64,301 research outputs found

    Nearness to Local Subspace Algorithm for Subspace and Motion Segmentation

    Get PDF
    There is a growing interest in computer science, engineering, and mathematics for modeling signals in terms of union of subspaces and manifolds. Subspace segmentation and clustering of high dimensional data drawn from a union of subspaces are especially important with many practical applications in computer vision, image and signal processing, communications, and information theory. This paper presents a clustering algorithm for high dimensional data that comes from a union of lower dimensional subspaces of equal and known dimensions. Such cases occur in many data clustering problems, such as motion segmentation and face recognition. The algorithm is reliable in the presence of noise, and applied to the Hopkins 155 Dataset, it generates the best results to date for motion segmentation. The two motion, three motion, and overall segmentation rates for the video sequences are 99.43%, 98.69%, and 99.24%, respectively

    Spannotation: Enhancing Semantic Segmentation for Autonomous Navigation with Efficient Image Annotation

    Full text link
    Spannotation is an open source user-friendly tool developed for image annotation for semantic segmentation specifically in autonomous navigation tasks. This study provides an evaluation of Spannotation, demonstrating its effectiveness in generating accurate segmentation masks for various environments like agricultural crop rows, off-road terrains and urban roads. Unlike other popular annotation tools that requires about 40 seconds to annotate an image for semantic segmentation in a typical navigation task, Spannotation achieves similar result in about 6.03 seconds. The tools utility was validated through the utilization of its generated masks to train a U-Net model which achieved a validation accuracy of 98.27% and mean Intersection Over Union (mIOU) of 96.66%. The accessibility, simple annotation process and no-cost features have all contributed to the adoption of Spannotation evident from its download count of 2098 (as of February 25, 2024) since its launch. Future enhancements of Spannotation aim to broaden its application to complex navigation scenarios and incorporate additional automation functionalities. Given its increasing popularity and promising potential, Spannotation stands as a valuable resource in autonomous navigation and semantic segmentation. For detailed information and access to Spannotation, readers are encouraged to visit the project's GitHub repository at https://github.com/sof-danny/spannotationComment: 8 pages, 6 figures, 1 table, 1 pseudo code (algorithm), 55 reference

    Improved Approximation Algorithms for Segment Minimization in Intensity Modulated Radiation Therapy

    Full text link
    he segment minimization problem consists of finding the smallest set of integer matrices that sum to a given intensity matrix, such that each summand has only one non-zero value, and the non-zeroes in each row are consecutive. This has direct applications in intensity-modulated radiation therapy, an effective form of cancer treatment. We develop three approximation algorithms for matrices with arbitrarily many rows. Our first two algorithms improve the approximation factor from the previous best of 1+log2h1+\log_2 h to (roughly) 3/2(1+log3h)3/2 \cdot (1+\log_3 h) and 11/6(1+log4h)11/6\cdot(1+\log_4{h}), respectively, where hh is the largest entry in the intensity matrix. We illustrate the limitations of the specific approach used to obtain these two algorithms by proving a lower bound of (2b2)blogbh+1b\frac{(2b-2)}{b}\cdot\log_b{h} + \frac{1}{b} on the approximation guarantee. Our third algorithm improves the approximation factor from 2(logD+1)2 \cdot (\log D+1) to 24/13(logD+1)24/13 \cdot (\log D+1), where DD is (roughly) the largest difference between consecutive elements of a row of the intensity matrix. Finally, experimentation with these algorithms shows that they perform well with respect to the optimum and outperform other approximation algorithms on 77% of the 122 test cases we consider, which include both real world and synthetic data.Comment: 18 page

    Self-Configuring and Evolving Fuzzy Image Thresholding

    Full text link
    Every segmentation algorithm has parameters that need to be adjusted in order to achieve good results. Evolving fuzzy systems for adjustment of segmentation parameters have been proposed recently (Evolving fuzzy image segmentation -- EFIS [1]. However, similar to any other algorithm, EFIS too suffers from a few limitations when used in practice. As a major drawback, EFIS depends on detection of the object of interest for feature calculation, a task that is highly application-dependent. In this paper, a new version of EFIS is proposed to overcome these limitations. The new EFIS, called self-configuring EFIS (SC-EFIS), uses available training data to auto-configure the parameters that are fixed in EFIS. As well, the proposed SC-EFIS relies on a feature selection process that does not require the detection of a region of interest (ROI).Comment: To appear in proceedings of The 14th International Conference on Machine Learning and Applications (IEEE ICMLA 2015), Miami, Florida, USA, 201

    Learning Segmentation Masks with the Independence Prior

    Full text link
    An instance with a bad mask might make a composite image that uses it look fake. This encourages us to learn segmentation by generating realistic composite images. To achieve this, we propose a novel framework that exploits a new proposed prior called the independence prior based on Generative Adversarial Networks (GANs). The generator produces an image with multiple category-specific instance providers, a layout module and a composition module. Firstly, each provider independently outputs a category-specific instance image with a soft mask. Then the provided instances' poses are corrected by the layout module. Lastly, the composition module combines these instances into a final image. Training with adversarial loss and penalty for mask area, each provider learns a mask that is as small as possible but enough to cover a complete category-specific instance. Weakly supervised semantic segmentation methods widely use grouping cues modeling the association between image parts, which are either artificially designed or learned with costly segmentation labels or only modeled on local pairs. Unlike them, our method automatically models the dependence between any parts and learns instance segmentation. We apply our framework in two cases: (1) Foreground segmentation on category-specific images with box-level annotation. (2) Unsupervised learning of instance appearances and masks with only one image of homogeneous object cluster (HOC). We get appealing results in both tasks, which shows the independence prior is useful for instance segmentation and it is possible to unsupervisedly learn instance masks with only one image.Comment: 7+5 pages, 13 figures, Accepted to AAAI 201

    Deep Neural Network and Data Augmentation Methodology for off-axis iris segmentation in wearable headsets

    Full text link
    A data augmentation methodology is presented and applied to generate a large dataset of off-axis iris regions and train a low-complexity deep neural network. Although of low complexity the resulting network achieves a high level of accuracy in iris region segmentation for challenging off-axis eye-patches. Interestingly, this network is also shown to achieve high levels of performance for regular, frontal, segmentation of iris regions, comparing favorably with state-of-the-art techniques of significantly higher complexity. Due to its lower complexity, this network is well suited for deployment in embedded applications such as augmented and mixed reality headsets
    corecore