3,542 research outputs found

    QCompere @ REPERE 2013

    No full text
    International audienceWe describe QCompere consortium submissions to the REPERE 2013 evaluation campaign. The REPERE challenge aims at gathering four communities (face recognition, speaker identification, optical character recognition and named entity detection) towards the same goal: multimodal person recognition in TV broadcast. First, four mono-modal components are introduced (one for each foregoing community) constituting the elementary building blocks of our various submissions. Then, depending on the target modality (speaker or face recognition) and on the task (supervised or unsupervised recognition), four different fusion techniques are introduced: they can be summarized as propagation-, classifier-, rule- or graph-based approaches. Finally, their performance is evaluated on REPERE 2013 test set and their advantages and limitations are discussed

    TRECVID 2004 - an overview

    Get PDF

    LiDAR-Camera Panoptic Segmentation via Geometry-Consistent and Semantic-Aware Alignment

    Full text link
    3D panoptic segmentation is a challenging perception task that requires both semantic segmentation and instance segmentation. In this task, we notice that images could provide rich texture, color, and discriminative information, which can complement LiDAR data for evident performance improvement, but their fusion remains a challenging problem. To this end, we propose LCPS, the first LiDAR-Camera Panoptic Segmentation network. In our approach, we conduct LiDAR-Camera fusion in three stages: 1) an Asynchronous Compensation Pixel Alignment (ACPA) module that calibrates the coordinate misalignment caused by asynchronous problems between sensors; 2) a Semantic-Aware Region Alignment (SARA) module that extends the one-to-one point-pixel mapping to one-to-many semantic relations; 3) a Point-to-Voxel feature Propagation (PVP) module that integrates both geometric and semantic fusion information for the entire point cloud. Our fusion strategy improves about 6.9% PQ performance over the LiDAR-only baseline on NuScenes dataset. Extensive quantitative and qualitative experiments further demonstrate the effectiveness of our novel framework. The code will be released at https://github.com/zhangzw12319/lcps.git.Comment: Accepted as ICCV 2023 pape

    Unsupervised Speaker Identification in TV Broadcast Based on Written Names

    No full text
    International audienceIdentifying speakers in TV broadcast in an unsuper- vised way (i.e. without biometric models) is a solution for avoiding costly annotations. Existing methods usually use pronounced names, as a source of names, for identifying speech clusters provided by a diarization step but this source is too imprecise for having sufficient confidence. To overcome this issue, another source of names can be used: the names written in a title block in the image track. We first compared these two sources of names on their abilities to provide the name of the speakers in TV broadcast. This study shows that it is more interesting to use written names for their high precision for identifying the current speaker. We also propose two approaches for finding speaker identity based only on names written in the image track. With the "late naming" approach, we propose different propagations of written names onto clusters. Our second proposition, "Early naming", modifies the speaker diarization module (agglomerative clustering) by adding constraints preventing two clusters with different associated written names to be merged together. These methods were tested on the REPERE corpus phase 1, containing 3 hours of annotated videos. Our best "late naming" system reaches an F-measure of 73.1%. "early naming" improves over this result both in terms of identification error rate and of stability of the clustering stopping criterion. By comparison, a mono-modal, supervised speaker identification system with 535 speaker models trained on matching development data and additional TV and radio data only provided a 57.2% F-measure

    An Overview of Multimodal Techniques for the Characterization of Sport Programmes

    Get PDF
    The problem of content characterization of sports videos is of great interest because sports video appeals to large audiences and its efficient distribution over various networks should contribute to widespread usage of multimedia services. In this paper we analyze several techniques proposed in literature for content characterization of sports videos. We focus this analysis on the typology of the signal (audio, video, text captions, ...) from which the low-level features are extracted. First we consider the techniques based on visual information, then the methods based on audio information, and finally the algorithms based on audio-visual cues, used in a multi-modal fashion. This analysis shows that each type of signal carries some peculiar information, and the multi-modal approach can fully exploit the multimedia information associated to the sports video. Moreover, we observe that the characterization is performed either considering what happens in a specific time segment, observing therefore the features in a "static" way, or trying to capture their "dynamic" evolution in time. The effectiveness of each approach depends mainly on the kind of sports it relates to, and the type of highlights we are focusing on
    • 

    corecore