi for Beginners. Ishi Press International.
Frey, P.W. (1977) Chess Skill in Man and Machine. Springer-Verlag, Heidelberg.
Fürnkranz, J. (1996) Machine Learning in Computer Chess: The Next Generation.
International Computer Chess Association Journal, vol. 19, no. 3, pp. 147-161.
George, M. and Schaeffer, J. (1991) Chunking for Experience. In Beal, D.F. (ed.)
Advances in Computer Chess 6, Ellis Horwood, London, pp. 133-146.
Goetsch, G. and Campbell, M.S. (1990) Experiments with the Null-Move Heuristic.
In Marsland, T.A. and Schaeffer, J. (eds.) Computers, Chess and Cognition, Springer-
Verlag, New York, pp.159-168.
Hyatt, R.M., Gower, A.E. and Nelson, H.L. (1990) Cray Blitz. In Marsland, T.A.
and Schaeffer, J. (eds.) Computers, Chess and Cognition, Springer-Verlag, New
York, pp.111-130.
Jacobs, R. A. (1988) Increased Rates of Convergence Through Learning Rate
Adaptation. Neural Networks, vol. 1, pp. 295-307.
Kaelbling, L.P., Littman, M.L., and Moore, A.W. (1996) Reinforcement learning: a
survey. Journal of Artificial Intelligence Research, vol. 4, pp. 237-285.
Kaindl, H., Horacek, H. and Wagner, M. (1986) Selective Search versus Brute Force.
International Computer Chess Association Journal, vol. 9, no. 3, pp. 140-145.
Keres, P. (1973) Practical Chess Endings, Batsford, London.
Knuth, D.E. (1973) The Art of Computer Programming. Vol. 3: Sorting and
Searching. Addison-Wesley Publishing Company, Reading Massachusetts.
Knuth, D.E. and Moore, R.W. (1975) An analysis of alpha-beta pruning. Artificial
Intelligence, vol. 6, no. 4, pp. 293-326.

References

96

Kopec, D. (1990) Advances in Man-Machine Play. In Marsland, T.A. and
Schaeffer, J. (eds.) Computers, Chess and Cognition, Springer-Verlag, New York,
pp.9-32.
Lang, K.J. and Smith, W.D. (1993) A Test Suite for Chess Programs. International
Computer Chess Association Journal, vol. 16, no. 3, pp. 152-161.
Leggett, T. (1993) Shogi: Japan’s Game of Strategy. Charles E. Tuttle Company.
[Reprinted in 1993, first published in 1966].
Levene, M. and Fenner, T. (1995) A Partial Analysis on Minimaxing Game Trees
with Random Leaf Values. International Computer Chess Association Journal, vol.
18, no. 1, pp. 20-33.
Levinson, R. and Snyder, R. (1991) Adaptive Pattern Oriented Chess. In
Proceedings of AAAI-91, Morgan-Kaufman, pp. 601-605.
Levy, D., Broughton, D. and Taylor, M. (1989) The SEX Algorithm in Computer
Chess. International Computer Chess Association Journal, vol. 12, no. 1, pp. 10-21.
Levy D. and Newborn, M. (1991) How Computers Play Chess. Computer Science
Press, New York. ISBN 0-7167-8239-1
Marsland, T.A. and Rushton, P.G. (1973) Mechanics for Comparing Chess Programs,
In Proceedings of the ACM Annual Conference, pp. 202-205.
Marsland, T.A. (1983) Relative Efficiency of Alph-Beta Implementations. In
Proceedings of the 8th International Joint Conference on Artificial Intelligence, pp.
763-766.
Marsland, T.A. (1986) A Review of Game-Tree Pruning, International Computer
Chess Association Journal, vol.9 no. 1, pp. 3-19.
Marsland, T.A. (1990) A Short History of Computer Chess. In Marsland, T.A. and
Schaeffer, J. (eds.) Computers, Chess, and Cognition. Springer-Verlag, New York,
ISBN 0-387-97415-6, pp. 3-7.
Marsland, T.A. (1992) Computer Chess and Search. In Shapiro, S. (ed.)
Encyclopaedia of Artificial Intelligence (2nd edition), J. Wiley & Sons.
Matsubara, H., Iida, H. and Grimbergen, R. (1996) Natural Developments in Game
Research: From Chess to Shogi to Go. International Computer Chess Association
Journal, vol. 19, no. 2, pp. 103-112.
McCarthy, J. (1990) Chess as the Drosophila of AI. In Marsland, T.A. and Schaeffer,
J. (eds.) Computers, Chess, and Cognition. Springer-Verlag, New York, ISBN 0-
387-97415-6, pp. 227-238.
Michie, D. (1990) Brute Force in Chess and Science. In Marsland, T.A. and
Schaeffer, J. (eds.) Computers, Chess, and Cognition. Springer-Verlag, New York,
ISBN 0-387-97415-6, pp. 239-258.
Mutz, M. (1994) Gnu Shogi v1.2p03. Available from many sources, including
ftp://ftp.uni.passau.de/pub/local/shogi

Palay, A.J. (1983) The B* Tree Search Algorithm – New Results. Artificial
Intelligence, vol 19, pp. 145-163.
Pitrat, J. (1998) Games: The Next Challenge. . International Computer Chess
Association Journal, vol. 21, no. 3, pp. 147-156.
Pell, B. (1992) METAGAME: A New Challenge for Games and Learning. In van
den Herik, H.J. and Allis, L.V. (eds.) Heuristic Programming in Artificial Intelligence
3, Ellis Horwood, England, ISBN 0-13-388265-9, pp. 237-251.
Plaat, A., Schaeffer, J., Pijls, W., and de Bruin, A (1994) A New Paradigm for
Minimax Search. Technical Report 94-18, Department of Computing Science,
University of Alberta, Edmonton, Canada.

References

97

Pritchard, D.B. (1994) The Encyclopaedia of Chess Variants. Games and Puzzles
Publications, Surrey, United Kingdom.
Reinfeld, F. (1945) Win at Chess. Dover Publications.
Reinfeld, F. (1953) The Human Side of Chess. Faber and Faber Ltd., London.
Reinfeld, F. (1955) 1001 Winning Chess Sacrifices and Combinations. Wilshire
Book Company.
Reiss, M. (1999) Personal communication.
Rollason, J. (1999) Personal communication.
Roycroft, A.J. (1986) Queen and Pawn on b7 against Queen. Roycroft’s 5-Man
Chess Endgame Series, no. 7, Chess Endgame Consultants and Publishers, London,
England.
Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986) Learning internal
representation by error propagation. In Rumelhart, D. and McClelland, J. (eds.)
Parallel Distributed Processing, vol. 1. MIT Press, Cambridge, Mass.
Samuel, A.L. (1959) Some studies in machine learning using the game of checkers.
IBM Journal of Research and Development, vol. 3, no. 3, pp 211-229.
Schaeffer, J. (1983) The History Heuristic. International Computer Chess
Association Journal, vol. 6, no. 3, pp. 16-19.
Schraudolph, N.N., Dayan, P. and Sejnowski, T.J. (1994) Temporal difference
learning of position evaluators in the game of go. In Cowan, J.D., Tesauro, G. and
Alspector, (eds.) Advances in Neural Information Processing 6, Morgan Kaufmann,
San Francisco, pp. 817-824.
Schraudolph, N.N. (1998) Online Local Gain Adaptation for Multi-layer Perceptrons.
Technical Report IDSIA-09-98, IDSIA, Corso Elvezia 36, 6900 Lugano, Switzerland.
Seirawan, Y. (1997) The Kasparov – Deep Blue Games. International Computer
Chess Association Journal, vol. 20, no. 2, pp. 102-125.
Shannon, C.E. (1950) Programming a Computer to Play Chess. Philosophical
Magazine, vol. 41, pp. 256-275.
Singh, S.P., and Dayan, P. (1998) Analytical Mean Squared Error Curves for
Temporal Difference Learning. Machine Learning 25(1): 5-22.
Singh, S.P., and Bertsekas, D. (1997) Reinforcement Learning for Dynamic Channel
Allocation in Cellular Telephone Systems. In Advances in Neural Information
Processing Systems: Proceedings of the 1996 Conference, MIT Press Cambridge MA.
Slate, D. and Atkin, L. (1977) Chess 4.5 - The Northwestern University Chess
Program. In Frey, P.W. (ed.) Chess Skill in Man and Machine, Springer-Verlag, pp.
82-118.
Smith, M.C. [co-authored with Beal, D.F.] (1994). Random Evaluations in Chess.
International Computer Chess Association Journal, vol. 17, no. 1, pp. 3-9.
Smith, M.C. [co-authored with Beal, D.F.] (1995) Quantification of Search Extension
Benefits. International Computer Chess Association Journal, vol. 18, no. 4, pp. 205-
218.
Smith, M.C. [co-authored with Beal, D.F.] (1996) Multiple Probes of Transposition
Tables. International Computer Chess Association Journal, vol. 19, no. 4, pp. 227-
233.
Smith, M.C. [co-authored with Beal, D.F.] (1997) Learning piece values using
temporal differences. International Computer Chess Association Journal, vol. 20, no.
3, pp. 147-151.
Smith, M.C. [co-authored with Beal, D.F.] (1998a) Temporal Coherence and
Prediction Decay in Temporal Difference Learning. Technical report #756, Dept. of
Computer Science, Queen Mary and Westfield College, University of London.

References

98

Smith, M.C. [co-authored with Beal, D.F.] (1998b) First Results from using
Temporal Difference Learning in Shogi. In van den Herik, H. and Iida, H. (eds.)
Proceedings of the First International Conference on Computers and Games (CG’98)
Springer-Verlag, Berlin, pp. 113-125.
Smith, M.C. [co-authored with Beal, D.F.] (1999a) Temporal Difference Learning
Applied to Game Playing and the Results of Application to Shogi. To appear in
Theoretical Computer Science.
Smith, M.C. [co-authored with Beal, D.F.] (1999b) Temporal Coherence and
Prediction Decay in TD Learning. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI’99), Morgan Kaufman, pp. 564-569.
Smith, M.C. [co-authored with Beal, D.F.] (1999c) Temporal Difference Learning
for Heuristic Search and Game Playing. To appear in Information Sciences Journal.
Stockman, G.C. (1979) A Minimax Algorithm Better than Alpha-Beta? Artificial
Intelligence, vol. 12, no. 2, pp. 179-196.
Sutton, R. S. (1988) Learning to Predict by the Methods of Temporal Differences.
Machine Learning, vol. 3, 9-44.
Sutton, R.S., (1992) Adapting bias by gradient descent: an incremental version of
delta-bar-delta. In Proceedings of the Tenth National Conference on Artificial
Intelligence, pp. 171-176.
Sutton, R.S., and Singh, S.P. (1994) On Step-Size and Bias in Temporal-Difference
Learning. In Proceedings of the Eighth Yale Workshop on Adaptive and Learning
Systems, pp. 91-96.
Sutton, R.S. (1999) Open Theoretical Questions in Reinforcement Learning. In
Fischer, P. and Simon, H.U. (eds.) Computational Learning Theory (proceedings of
EuroCOLT'99) pp. 11-17.
Tesauro, G. (1989) Neurogammon wins Computer Olympiad. Neural Computation,
vol. 1, pp. 321-323.
Tesauro, G. (1992) Practical Issues in Temporal Difference Learning. Machine
Learning, vol. 8, pp. 257-277.
Tesauro, G. (1994) TD-Gammon, a Self-Teaching Backgammon Program, achieves
Master Level Play. Neural Computation, vol. 6, no. 2. pp. 215-2.
Tesauro, G. (1995) Temporal Difference Learning and TD-Gammon.
Communications of the ACM, vol. 38, no. 3.
Thompson, K. (1986) Retrograde Analysis of Certain Endgames. International
Computer Chess Association Journal, vol. 9, no. 3, pp. 131-139.
Turing, A.M. (1950) Computing Machinery and Intelligence. Mind LIX, 2236, pp.
433-460.
Turing, A.M. (1953) Digital Computers Applied to Games. In Bowden, B.V. (ed.)
Faster than Thought, London, pp. 286-310.
Walker, A.N. (1996) Hybrid Heuristic Search. International Computer Chess
Association Journal, vol. 19, no. 1, pp. 17-23.
Watkins, C.J.C.H. (1989) Learning from Delayed Rewards. Ph.D. thesis, Cambridge
University.
Widrow, B., and Hoff, M.E. (1960) Adaptive Switching Circuits. IRE Western
Electronic Show and Convention Record, Part 4, pp. 94-104.
Yamashita, H. (1997) YSS: About the Data Structures and the Algorithm. Published
on the WWW at http://plaza15.mbn.or.jp/~yss
Ye, C. and Marsland, T.A. (1992) Experiments in Forward Pruning with Limited
Extensions. International Computer Chess Association Journal, vol. 15, no 2, pp.55-
66.

References

99

Zhang, M. and Yum, T.P. (1989) Comparisons of Channel-Assignment Strategies in
Cellular Mobile Telephone Systems. IEEE Transactions on Vehicular Technology.
Vol. 38, no. 4.
Zhang, W., Dietterich, T.G., (1995). A Reinforcement Learning Approach to Job-
Shop Scheduling. In Proceedings of the Fourteenth International Joint Conference
on Artificial Intelligence. Morgan Kaufmann, San Francisco, CA. pp. 1114-1120.
Zhang and Dietterich (1996) High-Performance Job-Shop Scheduling with a Time-
Delay TD(l) Network. In Touretzky, Mozer and Hasselmo (eds.) Advances in Neural
Information Processing Systems: Proceedings of the 1995 Conference. MIT Press
Cambridge MA.
Zobrist, A.L. (1970) A New Hashing Method with Application for Game Playing.
Technical Report 88, Computer Science Dept. University of Wisconsin. Reprinted
(1990), International Computer Chess Association Journal, vol. 13, no. 2, pp. 69-73.
Zweben, M., Daun, B. and Deale, M. (1994) Scheduling and Rescheduling with
Iterative Repair. In M. Zweben and M. S. Fox (eds.) Intelligent Scheduling. Morgan
Kaufman, San Francisco, CA. Pp. 241-255.

Appendix A

100

APPENDIX A: EXPERIMENTAL DETAILS FROM
 CHAPTER FOUR
A.1 Test Positions used in the Transposition Table Experiments
Below are the positions used in the transposition table experiments of section 4.2. All
positions occurred in games from the 10th VSB Tournament, Amsterdam,
Netherlands, March 1996, and are given after Black’s 20th move. These positions are
available online at http://www.dcs.qmw.ac.uk/~martins/research/vsb30.set
Format: [index, players, position, side to move, depth searched]

1, Topalov-Kasparov, 2b1kb2/1pq3rp/r2p1pp1/p1nBpPN1/8/4BQ2/PPP3PP/R4RK1, W, 9
2, Kramnik-Seirawan, 5rk1/r2n1ppp/p2Bpn2/q7/8/p2Q1B2/2P2PPP/3R1RK1, W, 9
3, Lautier-Short, 1r3r2/1b2bpkp/pp2qnp1/2ppN2P/3P1P2/PQN1PB2/1P3P2/3RK1R1, W, 7
4, Gelfand-Anand, 1bqrr1k1/1p3p1p/p1p5/3n1pp1/1PNP2b1/P2NP1P1/2Q2P1P/R3RBK1, W, 8
5, Timman-Piket, r1b2rk1/1p3pp1/4p2p/1B2n1b1/p2RP3/P1N4P/1PPNR1P1/2K5, W, 10
6, Short-Gelfand, r1r1k3/3nbpp1/p1qp1n2/1p2pPB1/4P3/P1N4Q/1PPN3P/R5RK, W, 8
7, Anand-Topalov, 1rb2rk1/2q2ppp/3p4/3P4/pp3BPb/5B2/PPPQ3P/2KR2R1, W, 8
8, Seirawan-Lautier, r1b1r1k1/pp3ppp/2pQ1n2/P5q1/2PPp2n/2N1P2P/3N1PP1/R2R1BK1, W, 8
9, Piket-Kasparov, r1r3k1/1n1bB1b1/p4pp1/1p1Pp2n/4P3/5P1P/PP1KNN2/R4B1R, W, 8
10, Timman-Kramnik, 3q1rk1/5pp1/2n1pb1p/p1Pp4/3P4/1PN2N2/3Q1PPP/1R4K1, W, 9
11, Topalov-Short, r2qr2k/1p1b2pp/p4p2/2BR1P1Q/8/1B6/PPP3PP/6K1, W, 9
12, Kasparov-Anand, r2qr1k1/p2b1pp1/2n1pb1p/2ppN3/3P1B2/2PB4/P4PPP/1R1QR1K1, W, 9
13, Lautier-Timman, r4rk1/p3qpp1/1p1n3p/1P1P4/3p4/P2B2B1/1PQ2PPP/1K1R4, W, 9
14, Gelfand-Seirawan, 4r1k1/pb1q1rpp/1p3n2/3p1p2/P1pP4/2P1PP2/3BB1PP/RQ3RK1, W, 8
15, Short-Kasparov, 3r1rk1/2q1bpn1/p3p1p1/1p2P2p/1P1BQ1P1/2P5/P1B4P/R4RK1, W, 9
16, Kramnik-Lautier, r4rk1/1p1b1pp1/pq1b3p/8/1P2BP2/P2Q4/3R2PP/2B2RK1, W, 10
17, Seirawan-Topalov, 2r1r1k1/3nqpp1/2p2n1p/p2p4/1PpP4/P3PP2/1Q2NBPP/R4RK1, W, 9
18, Timman-Gelfand, 4rrk1/pp3pp1/2p4p/3pNn2/3P4/1PP5/P4PPP/4RRK1, W, 10
19, Topalov-Timman, r2q2k1/1p1n1rp1/4p2B/p2pPp2/3P3b/1P1BQP1P/P4P2/1R4RK, W, 9
20, Kasparov-Seirawan, r1b1k1r1/1p1n1q2/p3p2p/4PpB1/P1Q5/2N2N1P/1P4P1/R6K, W, 9
21, Anand-Short, r2q1n1r/4bpkn/3p2p1/pQ1Pp1P1/Pp4B1/1N2B3/1PP2P2/2KR3R, W, 9
22, Lautier-Piket, 2r2Bk1/pb3ppp/4pn2/4q3/2B1n3/4P3/4QPPP/R4RK1, W, 9
23, Kramnik-Topalov, r4rk1/pb1nb2p/1q1p2p1/2pPPp2/1p3P1N/1P4P1/1B5P/R2QRBK1, W, 9
24, Lautier-Gelfand, 2kr1b1r/1bq3pp/8/1pn1p3/2p5/4BN2/1PB1QPPP/R4RK1, W, 9
25, Seirawan-Anand, r3r1k1/ppq2pb1/3np1p1/3pN2p/P2P1P1P/2PQ2P1/1P1N2K1/R3R3, W, 8
26, Piket-Short, r1q3k1/p3rpp1/1p5p/1BnR1Q2/8/4PN2/Pb3PPP/5RK1, W, 9
27, Timman-Kasparov, r1b2q1k/3nb2n/p2p1rp1/1p1Pp3/4P2p/1NN1BP1P/PP1QB3/1K1R2R1, W, 8
28, Kasparov-Kramnik, r1b2k1r/4bp2/4pp2/3q1P1p/pp6/3B3Q/PPP1N1PP/1KR4R, W, 9
29, Short-Seirawan, r4rk1/n1q1bpp1/2p1p1bp/P2pP3/2nP4/1NB2N2/Q3BPPP/R3R1K1, W, 9
30, Anand-Timman, r4r1k/1bpqb3/p1np4/3Np2p/Q3Ppp1/2PP1N1P/1P2KPP1/R1B1R3, W, 9

Appendix A

101

A.2 Details from the Search Extension Experiments
Here we indicate the 563 problems from the book 1001 Winning Chess Sacrifices and
Combinations (Reinfeld, 1955) that were used in the search extension experiments of
section 4.4.
Each entry represents: position number, depth to solution, target gain.
The target gain is measured relative to the material balance in the position initially.
M means that the solution leads to checkmate.
The actual positions themselves can be found in machine readable format at
http://www.dcs.qmw.ac.uk/~martins/research/wcsac563.txt
1,4,5 2,8,7 3,4,2 5,6,3 6,6,3 7,10,1 8,4,4
9,8,3 11,6,1 12,6,3 14,6,1 15,4,3 16,4,2 18,6,2
19,6,4 22,8,2 23,4,2 25,4,1 26,8,3 28,6,2 29,4,1
30,10,2 31,8,3 33,6,3 34,4,5 35,6,4 36,6,3 41,8,1
44,4,1 45,6,4 48,8,3 49,8,3 50,4,1 52,6,1 57,8,1
58,6,1 59,4,3 61,6,6 63,6,4 65,8,1 66,4,M 68,6,3
70,8,3 72,6,5 73,4,3 74,6,3 75,12,6 76,8,4 77,8,11
79,8,2 82,6,1 87,6,2 88,4,6 89,6,2 90,4,4 91,8,M
92,8,3 93,4,1 94,8,3 100,6,5 102,8,10 103,4,6 105,6,2
106,6,5 109,4,3 111,6,3 113,6,8 116,4,2 117,4,2 118,4,2
119,4,4 120,6,3 122,6,1 123,8,10 124,6,4 125,4,4 126,4,6
127,4,2 128,6,4 129,6,5 131,8,1 132,8,6 134,4,2 135,6,6
136,10,M 137,10,3 138,8,3 141,8,1 142,8,3 143,4,2 144,8,3
146,4,5 149,4,2 150,8,2 152,4,2 153,8,4 154,4,2 155,6,2
159,4,2 160,6,1 163,4,3 165,6,2 166,4,1 167,4,1 168,6,2
171,4,2 172,4,2 173,4,1 174,4,3 177,4,3 178,4,2 180,4,3
181,4,3 185,10,2 186,4,3 187,4,2 188,4,2 189,4,3 193,6,3
194,6,1 195,4,1 198,4,2 199,12,M 200,6,2 202,4,2 203,4,5
204,4,3 205,8,2 207,4,3 208,4,3 209,6,1 210,8,2 211,4,3
213,4,3 214,4,3 215,8,2 217,10,2 218,6,3 221,4,2 222,4,2
223,4,2 225,4,2 226,8,1 227,4,2 228,6,4 231,4,4 233,6,2
235,6,3 236,6,4 237,6,2 239,6,1 240,8,2 241,10,3 245,4,1
246,4,2 247,6,3 249,6,2 250,6,2 251,12,M 252,8,1 254,4,3
255,6,2 256,6,2 257,6,3 262,4,1 263,6,2 264,4,2 265,6,1
268,6,3 269,4,2 272,10,2 273,6,1 275,4,4 276,6,1 277,4,2
278,4,1 279,4,2 280,4,3 281,6,6 282,6,1 284,4,2 285,4,4
287,6,3 288,4,2 290,6,3 291,4,3 292,4,1 293,6,6 295,6,8
297,8,1 298,4,2 300,4,1 301,8,15 303,4,2 306,4,5 307,6,2
308,10,4 310,4,3 311,4,3 312,10,5 313,10,2 314,6,9 316,4,6
318,6,2 320,8,2 321,8,M 323,6,1 324,4,3 326,8,8 329,4,2
332,6,2 334,4,3 337,4,3 338,4,1 339,8,1 340,10,2 341,4,3
342,6,4 343,6,2 344,4,2 346,6,3 347,4,7 348,4,5 350,6,M
351,4,3 352,4,2 353,6,2 354,4,8 355,6,3 356,4,3 357,6,7
360,8,6 363,6,3 364,10,6 365,4,2 370,8,3 372,6,3 374,6,M
375,4,2 377,10,9 378,8,M 379,6,4 380,6,M 382,6,3 383,4,5
385,4,4 386,8,3 388,4,M 390,8,3 392,4,5 394,4,1 399,6,M
400,8,2 402,8,M 405,6,M 406,6,M 409,6,M 410,4,M 411,8,1
412,6,1 414,10,M 415,4,M 418,4,M 419,8,5 420,4,7 421,6,M
422,8,4 423,6,M 424,8,2 426,6,M 427,12,M 428,6,1 430,6,5
432,6,M 433,4,6 436,8,4 438,6,M 440,4,4 443,8,5 444,8,3
445,6,M 446,6,5 447,8,M 448,6,M 449,4,4 452,8,3 454,8,5
455,4,M 456,6,2 457,8,2 458,4,2 460,8,3 461,8,5 462,4,5
463,4,M 467,4,3 468,4,4 469,6,1 476,8,7 478,6,4 479,8,8
480,4,1 482,4,M 485,8,3 486,4,5 487,8,5 492,4,5 497,4,1
498,4,3 499,4,1 501,6,2 503,4,2 504,4,2 505,8,4 507,4,4
509,8,2 510,4,1 511,6,3 513,4,3 514,4,2 520,4,2 521,8,M
523,4,4 524,8,4 532,4,1 535,8,7 536,6,3 537,4,3 538,4,M
539,8,9 543,4,3 544,6,3 545,4,M 548,4,5 549,8,4 551,4,5

Appendix A

102

556,4,4 557,10,M 558,4,2 560,6,2 562,8,4 564,10,M 565,8,7
567,8,M 572,4,5 577,8,2 581,8,2 583,8,5 585,8,6 587,4,4
588,8,2 590,8,2 594,10,M 597,8,M 598,6,M 600,4,4 603,4,4
605,6,1 607,10,3 608,8,1 610,4,2 613,4,2 614,4,2 615,6,3
619,4,1 622,6,2 625,4,1 626,4,5 629,8,4 630,4,3 631,4,4
632,8,1 634,6,2 635,8,2 637,4,5 638,4,4 641,4,4 642,6,3
643,8,3 645,8,M 646,6,3 647,10,M 648,10,2 649,6,2 650,10,3
651,8,4 652,4,5 654,4,2 660,8,4 662,4,9 664,8,M 666,4,3
667,8,3 668,10,3 669,8,3 670,8,5 671,4,M 675,4,4 676,6,9
677,6,2 678,6,8 680,8,3 681,8,M 682,8,5 684,6,5 685,6,8
686,6,5 687,8,3 689,6,7 690,8,M 691,8,3 692,6,10 693,4,4
694,10,M 695,6,5 697,8,3 699,4,4 700,4,4 701,4,5 702,4,5
703,8,M 704,10,M 705,8,10 706,4,5 712,6,10 715,4,M 717,6,M
718,6,M 719,4,2 720,4,M 721,8,3 722,6,M 723,4,4 725,6,M
726,4,M 727,6,M 729,10,M 731,4,M 735,6,M 736,4,M 737,6,M
739,10,M 740,8,M 741,10,M 744,6,M 745,6,2 746,8,M 749,8,M
751,6,M 752,6,M 753,8,M 755,4,5 758,8,2 759,6,2 761,6,2
762,6,5 763,6,2 764,4,9 766,10,10 767,6,3 769,12,3 770,6,4
772,10,M 773,4,1 774,6,3 776,6,5 777,6,2 778,4,3 781,6,M
783,12,2 784,6,3 785,4,6 786,8,3 787,12,1 788,4,4 789,4,6
795,8,7 797,8,4 798,10,M 800,8,1 802,4,9 804,10,13 805,8,8
806,6,5 807,8,2 809,8,5 810,6,M 812,8,5 813,4,M 814,8,1
816,8,1 821,6,6 822,4,3 823,6,2 825,8,2 826,6,1 831,10,5
837,8,2 838,4,M 841,10,9 848,4,4 851,6,2 854,4,1 855,6,3
856,4,1 858,6,2 871,10,4 872,6,1 874,8,1 878,8,5 879,4,M
881,4,5 882,6,2 885,6,3 886,8,2 888,8,1 892,6,1 893,6,M
894,8,1 897,4,M 898,6,4 899,6,M 900,4,6 902,8,5 904,4,M
905,8,8 906,6,M 908,8,1 912,4,M 913,8,2 918,8,1 920,4,M
921,6,7 922,8,4 923,6,4 925,8,4 927,6,3 930,6,1 931,4,M
934,10,1 935,8,M 937,4,M 939,6,M 944,4,6 947,4,4 948,6,M
955,6,5 957,6,9 959,10,1 960,4,5 962,8,M 964,4,M 969,8,9
971,6,6 975,6,3 981,6,M 983,8,M 989,6,M 993,6,10 994,10,M
997,8,6 999,4,M 1001,6,M

Overall (563) Depths 4-5 (206) Depths 6-7 (176) Depths 8-9 (136) Depths 10+ (45)
Extensions Total SD RD Total SD RD Totals SD RD Totals SD RD Totals SD RD
None 738,960 0 0 4,629 0 0 57,563 0 0 938,020 0 0 6,163,974 0 0
Checks (1) 88,887 0 0 2,371 0 0 16,653 0 0 256,297 0 0 261,505 0 0
Checks (2)* 84,140 0 0 2,383 0 0 16,437 0 0 233,815 0 0 270,848 0 0
Recapts 661,226 0 59,312 5,540 0 418 64,717 0 5,868 1,011,942 0 110,866 4,935,880 0 382,129
SingEx (1) 360,176 248,930 0 5,907 1,844 0 55,069 27,363 0 788,802 525,406 0 1,879,844 1,411,035 0
SingEx (2)* 508,794 205,913 0 6,045 903 0 85,675 26,038 0 1,286,284. 491,437 0 2,115,379 984,997 0
Null (1)* 345,691 0 0 3,595 0 0 33,056 0 0 380,517 0 0 3,029,223 0 0
Null (2) 129,510 0 0 3,508 0 0 23,263 0 0 197,845 0 0 915,340 0 0
Checks+Recapts 62,259 0 6,669 1,795 0 165 19,789 0 2,250 180,101 0 20,562 149,016 0 11,736
Checks+SingEx 82,947 49,689 0 2,101 477 0 22,513 10,935 0 177,606 103,737 0 403,320 263,192 0
Checks+Null 46,910 0 0 1,997 0 0 9,294 0 0 140,783 0 0 115,929 0 0
Recapts+SingEx 372,378 248,282 34,855 6,029 1,815 496 68,813 34,814 5,802 976,091 649,029 101,218 1,412,164 1,000,304 105,208
Recaps+Null 151,396 0 18,209 3,755 0 260 26,045 0 2,627 259,312 0 31,899 991,379 0 119,945
SingEx+Null 156,214 107,900 0 6,946 2,709 0 37,974 21,994 0 343,603 241,732 0 735,651 520,956 0
Checks+Recapts+SingEx 100,612 59,493 9,167 2,516 558 200 26,161 12,240 2,211 264,912 158,925 27,441 344,303 213,587 22,197
Checks+Recapts+Null 30,614 0 2,885 2,159 0 124 10,556 0 808 74,940 0 8,054 105,361 0 8,023
Checks+SingEx+Null 64,106 41,387 0 2,923 768 0 17,048 8,814 0 120,453 78,039 0 357,950 243,961 0
Recapts+SingEx+Null 163,433 111,493 15,591 6,299 2,351 444 48,230 27,607 4,139 421,994 301,593 41,525 551,898 364,679 51,344
Chck+Rcpt+SingEx+Null 69,738 44,837 5,693 3,433 1,015 218 19,983 10,432 1,326 145,299 95,805 12,805 339,507 225,970 26,344

Table A.1: Full results from the search extension experiments.
Table A.1 presents the full results1 from the search extension experiments of section 4.4. Extension heuristic variants marked * were not carried
forwards into combinations. The values presented are measured in nodes to solution, where Total is the total search effort, and SD and RD are
the cost of singular detection and recapture detection respectively.

1 Except the extension rule ‘all-captures’. This rule was clearly deleterious and was not included.

Appendix B

104

APPENDIX B: EXPERIMENTAL DETAILS FROM
 CHAPTER FIVE

Pawn Knight Bishop Rook Queen Pawn Knight Bishop Rook Queen
Depth 1
Run A 0.52 0.92 1.10 1.76 3.77 1.00 1.77 2.13 3.39 7.28
Run B 0.48 0.90 1.13 1.77 4.05 1.00 1.85 2.34 3.66 8.36
Run C 0.56 1.12 1.18 1.86 3.90 1.00 1.99 2.11 3.31 6.95
Run D 0.58 1.11 1.19 1.83 3.92 1.00 1.92 2.05 3.15 6.74
Run E 0.56 1.01 1.08 1.78 3.90 1.00 1.80 1.94 3.18 6.98
Ave. 0.54 1.01 1.14 1.80 3.91 1.00 1.86 2.11 3.34 7.26
Stdev. 0.04 0.10 0.05 0.04 0.10 0.00 0.09 0.15 0.20 0.64
Depth 2
Run A 0.39 1.11 1.50 2.08 4.30 1.00 2.87 3.86 5.37 11.09
Run B 0.40 1.00 1.26 1.84 4.18 1.00 2.52 3.17 4.65 10.56
Run C 0.37 1.13 1.39 1.68 4.41 1.00 3.07 3.76 4.54 11.95
Run D 0.40 1.03 1.25 1.82 4.20 1.00 2.61 3.16 4.61 10.64
Run E 0.40 1.07 1.44 1.99 4.34 1.00 2.70 3.63 5.03 10.95
Ave. 0.39 1.07 1.37 1.88 4.29 1.00 2.75 3.52 4.84 11.04
Stdev 0.01 0.06 0.11 0.16 0.09 0.00 0.22 0.33 0.35 0.55
Depth 3
Run A 0.76 1.36 1.76 3.15 6.18 1.00 1.78 2.31 4.13 8.11
Run B 0.80 1.47 1.79 3.21 6.25 1.00 1.83 2.24 4.01 7.81
Run C 0.79 1.29 1.88 2.92 6.47 1.00 1.64 2.38 3.69 8.19
Run D 0.77 1.41 1.72 2.98 6.40 1.00 1.83 2.23 3.87 8.31
Run E 0.79 1.31 1.90 2.93 6.36 1.00 1.65 2.39 3.69 8.00
Ave. 0.78 1.37 1.81 3.04 6.33 1.00 1.75 2.31 3.88 8.08
Stdev. 0.02 0.07 0.08 0.14 0.12 0.00 0.10 0.08 0.20 0.19
Depth 4
Run A 0.60 1.66 2.02 2.75 6.61 1.00 2.76 3.36 4.57 11.00
Run B 0.58 1.49 1.93 2.92 6.43 1.00 2.56 3.31 5.00 11.01
Run C 0.53 1.60 1.93 2.81 6.79 1.00 3.01 3.62 5.29 12.76
Run D 0.58 1.56 2.02 2.81 6.64 1.00 2.71 3.50 4.87 11.51
Run E 0.57 1.47 1.78 2.92 6.36 1.00 2.58 3.13 5.13 11.17
Ave. 0.57 1.56 1.93 2.84 6.57 1.00 2.72 3.38 4.97 11.49
Stdev. 0.03 0.08 0.10 0.07 0.17 0.00 0.18 0.19 0.27 0.74
Depth 5
Run A 0.96 1.97 2.31 3.78 7.45 1.00 2.04 2.40 3.92 7.73
Run B 0.86 1.99 2.28 3.81 7.14 1.00 2.33 2.67 4.45 8.35
Run C 0.88 1.81 2.11 3.36 7.26 1.00 2.06 2.40 3.81 8.25
Run D 0.92 1.95 2.33 3.49 7.22 1.00 2.12 2.53 3.79 7.85
Run E 0.89 1.87 2.34 3.90 7.61 1.00 2.10 2.63 4.38 8.55
Ave. 0.90 1.92 2.23 3.65 7.28 1.00 2.14 2.49 4.06 8.11
Stdev. 0.04 0.08 0.10 0.23 0.19 0.00 0.12 0.13 0.32 0.35
Depth 6
Run A 0.72 2.16 2.59 3.61 7.63 1.00 2.99 3.58 4.99 10.53
Run B 0.74 2.11 2.49 3.69 8.18 1.00 2.86 3.37 5.00 11.09
Run C 0.72 2.02 2.47 3.67 7.52 1.00 2.80 3.42 5.08 10.43
Run D 0.69 2.05 2.44 3.55 7.49 1.00 2.97 3.54 5.14 10.86
Run E 0.71 2.09 2.50 3.69 7.45 1.00 2.94 3.52 5.19 10.49
Ave. 0.72 2.09 2.50 3.64 7.65 1.00 2.91 3.49 5.08 10.68
Stdev. 0.02 0.05 0.06 0.06 0.30 0.00 0.08 0.09 0.09 0.28

Table B.1: Final values for individual chess runs, at various depths.

Table B.1 presents the final piece values (averaged over the last 20% of the runs) for
the individual chess runs described in Chapter 5. The values are presented first in
their absolute forms and then again normalised to pawn = 1.

Appendix C

105

APPENDIX C: EXPERIMENTAL DETAILS FROM
 CHAPTER SIX

Pawn Lance Knight Silver Gold Bishop Rook
Depth1 A 0.08 0.16 0.19 0.33 0.39 0.45 0.59

B 0.08 0.17 0.21 0.37 0.39 0.50 0.61
C 0.08 0.16 0.23 0.34 0.41 0.49 0.60
D 0.08 0.15 0.23 0.31 0.37 0.47 0.62
E 0.09 0.19 0.20 0.33 0.33 0.44 0.56

Depth2 A 0.13 0.28 0.32 0.49 0.56 0.71 0.93
B 0.13 0.32 0.26 0.44 0.54 0.70 0.93
C 0.12 0.29 0.31 0.49 0.57 0.72 0.95
D 0.11 0.30 0.30 0.52 0.59 0.73 0.99
E 0.13 0.27 0.29 0.48 0.58 0.74 0.91

Depth3 A 0.12 0.24 0.27 0.60 0.70 0.83 1.15
B 0.13 0.32 0.34 0.71 0.80 0.99 1.35
C 0.12 0.26 0.38 0.63 0.79 0.87 1.21
D 0.13 0.32 0.35 0.64 0.77 0.92 1.25
E 0.14 0.26 0.32 0.64 0.81 0.98 1.30

Depth4 A 0.11 0.35 0.37 0.58 0.69 0.90 1.07
B 0.16 0.36 0.36 0.65 0.68 0.84 1.10
C 0.14 0.32 0.38 0.57 0.71 0.86 1.14
D 0.10 0.21 0.25 0.52 0.62 0.77 1.05
E 0.12 0.23 0.33 0.55 0.64 0.74 1.06

Table C.1: Main piece values for each of the five runs (a-e) at depths 1-4

Pawn Lance Knight Silver Gold Bishop Rook
Depth 1 A 0.19 0.09 0.20 0.23 - 0.95 1.07

B 0.22 0.12 0.24 0.13 - 0.93 1.04
C 0.27 0.13 0.04 0.43 - 0.97 1.15
D 0.25 0.11 0.04 0.28 - 0.95 1.11
E 0.17 0.13 0.15 0.11 - 0.89 1.05

Depth2 A 0.76 0.58 0.59 0.67 - 1.39 1.60
B 0.72 0.49 0.60 0.59 - 1.23 1.71
C 0.74 0.54 0.58 0.67 - 1.35 1.65
D 0.72 0.48 0.53 0.69 - 1.30 1.72
E 0.73 0.50 0.48 0.65 - 1.33 1.63

Depth3 A 0.72 0.35 0.54 0.59 - 1.46 1.88
B 0.72 0.25 0.57 0.02 - 1.84 2.11
C 0.64 0.18 0.51 0.22 - 1.53 1.93
D 0.63 0.43 0.30 0.27 - 1.70 2.03
E 0.82 0.38 0.56 0.06 - 1.85 2.13

Depth4 A 0.74 0.65 0.73 0.85 - 1.43 1.74
B 0.85 0.78 0.78 0.85 - 1.32 1.61
C 0.75 0.80 0.79 0.80 - 1.37 1.69
D 0.56 0.36 0.58 0.67 - 1.31 1.66
E 0.65 0.39 0.57 0.69 - 1.31 1.57

Table C.2: Promoted piece values for each of the five runs (a-e) at depths 1-4

Appendix C

106

Pawn Lance Knight Silver Gold Bishop Rook
Main Begin. 0.50 1.00 1.00 2.00 2.00 4.00 5.00

Gnu 0.42 2.11 2.11 2.83 3.03 4.74 5.00
YSS 0.48 2.07 2.16 3.08 3.32 4.28 5.00

Promoted Begin. 1.50 1.75 1.75 2.00 - 5.00 6.00
Gnu 1.91 2.50 2.63 3.16 - 5.21 5.16
YSS 2.02 3.03 3.08 3.22 - 5.53 6.25

Table C.3: Piece values used in matches (normalised to rook=5)

Appendix D

107

APPENDIX D: EXPERIMENTAL DETAILS FROM
 CHAPTER SEVEN

Pawn ranks Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7
Pawn 0.000 0.033 0.100 0.233 0.500 1.000

Piece centrality Ring 1 Ring 2 Ring 3 Ring 4
Knight 0.000 0.067 0.133 0.200
Bishop 0.000 0.033 0.067 0.100
Rook 0.000 0.000 0.000 0.000
Queen 0.000 0.033 0.067 0.100

Table D.1: The pawn rank and piece centrality bonuses used by the weight set Central
Table D.1 presents the pawn rank and piece centrality bonuses used by the weight set
Central in section 7.2.3.

Halfboard Fullboard
Pawn 1.00 (0.00) 1.00 (0.00)
Knight 2.67 (0.17) 2.76 (0.11)
Bishop 3.07 (0.19) 3.08 (0.11)
Rook 4.72 (0.25) 4.62 (0.17)
Queen 9.39 (0.57) 9.46 (0.50)

Table D.2: Chess piece values learnt using piece-square tables
The learnt chess piece values used in Figure 7.12 are given in Table D.2. These
values were learnt in conjunction with the piece-square values presented in Table D.3
below. The values are normalised to pawn=1, and their standard deviations are given
in parentheses.

Appendix D

108

Pawn Knight
8 0.00 0.00 0.00 0.00 8 0.00 0.71 0.73 0.73
7 2.14 1.92 1.68 1.63 7 0.53 0.77 1.08 0.81
6 1.25 1.20 1.16 1.13 6 0.79 1.14 1.16 1.44
5 0.46 0.61 0.54 0.65 5 0.99 1.24 1.29 1.45
4 0.20 0.38 0.35 0.53 4 0.77 1.05 1.23 1.29
3 0.10 0.34 0.26 0.37 3 0.57 0.86 0.95 1.11
2 0.00 0.30 0.27 0.10 2 0.48 0.79 0.91 0.76
1 0.00 0.00 0.00 0.00 1 0.64 0.41 0.60 0.67

a,h b,g c,f d,e a,h b,g c,f d,e

Bishop Rook
8 0.25 0.19 0.21 0.15 8 1.01 0.99 1.05 0.86
7 0.17 0.39 0.31 0.25 7 1.11 1.13 1.10 1.03
6 0.30 0.42 0.55 0.43 6 0.92 0.91 0.92 0.88
5 0.30 0.43 0.52 0.50 5 0.66 0.60 0.88 0.81
4 0.21 0.26 0.47 0.53 4 0.40 0.61 0.66 0.76
3 0.13 0.36 0.40 0.31 3 0.13 0.46 0.50 0.60
2 0.23 0.28 0.26 0.26 2 0.00 0.36 0.56 0.60
1 0.08 0.06 0.00 0.08 1 0.09 0.13 0.36 0.55

a,h b,g c,f d,e a,h b,g c,f d,e

Queen
8 0.27 0.55 0.78 0.57
7 0.41 0.70 1.11 0.73
6 0.71 1.12 1.15 1.10
5 0.45 0.31 0.89 0.74
4 0.20 0.48 0.50 0.55
3 0.21 0.28 0.30 0.40
2 0.14 0.29 0.32 0.30
1 0.29 0.00 0.04 0.19

a,h b,g c,f d,e

Table D.3: Half-board piece-square values.
Table D.3 shows the piece-square values learnt by the half-board runs, and used to
create Figures 7.6 to 7.10. Table D.4 shows the full-board values learnt for queens
and used in Figure 7.11. All values are presented from White’s point of view.

Queen (full-board)
8 0.14 0.55 0.55 0.38 0.43 0.55 0.51 0.31
7 0.31 0.58 0.64 0.49 0.48 1.24 0.85 0.47
6 0.33 0.50 0.94 0.88 0.92 0.99 1.13 0.56
5 0.28 0.26 0.56 0.63 0.80 0.89 0.39 0.53
4 0.15 0.38 0.49 0.36 0.53 0.49 0.45 0.20
3 0.18 0.30 0.34 0.32 0.31 0.22 0.38 0.18
2 0.14 0.24 0.29 0.14 0.20 0.29 0.20 0.27
1 0.18 0.00 0.04 0.19 0.09 0.11 0.17 0.23

a b c d e f g h

Table D.4: Full-board piece-square values for queens.

Appendix E

109

APPENDIX E: RANDOM EVALUATIONS IN CHESS

This Appendix is a lightly edited version of a co-authored paper which appeared in
the International Computer Chess Association Journal (vol. 17, no 1, 1994). It is
included here because although it does not form part of the main results presented in
this thesis, it is relevant to the discussion of minimax in Chapter 3, and influenced and
informed the experiments presented in Chapter 7. Subsequent to the publication of
the paper, Levene and Fenner (1995) presented a combinatorial analysis of minimax
using random evaluations, based on our experiments, that supported our results.

E.1 Introduction
This Appendix reports on experiments using random numbers as ‘evaluations’ in
chess. Although this results in random play with a depth-1 search, it is found that
strength of play rises rapidly with increasing depth of lookahead. This counter-
intuitive result and its implications for game-playing are discussed.
On first encounter it is surprising to most people that random ‘evaluations’ produce
anything better than random play when used in a minimax lookahead search. The
natural assumption is that lookahead on pure random numbers will result in a random
choice at the root.
This is, of course, a theoretical investigation, and ‘strength’ of play is used in a purely
relative sense. Lookahead on random numbers produces extremely weak play
compared with lookahead using even very simple chess-specific evaluations. There is
no expectation that random numbers can do as well as chess-specific evaluations.
Nevertheless, it is an intellectually interesting observation that lookahead on random
evaluations produces better-than-random play, and the matter is perhaps useful in
illuminating some of the fundamental principles of minimax search. It is possible to
imagine circumstances in which the effect might have implications for practical work
in game playing and these are discussed at the end.

E.2 The First Experiment
Imagine two competing chess programs: one makes a list of all legal moves and then
chooses a move at random. Call this strategy root-random. The second program
performs a full-width minimax search down to a fixed depth d to select its move. The
‘evaluation’ function used to score the nodes at depth d is entirely random. Hence the
move chosen at the root is determined from the backed-up random values from the
nodes at depth d. Call this strategy lookahead-random. Neither of these programs
utilises any chess-specific knowledge other than the rules of the game, which define
the game tree.
One might intuitively expect these two programs to have equivalent performance, e.g.
if played against each other over a large number of games they would each score
50%. Contrary to intuition, lookahead-random decisively out-performs root-random,
even at very low search depths.
However, there is a relatively obvious mechanism, of no interest to the present
research, by which lookahead-random, as described above, might outperform root-
random. Notably, the lookahead program will have a significant advantage when
game-terminal nodes lie within the lookahead. The lookahead program sees imminent

Appendix E

110

game terminations and root-random does not. If the game wanders into a position
with a mate-in-2 available, the root-random program has no reason to select that
move, whereas a 3-ply lookahead program (assuming game-terminal positions are
recognised and scored using the rules of the game) will select it. Similarly a 5-ply
lookahead will see and select mates up to mate-in-3.
In order to eliminate this advantage of lookahead-random over root-random, the
experiments described here perform a slightly different comparison. Instead of ‘root-
random’ as described above, a program called lookahead-zero is used. Lookahead-
zero performs a lookahead search to the same depth d as lookahead-random, but
lookahead-zero uses a constant, zero, as its evaluation at all non-terminal nodes.
Lookahead-zero usually finds all top-level moves have the same score - zero. It
makes its choice by tie-breaking with a single random number applied at the root
only. Thus it usually behaves like root-random, except that when game-terminal
nodes are encountered, the values are backed up and used to give lookahead-zero the
same capability to play and avoid imminent mates as lookahead-random has.

E.2.1 Results of the first experiment
Figure E.1 shows the results of the first experiment, pitting lookahead-random (LR)
against lookahead-zero (LZ) at depths from 1 to 5. The results are decisive.
Lookahead on random numbers improves play substantially. At 1 ply, the two
programs are equivalent, and the results show 50-50 scores. By 5 ply, all games are
won by the side using random numbers, none by lookahead-zero, not even a single
draw!

40%50%60%70%80%90%100%12345Depth (ply)Score

Figure E.1: Percentage scores for lookahead-random (LR) playing against lookahead-zero (LZ).

E.3 Two Additional Experiments
The concept of random evaluations can also be applied to evaluation components
rather than the whole evaluation. If we have a existing chess-specific evaluation -
material, for example, then we can combine it with a random evaluation, weighted to
be less significant than any change in the chess-specific term. Thus, for instance, we
could construct the combined evaluation <MB,Rand> = 1000*MB + rand(1000),
where MB stands for material balance and rand(N) means a random number in the
range 0..(N-1). We could then look to see if <MB,Rand> performs any better than

Appendix E

111

<MB,Zero> . (The constant 1000 is for illustration: the principle is independent of
the weight chosen.)
This experiment is similar in principle to the comparison between lookahead-random
and lookahead-zero. In fact it is exactly the same mechanism applied within a
different tree. This may be seen by considering the subtree of the game tree in which
all branches have the same backed-up MB value. Within this (perhaps narrow)
subtree, all paths are equivalent as far as MB is concerned. Using MB alone, with a
single application of random at the root to tie-break, is the equivalent of lookahead-
zero within the subtree. Using <MB,Rand> is the equivalent of lookahead-rand,
within its subtree. Thus we would expect the same effect to occur, although the
reduction in effective branching factor, and other differences due to exploring
different regions of the tree, might affect the strength of the effect.

40%50%60%70%80%90%100%12345Depth (ply)ScoreLR vs. LZCR vs. CZMR vs. MZ

Figure E.2: Percentage scores for LR v LZ, CR v CZ, and MR v MZ.
We performed two such additional experiments, using <MB, Rand> and <Ctree,
Rand>. <Ctree, Rand> is also based on material balance, but quiesces material by
exploring the capture tree, in order to obtain the chess-specific part of the evaluation.
The experiments showed that the effect was nearly as strong as for random versus
zero without a chess-specific component. Figure E2 shows the results. CR stands for
Ctree Random, CZ for Ctree Zero, MR for Material-balance Random and MZ for
Material-balance Zero.

E.4 Further Details of the Experiments
Before discussing the results, we give some more detail of the experimental
implementation, in order to answer some questions that might be raised.

E.4.1 Handling of the game-terminal positions
The handling of game-terminal positions is critical to ensuring fair comparison
between the different lookahead algorithms.
Figure E.3 is intended to clarify the operation of, and differences between, the
programs we have called root-random, lookahead-random and lookahead-zero.
Root-random and lookahead-random differ in their behaviour at search-depth 1.
Root-random, defined as merely choosing randomly from the move list, would not
notice mate-in-1, and might not choose it. However, all versions of the lookahead
programs are defined to detect end-of-game-tree nodes, stop the search at that point,

Appendix E

112

and use the value defined by the rules of the game. Thus lookahead-random-to-
depth-1 will play mates-in-1 if they occur, because the checkmate position that
results is an end-of-game position, as defined by the rules of chess, and valued
appropriately. The idea of these definitions is to ensure that the behaviour of root-
random is obtained in the absence of game termination, and simultaneously to ensure
the lookahead programs are defined in a consistent manner to react to end-of-game
nodes within the horizon.

Appendix E

113

Root-RandomNo evaluations – each of these moves is equally likely to be selected

Lookahead-Random+

•

+23-19+42(largest backed-up value chosen)+1+5-44+22+12-3+51+6-2+42-3-77(Random Evaluations)+

•

+

•

(checkmate)

Lookahead-Zero+

•

000(random choice among the zerosunless checkmate is in the tree)000000000000(Zero Evaluations)+

•

+

•

(checkmate)

Figure E3: Schematics: Root-Random, Lookahead-Random, and Lookahead-Zero.
The bold line is the branch selected.

E.4.2 Draws by repetition
One small decision that had to made was how to deal with the question of draws by
repetition and draws under the 50 move rule. We decided at an early stage to ignore
both these possibilities and allow games to continue. In human chess, the third
repetition of a position or the 50th move under the 50-move rule does not
automatically result in a draw, but merely enables either player to claim a draw

Appendix E

114

should they so desire. Both these rules are designed to stop a human player from
trying to wear out an opponent by playing on in a hopelessly drawn position.
Computer players do not tire, and the handling of these draws is not a critical factor in
the random-evaluation experiments. Hence we simplified the experiment by
discarding the 3-fold repetition and 50-move draw rules.

E.4.3 Length of games
A limit had to be set on the length of games, otherwise some of them might continue
for ever. We decided to stop unfinished games after 200 moves, and at that time
award the game to whichever side had a lead in material. In practice 200 moves was
usually ample for a game to reach its conclusion and few games reached the 200-
move limit.

Appendix E

115

E.5 Numerical Results
The following Tables present the experimental results in fuller detail.

LR vs. LZ No. Games LR wins LZ wins Draws LR%
Depth 1 1000 222 239 539 49.2%
Depth 2 1000 389 288 323 55.1%
Depth 3 1000 331 106 563 61.3%
Depth 4 1000 953 32 15 96.1%
Depth 5 200 200 0 0 100%

Table E.1: Comparison of Lookahead Random (LR) andLookahead Zero (LZ) at various depths.

CR vs. CZ No. Games CR wins CZ wins Draws CR%
Depth 1 1000 347 356 297 49.6
Depth 2 1000 591 384 25 60.4%
Depth 3 1000 829 120 51 85.5%
Depth 4 1000 794 168 38 81.3%
Depth 5 200 192 4 4 97.0%

Table E.2: Comparison of Ctree Random (CR) and Ctree Zero (CZ) at various depths.

MR vs. MZ No. Games MR wins MZ wins Draws MR%
Depth 1 1000 67 61 872 50.3%
Depth 2 1000 560 439 1 56.1%
Depth 3 1000 536 422 42 55.7%
Depth 4 1000 808 164 28 82.2%
Depth 5 600 373 209 18 63.7%

Table E.3: Comparison of Material-balance Random (MR) and Material-balance Zero (MZ) at
various depths.

Tables E.1 to E.3 show the results of the three experiment classes. There are 6
different types of result that we recognise:
(a) White Wins White checkmated black.
(b) Black Wins Black checkmated white.
(c) Draw Draw by stalemate, or 4 cases of insufficient material

(K-K, KN-K, KB-K, KNN-K).
(d) White wins (at 200) The game reached 200 moves, white was ahead.
(e) Black wins (at 200) The game reached 200 moves, black was ahead.
(f) Draw (at 200) The game reached 200 moves, material was level.

We ran 1000 games for each class at depths 1 to 4, and 200 at depth 5. The games
were divided with competing algorithms having an equal share of playing the white
pieces - though at this low level of chess being white gives very little advantage, if
any.

E.6 Interpretation of the Random Evaluation Results
As can been seen from Figure E.1, the algorithms using Random positional evaluation
functions in their search perform significantly better than their Zero equivalents, and
this advantage increases at greater depths. As expected, at depth 1, Random and Zero
perform equally well (at depth 1 the algorithms are equivalent).
Overall, in all three experiments the results show strong advantage to lookahead on
random numbers compared with the root-level-only use of random numbers. It could
be argued that scoring games with a material advantage at 200 moves as a win for the
side with the material advantage is unsatisfactory, and might have overstated the

Appendix E

116

advantage. We counter by noting that this scoring is occurs rarely and is of marginal
impact when invoked. Less than 5% of the games at depth 2 and above reached 200
moves. (Depth-1 is excluded because the games are random on both sides and no bias
is being measured). In most of the games reaching 200 moves the material advantage
was 5 pawns or more. Changes in the result categories for the remainder are very
unlikely to affect the conclusions presented here.
The graphs also show clearly visible swings from ply to ply. The most extreme occur
in MB-Random from depth 4 to 5, counter to the overall trend. Fluctuation of
behaviour with the parity of ply (odd/even) is a familiar phenomenon in minimax
searches to fixed depths. It is probably caused by evaluations being biased either
towards or against the player to move. The direction of bias and its magnitude depend
on the evaluation function and characteristics of the game.
The large swings in MB-Random are undoubtedly associated with the large swings
that occur in material score when conducting fixed-depth searches. (This is the reason
that quiescence searches are employed in chess programs). Depth-6 results can be
expected to follow the pattern set by the depth-3 to depth-4 transition – i.e. a large
increase in strength for lookahead-random (LR in Table E.1).
Supplementary evidence that systematic parity-of-ply fluctuation is at work can be
derived from Figure E.4, the graph of game length averaged over all games in all
three experiments. It can be seen that games played with an odd search depth last on
average longer than those with an even search depth. This probably has to do with the
question of which side is to play at the search horizon. This determines whether it is
more likely that forced play will be seen first by the side that can play it, or by the
side that can avoid it.

0

50

100

150

200

1 2 3 4 5
Depth (ply)

M
ov

es

LR vs. LZ

CR vs. CZ

MR vs. MZ

Figure E.4: Average lengths of games, by experiment.

E.7 Why Does the Effect Occur?
Once the effect is pointed out, it does not take long to arrive at the conclusion that it
arises from a natural correlation between high branching factor in the game tree and
higher numbers of winning moves (i.e. high branching factor in the tree of winning
moves) at winning positions. In other words, mobility (in the sense of having many
moves available) is associated with better positions. This would be typical of most
games, although it would doubtless be possible to find atypical games in which this
was not the case. The branching factor influences the random value obtained from

Appendix E

117

lookahead: the more branches there are, the more likely it is that a high random value
will be found.
One might suggest that random numbers are merely an inefficient way to estimate
mobility. This is true in one sense, but deep lookahead on random evaluations does
more subtle things where the effect is not easily quantified. For instance, it responds
to available mobility at all depths – alternative branches from positions near the root
of the search contribute on an equal basis with alternatives occurring deeper in the
tree. In contrast, a program with minimax lookahead using an evaluation function
explicitly counting branches to obtain a value would only respond to choices available
at the horizon.

E.8 Possible Applications of the Effect
It is unlikely that random numbers have much practical use in game-playing.
However, there are some places where either the effect itself might be useful, or
knowledge of the existences of the effect might be useful in the evaluation of other
techniques.
A possible application is in attempts to build very-general learning mechanisms for
game-playing. The random-evaluation experiments show that learning can start
without domain knowledge of any kind. It was always clear that biological evolution
somehow achieved this, but it is not always obvious how to start from zero knowledge
in AI programs.
The new paradigm would be: “when presented with a totally new game domain, start
with random evaluations with a N-ply search, use temporal-difference learning to
develop new functions that mimic the backed-up random values, replace the
evaluation function, and repeat”.
It is possible that this strategy will soon have an environment in which it can be
tested. There have been recent proposals for computer game-playing tournaments in
which the rules of newly-invented games are given for each contest. Such
tournaments will require non-game-specific mechanisms, and will have to start from
zero domain knowledge each time (Pell 1992).
A minor way that random-evaluation technique could have a practical application,
even in high-performance game-playing programs, would be the introduction of new
evaluation terms against a background of random evaluation instead of zero.
What this means is: suppose a current evaluation function consisting of just a
material term, M, and pawn-structure term, P, was in use. The evaluation at each leaf
node would be <M + P>. With the superiority of random values over constant values
in mind, a better evaluation will be <M + P + random>, with a suitably small weight
for random to ensure that changes in M+P always dominate. So the existing terms
plus random should be the baseline for introducing new terms. A proposed new
term, open-file-control (OFC) say, should be compared with random by testing the
function <M + P + OFC + smaller_random> against the existing function <M + P +
random>. (The process of testing is complicated in practice by the need to adjust
weight vectors to find the best combination for the newly-augmented set of terms, but
that is ignored here.)
If the enlarged evaluation is superior to the simpler one, then it should be retained,
and further evaluation terms considered. At each stage each putative evaluation term
would, in effect, be compared with random, which differs from present-style testing,
that effectively compares with zero. Evaluation terms of marginal value might fail to

Appendix E

118

justify their existence against random. This would provide a new criterion of
‘minimum utility’ for evaluation terms.

E.9 Discussion
These results demonstrate a counter-intuitive effect, namely that a chess program with
no chess-specific knowledge whatsoever, using random numbers as evaluation
functions, can play purposefully, and improve its performance with increasing
lookahead. It brings to mind the old saying sometimes applied to human chess: “any
plan is better than no plan”.
The results also show that combining a random term with existing evaluation terms
can also be beneficial. Although they may be beneficial, random evaluations are poor
evaluations - in chess they are vastly inferior to typical evaluation functions in current
programs. However, it is suggested that the strong effects observed in some of the
experiments could have implications for game-playing programs, either because they
permit zero-knowledge approaches to game playing or because they provide a
criterion for minimum significant utility for additional terms in a proposed evaluation
function.

