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1Center for Speech Technology Research, School of Informatics
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ABSTRACT

A broadcast news stream consists of a number of stories and it

is an important task to find the boundaries of stories automat-

ically in news analysis. We capture the topic structure using

a hierarchical model based on a Recurrent Neural Network

(RNN) sentence modeling layer and a bidirectional Long

Short-Term Memory (LSTM) topic modeling layer, with a

fusion of acoustic and lexical features. Both features are

accumulated with RNNs and trained jointly within the model

to be fused at the sentence level. We conduct experiments on

the topic detection and tracking (TDT4) task comparing com-

binations of two modalities trained with limited amount of

parallel data. Further we utilize additional sufficient text data

for training to polish our model. Experimental results indicate

that the hierarchical RNN topic modeling takes advantage of

the fusion scheme, especially with additional text training

data, with a higher F1-measure compared to conventional

state-of-the-art methods.

Index Terms— spoken document processing, recurrent

neural network, topic modeling, story segmentation, multi-

modal features

1. INTRODUCTION

The aim of story segmentation is to divide a sequential stream

of text or audio into stories or topics. It is useful for many

subsequent tasks such as summarization, topic detection, and

information retrieval, and plays a crucial role for analyzing

media streams. In this paper we are concerned with the seg-

mentation of broadcast media using a combination of acoustic

and lexical features, based on a hierarchical model in which

each story is assumed to consist of several sentences in a co-

herent order, and each sentence consists of words which are

assumed to be relevant to the story.

Story segmentation has been studied for decades, through

various media types such as text [1, 2, 3, 4, 5, 6, 7], audio

[8, 9, 10], and video [11, 12, 13]. The studies using text

were pioneered by the TextTiling approach [2], where adja-

cent sentence blocks were compared using a similarity mea-

sure based on bag-of-words (BOW) features, such as term

frequency - inverted document frequency (tf-idf). Later stud-

ies indicated that globally optimized segmentation methods –

such as dynamic programming (DP) and the hidden Markov

model (HMM) [3, 4, 14] – can improve the performance, and

usage of probabilistic topic modeling such as probabilistic

latent semantic analysis (pLSA) [15, 7] and latent Dirichlet

allocation (LDA) [16, 17] can further increase the accuracy.

Analogous to approaches used in automatic speech recogni-

tion (ASR), deep neural networks have been combined with

HMMs (DNN-HMM) and successfully applied to story seg-

mentation, using BOW features of text data, with significant

improvement in performance [18]. DNNs have been also ap-

plied to similar applications including dialogue session seg-

mentation [19] and sentence boundary detection or punctua-

tion estimation [20, 21]. On the other hand, the studies us-

ing acoustic features include Shriberg et al. [8] where pause,

phone/rhyme duration, F0 contours and its quality indicators

are used, and Rosenberg et al. [10] where statistics of F0

and speaking rate are used. Similar features are also utilized

with vision features which are tailored for TRECVID project

[12, 13].

Recurrent neural networks (RNNs) have made a great im-

pact on language modeling. Following the feed-forward neu-

ral prediction language model [22], Mikolov et al. proposed

using an RNN for language modelling, thus removing the

limitation of finite context for predicting next words [23].

Language modelling using long short-term memory (LSTM)

RNNs was proposed [24], and currently represents the state-

of-the-art in language modelling [25]. To incorporate ad-

ditional context, the paragraph embedding vector was intro-

duced as an auxiliary input to an RNN language model [26,

27], and was found to improve the quality of modeling. This

model factorizes into a topic factor and a word distribution



for the topic, with the paragraph vector being trained to rep-

resent the topic. Hierarchical models have also been proposed

for topic/document modeling [28, 29], and Lin et al. [30] ex-

tended the paragraph vector language model using a hierar-

chical RNN. In this work a sentence-level RNN was used to

convey an unlimited history of sentences, and by using this

history vector in a similar way to a paragraph vector, each

word was predicted with a word-level RNN. We have previ-

ously proposed a hierarchical RNN model which is a reverse

form of Lin’s model, where each sentence is represented as a

sentence embedding vector with a word-level RNN layer and

overall story transition is modeled with bidirectional LSTM

layer, applying the model successfully to story segmentation

[31].

In this paper, we extend our hierarchical RNN model to

use a fusion of acoustic and lexical features, and apply it to

story segmentation. Acoustic features are accumulated into a

vector representation and concatenated at the sentence level

using a lexical sentence embedding computed with a word-

level RNN layer. The overall story transition is modeled with

a bidirectional LSTM layer using this fused representation,

and finally a feed-forward neural network layer predicts the

topic label of the input sentence, followed by an HMM de-

coder which predicts story boundaries. We also address the

realistic scenario in which news audio/text parallel training

data is limited, while additional text data is sufficiently avail-

able from other news sources. Our model is trained using the

parallel topic detection and tracking dataset (TDT4) and addi-

tional text from the TDT2 dataset. The model is evaluated on

TDT4 with human transcriptions and also on ASR transcrip-

tions, and compared to the state-of-the-art DNN-HMM story

segmentation method [18].

2. STORY SEGMENTATION WITH RECURRENT

NEURAL NETWORK

2.1. General Formulation of Story Segmentation

Broadcast news consists of various topics and the story seg-

mentation task is to find boundaries between the topics.

By considering topics as hidden states, the Hidden Markov

Model is widely used for this task [3, 18, 32]. We assume that

sentence boundaries are available, similar to [18], as many

studies regarding sentence segmentation and punctuation

estimation have been done [20, 21]. Given a sequence of sen-

tences s = [s1, ..., sJ ] and the parameter set θ, we optimize

to find the most probable topic label sequence ẑ, considering

all possible sequences of topic labels z = [z1, ..., zJ ].

ẑ = argmax
z

p(z|s; θ) (1)

Analogous to a DNN-HMM acoustic model, this opti-

mization problem can be solved with a combination of topic

Word-level

RNN layer

Sentence-level

BiLSTM layer

Feedforward

NN layer

posterior

HMM
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Fig. 1. Hierarchical recurrent neural network for story seg-

mentation.

posterior prediction, p(zj |sj), and transition probability mod-

eling, p(z), by applying Bayes’ rule:

ẑ = argmax
z

p(s|z; θ)p(z)/p(s)

= argmax
z

p(s|z; θ)p(z) (2)

p(sj |zj) =
p(zj |sj)

p(zj)
p(sj). (3)

p(s) and p(sj) do not depend to z and can be ignored. p(zj)

is considered as prior probability, and the topic posterior

p(zj |sj) can be estimated using the proposed hierarchical

RNN. The prior probability of the sequence p(z) is modelled

via HMM transition probabilities.

2.2. Hierarchical Recurrent Neural Network with Lexical

Features

Broadcast news has a hierarchical character, with a top level

sequence of stories, in which each story consists of multiple

sentences, and each sentence consists of words which are rel-

evant to the story. To capture this structure, we have proposed

a hierarchical RNN model combining a sentence embedding

RNN and a bidirectional LSTM story transition model [31],



depicted in Figure 1. In the first layer, the word-level sen-

tence embedding RNN, independently concentrates each sen-

tence into a sentence embedding vector. This is followed

by the second layer which models the transition of multiple

stories within a chunk, for instance a program unit, using a

sentence-level bidirectional RNN which considers a context

of both preceding and following sentences. The final feed-

forward layer estimates topic posterior probabilities which

may be used in an HMM to decode the topic sequence – as

in Equation (3) – thus obtaining the story boundaries.

We utilize a bypass technique [31] which allows the

model to use not only the outputs of the bidirectional LSTM

layer but also the output of the RNN sentence embedding

layer directly. Let the sentence embedding vector eL,j for

sentence j be defined as

eL,j =

Ij∑

i=1

λj,ihj,i (4)

where L indicates a lexical embedding, Ij is the total number

of words in the sentence j, λj,i are predefined weights, and

hj,i is the history vector of the word-level RNN given the i-th

word embedding vector wj,i as input. The weight parameters

λj,i can be all set to 0 except for last word which is set to

1 to filter out only the last history vector (cf. [33]). They

can be also set equally to 1/Ij so that the gradients spread

to every time step in order to avoid the problem of vanishing

or exploding gradients. In addition, let the output vectors of

both sentence-level forward and backward LSTM be hF,j and

hB,j . Then the posterior p(zj |sj) is calculated as following

with the last feed-forward neural network layer,

yj = σ(WFhF,j +WBhB,j +WreL,j + by) (5)

p(zj |sj) = g(Wpyj + bp) (6)

where σ is sigmoid function, g represents softmax function,

and matrices W∗ and bias vectors b∗ are trainable.

2.3. Fusion Scheme with Acoustic Features

2.3.1. Acoustic feature extraction

Acoustic prosody can convey additional information about

story boundaries. For instance, prosodic changes may coin-

cide with story change points, hence a variety of prosodic fea-

tures have been used to detect story boundaries [8, 10, 12, 13].

In this paper, we propose to utilize prosody features in ad-

dition to log-filterbank energy features. We use normalized

voicing intensity and pitch as the prosody features based on

the autocorrelation calculation used in YIN [34]. If t is the

frame number in sentence j then the normalized voicing in-

tensity vj,t and pitch lj,t are calculated as

vj,t = max
τ

τdj,t(τ)
τ∑

n=1

dj,t(n)

(7)

lj,t = argmax
τ

τdj,t(τ)
τ∑

n=1

dj,t(n)

(8)

where

dj,t(τ) =

W∑

n=1

(xj,n − xj,n+τ )
2, (9)

in which xj,n is an input signal and W is the analysis window

size. By concatenating these prosody features with filterbank

features, we obtain acoustic features aj,t.

2.3.2. Fusion with statistical features

Summary statistics of acoustic features are widely used for

speech segmentation [8, 10, 12, 13]. Hsu et al. reported that

pause duration and pitch jump were the dominant acous-

tic features in their maximum entropy multi-modal model

[12]. Therefore, following [13], we extract the mean, vari-

ance, minimum, and maximum of the pause durations, voiced

segments, and pitch from the acoustic features aj,t, from 1

second after the previous sentence and for the entire current

sentence. A pause is defined as a region which continuously

satisfies vj,t < δ where δ is typically set to 0.5 since vj,t has

a range of [0, 1], and vice versa for the voiced segments. We

also extract the pitch jump with respect to the previous sen-

tence. In addition, we also use the mean and variance of the

filterbank features and their delta coefficients. The extracted

statistical features are concatenated with lexical sentence em-

bedding as in Figure 2-(a). Ideally, the fusion model is trained

with parallel data of audio and text.

2.3.3. Fusion with sentence embedding

An acoustic embedding can also be computed from the acous-

tic features aj,t for sentence j using an RNN, similar to the

lexical embedding described in Section 2.2. The lexical and

acoustic embeddings may be fused (Fig. 2-(b)), and the accu-

mulated information passed to the upper bidirectional LSTM

layer. The RNN is trained jointly with the hierarchical model.

The acoustic embedding eA,j is calculated in a similar way to

(4), using the history vector h′

j,t of RNN with given acoustic

features aj,t, as

eA,j =

Tj∑

t=1

λ′

j,th
′

j,t (10)

where A represents an acoustic embedding, Tj is a total num-

ber of frames in sentence j and λ′

j,t are weight parameters.
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Fig. 2. Feature fusion in three different ways: (a) - Concatenation of acoustic feature statistics. (b) - Concatenation of acoustic

sentence representation using RNN. (c) - Concatenation of acoustic sentence gap representation using RNN.

2.3.4. Fusion with sentence gap embedding

Instead of embedding complete sentences, it is possible to

consider only the information around sentence boundaries.

Therefore we also propose an acoustic embedding based on

a fixed time window around the sentence boundaries, using

the final G frames of acoustic features in the current sentence

and the following G frames, which are fed into the acoustic

embedding RNN. We refer to this embedding as sentence gap

embedding, and it is calculated similar to (10):

eA,j =

Tj−1∑

t=Tj−1−G

λ′

j−1,th
′

j−1,t +

G∑

t=1

λ′

j,th
′

j,t (11)

This fusion is depicted in Figure 2-(c).

2.4. Training Procedure

The training was done by minimizing the cross-entropy

between the target probabilities and the output posterior

p(zj |sj) using gradient descent, with the target probabilities

provided according to predefined cluster labels. However, in

general, it is not easy to obtain data which has topic labels,

and therefore, the labels were estimated by unsupervised clus-

tering using CLUTO [35], similar to [18]. Based on a tf-idf

representation, topic segments were clustered by minimizing

the inter-cluster similarity and maximizing the intra-cluster

similarity, each sentence within a segment being labeled

according to the clusters.

To align the input lexical tokens and audio signals, the

acoustic features were extracted from the audio data using

a 10 ms frame rate, and we used ASR models to align the

acoustic features and lexical tokens obtained from a human

transcription. The sequence of acoustic features is divided

into sentences at the point where each sentence ends, i. e.,

any pause or sound after each sentence end is included in the

following sentence chunk.

Table 1. Dataset Specification.

TDT4 [37] TDT2 [38]

Dataset Text Audio Text Audio

(# of tokens) (minutes) (# of tokens) (minutes)

Training 364,218 5,345 7,004,119 –

Validation 39,738 618 1,013,940 –

Test 156,630 2,299 – –

In order to generalize the training, the broadcast program

units were broken into story segments, shuffled, and concate-

nated again into pseudo-programs of average program size. In

that manner we created as many possible combination of sto-

ries as possible. The word-level lexical RNNs and acoustic

RNNs were duplicated by the number of sentences in a pro-

gram unit and connected in parallel to a sentence-level LSTM.

The parameters were initialized with random values ranging

from −0.1 to 0.1 except bias vectors, which were set to 0,

and updated for every pseudo program unit. The gradients

for first RNN layer were clipped if their norm exceeded 0.5

to avoid the exploding gradients problem [36]. The learning

rate α was set to 1 at the beginning and changed to α/2 if

the loss for validation set increased. The training process was

terminated after 30–40 epochs.

3. EXPERIMENTS

3.1. Experimental Setup

We evaluated our hierarchical RNN on the Topic Detection

and Tracking (TDT4) task [37]. For testing, a randomly cho-

sen set of 78 programs out of the TDT4 data were used. All

words in the data were preprocessed by the Porter stemmer

and stop words were removed. The specification for testing

data is shown in “Test” row in Table 1.

The lexical word-level RNN, sentence-level bidirectional



Table 2. F1-measure comparison of combinations of features

using models trained with TDT4 parallel data.

Model F1-Measure

Lexical DNN [18] 0.711

Lexical HRNN [31] 0.689

Fusion HRNN (statistics) 0.742

Fusion HRNN (sentence embedding) 0.738

Fusion HRNN (sentence gap embedding) 0.724

Fusion DNN (statistics) 0.706

LSTM and feed-forward neural network all used 256 hidden

units, and the word embedding input vector was also trained

using 256 dimensions. For acoustic features, 40 log-filterbank

features were computed from 0–4000 Hz and prosodic fea-

tures were calculated using (7) and (8) with W = 280; the

acoustic RNN used 32 hidden units. For sentence gap embed-

ding, we applied the RNN to the final 1 second of the end of

each sentence and the following 1 second in the next sentence,

i.e., G = 100 in (11). The weight parameters λj,i and λ′

j,t for

both lexical and acoustic RNN sentence embedding were set

to the uniform values, 1/Ij and 1/Tj respectively, taking the

average of the history vectors. For each HMM state, the tran-

sition probability of staying in the same state was set to 0.8,

with the remaining transition probability evenly divided be-

tween the other states [18, 32].

Story boundaries were detected as change points of the

topic sequence decoded by the HMM, and evaluated using

the F1-measure1 comparing with the manual segment bound-

ary annotation. Our method was tested using 150 clusters

which was found to be optimal in our previous work [31].

We compared with the state-of-the-art method, DNN-HMM

story segmentation [18].

3.2. Evaluations on Acoustic and Lexical Fusion

First, we trained our model using only the TDT4 data, with

a training set of 180 programs and a test set of 20 programs.

Training and test data statistics are given in Table 1.

The results of the conventional DNN model and the pro-

posed hierarchical RNN model with only lexical features are

shown as Lexical DNN and Lexical HRNN in Table 2. Given

the limited amount of TDT4 data, we found that the simpler

DNN resulted in a higher F1 score on the test set. The fusion

HRNNs in Table 2 are the results of the three fusion models,

corresponding to Figure 2 (a,b,c). We observed improvements

in F1 score for all fusion methods using acoustic features, es-

pecially when using statistical features and sentence embed-

ding. We also applied fusion of the same acoustic statistics to

1The F1-measure was computed with a tolerance window of 50 words

according to the TDT2 standard [38].

Table 3. F1-measure comparison of combinations of features

using models trained with TDT4 parallel data and additional

TDT2 text data.

Model F1-Measure

Lexical DNN [18] 0.718

Lexical HRNN [31] 0.738

Fusion HRNN (statistics) 0.729

Fusion HRNN (sentence embedding) 0.755

Fusion HRNN (sentence gap embedding) 0.750

Fusion DNN (statistics) 0.726

the DNN model by concatenating the embedding vector with

its input BOW features. However, as shown in the bottom row

of Table 2, the DNN-based fusion resulted in a small reduc-

tion in F1 score.

3.3. Additional Text Training Data

We further evaluated on the same test data using a model

trained on a joint set of TDT4 data and TDT2 data [38]. The

TDT2 data was divided into 1469 training and 195 validation

programs (see Table 1). When training the models, the cor-

responding acoustic features were set to zero for the TDT2

data. The story segments were shuffled within each TDT4

or TDT2 dataset as in Section 2.4, so that any adjacent sto-

ries both have either acoustic features or zero values for the

parameter update.

The results are shown in Table 3. Using the additional

TDT2 training data, the purely lexical HRNN resulted in an

improved F1 score similar to that obtained with the fusion

systems trained on TDT4. Further improvements were ob-

served for the TDT4+TDT2 Fusion HRNNs, except the one

using statistical features. In this experiment, the fusion model

with the sentence embedding of acoustic features had the best

F1 score, despite most of the acoustic features for training

being set to 0.

3.4. Testing with ASR transcription

The experiments so far have used human transcriptions of the

TDT4 data. In our final experiment we tested on the TDT4

test data using ASR transcriptions and automatic punctuation,

rather than human transcription. We investigated training us-

ing both human and ASR transcriptions of the TDT 4 data,

together with the text-only TDT2 data (human transcription).

We used the ASR system we developed for the transcrip-

tion of British Broadcasting Corporation (BBC) TV data [39],

using around 600 hours of training data taken from the 2015

Multi-Genre Broadcast (MGB) Challenge [40]2. The system

2http://www.mgb-challenge.org



Table 4. F1-measure comparisons testing on TDT4 data using ASR transcriptions, with models trained with TDT4 data, using

either human transcriptions or ASR, and additional TDT2 text data.

Model F1-Measure

Human trans ASR trans

Lexical DNN [18] 0.680 0.691

Lexical HRNN [31] 0.689 0.704

Fusion HRNN (statistics) 0.706 0.716

Fusion HRNN (sentence embedding) 0.704 0.736

Fusion HRNN (sentence gap embedding) 0.683 0.697

Fusion DNN (statistics) 0.669 0.698

is based on the sequence-trained deep neural networks in a hy-

brid configuration, following [41]. On the 2015 MGB Chal-

lenge development dataset, this system resulted in a word er-

ror rate (WER) of 28%. We note that the TDT4 data is mainly

American English in contrast to the largely British English

MGB data.

We then applied automatic punctuation [21] to the ASR

transcription described above. The punctuation system seg-

mented the ASR transcription splitting at pauses with a dura-

tion of over 0.2 seconds, followed by a neural machine trans-

lation model trained to map a word sequence to punctuation

marks (full stop, comma, exclamation mark, question mark,

ellipsis).

The results are shown in Table 4, where our hierarchi-

cal RNN model also exceeded the performance of the state-

of-the-art with ASR transcriptions. By fusing acoustic fea-

tures with the lexical features, we observed further improve-

ment with the fusion models of both statistics and sentence

embedding. Especially, sentence embedding fusion model

was consistently effective for all the experiments in this pa-

per. In this experiment, we did not gain any improvement

with sentence gap embedding; the sentence gap embedding

approach is more strongly dependent on the accuracy of au-

tomatic punctuation and sentence segmentation. Finally we

note that training on ASR transcripts results in slightly higher

F1 scores than training on human transcripts, possibly due to

a better match with the test set.

4. CONCLUSIONS

This paper proposes addresses story segmentation using lex-

ical and acoustic feature fusion with a hierarchical RNN

model. The topic structure is captured using a hierarchical

model based on an RNN sentence modeling layer and a bidi-

rectional LSTM topic modeling layer. The two modalities are

fused in the sentence level topic modeling layer. We train our

model using the relatively low-resource TDT4 data contain-

ing audio and text transcriptions. We show that augmenting

this training data with additional text data from other news

sources (TDT2) helps to improve the precision of the system.

We conducted experiments comparing the combinations

of lexical and acoustic features and combinations of training

data. Experimental results on TDT4 test data indicated that

the hierarchical RNN topic modeling can take advantage of

the fusion of acoustic and lexical modalities, especially when

additional text training data is available. Our fusion model us-

ing sentence embedding results in a higher F1 score for story

segmentation when compared with conventional state-of-the-

art methods, using both human and ASR transcriptions.
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