1,329 research outputs found

    An Efficient Implementation of the Head-Corner Parser

    Get PDF
    This paper describes an efficient and robust implementation of a bi-directional, head-driven parser for constraint-based grammars. This parser is developed for the OVIS system: a Dutch spoken dialogue system in which information about public transport can be obtained by telephone. After a review of the motivation for head-driven parsing strategies, and head-corner parsing in particular, a non-deterministic version of the head-corner parser is presented. A memoization technique is applied to obtain a fast parser. A goal-weakening technique is introduced which greatly improves average case efficiency, both in terms of speed and space requirements. I argue in favor of such a memoization strategy with goal-weakening in comparison with ordinary chart-parsers because such a strategy can be applied selectively and therefore enormously reduces the space requirements of the parser, while no practical loss in time-efficiency is observed. On the contrary, experiments are described in which head-corner and left-corner parsers implemented with selective memoization and goal weakening outperform `standard' chart parsers. The experiments include the grammar of the OVIS system and the Alvey NL Tools grammar. Head-corner parsing is a mix of bottom-up and top-down processing. Certain approaches towards robust parsing require purely bottom-up processing. Therefore, it seems that head-corner parsing is unsuitable for such robust parsing techniques. However, it is shown how underspecification (which arises very naturally in a logic programming environment) can be used in the head-corner parser to allow such robust parsing techniques. A particular robust parsing model is described which is implemented in OVIS.Comment: 31 pages, uses cl.st

    Efficient Groundness Analysis in Prolog

    Get PDF
    Boolean functions can be used to express the groundness of, and trace grounding dependencies between, program variables in (constraint) logic programs. In this paper, a variety of issues pertaining to the efficient Prolog implementation of groundness analysis are investigated, focusing on the domain of definite Boolean functions, Def. The systematic design of the representation of an abstract domain is discussed in relation to its impact on the algorithmic complexity of the domain operations; the most frequently called operations should be the most lightweight. This methodology is applied to Def, resulting in a new representation, together with new algorithms for its domain operations utilising previously unexploited properties of Def -- for instance, quadratic-time entailment checking. The iteration strategy driving the analysis is also discussed and a simple, but very effective, optimisation of induced magic is described. The analysis can be implemented straightforwardly in Prolog and the use of a non-ground representation results in an efficient, scalable tool which does not require widening to be invoked, even on the largest benchmarks. An extensive experimental evaluation is givenComment: 31 pages To appear in Theory and Practice of Logic Programmin

    Principles and Implementation of Deductive Parsing

    Get PDF
    We present a system for generating parsers based directly on the metaphor of parsing as deduction. Parsing algorithms can be represented directly as deduction systems, and a single deduction engine can interpret such deduction systems so as to implement the corresponding parser. The method generalizes easily to parsers for augmented phrase structure formalisms, such as definite-clause grammars and other logic grammar formalisms, and has been used for rapid prototyping of parsing algorithms for a variety of formalisms including variants of tree-adjoining grammars, categorial grammars, and lexicalized context-free grammars.Comment: 69 pages, includes full Prolog cod

    Robust Grammatical Analysis for Spoken Dialogue Systems

    Full text link
    We argue that grammatical analysis is a viable alternative to concept spotting for processing spoken input in a practical spoken dialogue system. We discuss the structure of the grammar, and a model for robust parsing which combines linguistic sources of information and statistical sources of information. We discuss test results suggesting that grammatical processing allows fast and accurate processing of spoken input.Comment: Accepted for JNL
    • …
    corecore