164,936 research outputs found

    Frequency Limits on Naked-Eye Optical Transients Lasting from Minutes to Years

    Full text link
    How often do bright optical transients occur on the sky but go unreported? To constrain the bright end of the astronomical transient function, a systematic search for transients that become bright enough to be noticed by the unaided eye was conducted using the all-sky monitors of the Night Sky Live network. Two fisheye continuous cameras (CONCAMs) operating over three years created a data base that was searched for transients that appeared in time-contiguous CCD frames. Although a single candidate transient was found (Nemiroff and Shamir 2006), the lack of more transients is used here to deduce upper limits to the general frequency of bright transients. To be detected, a transient must have increased by over three visual magnitudes to become brighter than visual magnitude 5.5 on the time scale of minutes to years. It is concluded that, on the average, fewer than 0.0040 (tdur/60t_{dur} / 60 seconds) transients with duration tdurt_{dur} between minutes and hours, occur anywhere on the sky at any one time. For transients on the order of months to years, fewer than 160 (tdur/1t_{dur} / 1 year) occur, while for transients on the order of years to millennia, fewer than 50 (tdur/1t_{dur}/1 year)2^2 occur.Comment: Accepted for publication in A

    SubmilliJansky Transients in Archival Radio Observations

    Get PDF
    [ABRIDGED] We report the results of a 944-epoch survey for transient sources with archival data from the Very Large Array spanning 22 years with a typical epoch separation of 7 days. Observations were obtained at 5 or 8.4 GHz for a single field of view with a full-width at half-maximum of 8.6' and 5.1', respectively, and achieved a typical point-source detection threshold at the beam center of ~300 microJy per epoch. Ten transient sources were detected with a significance threshold such that only one false positive would be expected. Of these transients, eight were detected in only a single epoch. Two transients were too faint to be detected in individual epochs but were detected in two-month averages. None of the ten transients was detected in longer-term averages or associated with persistent emission in the deep image produced from the combination of all epochs. The cumulative rate for the short timescale radio transients above 370 microJy at 5 and 8.4 GHz is 0.07 < R < 40 deg^-2 yr^-1, where the uncertainty is due to the unknown duration of the transients, 20 min < t_char < 7 days. A two-epoch survey for transients will detect 1.5 +/- 0.4 transient per square degrees above a flux density of 370 microJy. Two transients are associated with galaxies at z=0.040 and z=0.249. These may be similar to the peculiar Type Ib/c radio supernova SN 1998bw associated with GRB 980428. Six transients have no counterparts in the optical or infrared (R=27, Ks=18). The hosts and progenitors of these transients are unknown.Comment: Accepted for ApJ; full quality figures available at http://astro.berkeley.edu/~gbower/ps/rt.pd

    Classification methods for noise transients in advanced gravitational-wave detectors

    Get PDF
    Noise of non-astrophysical origin will contaminate science data taken by the Advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) and Advanced Virgo gravitational-wave detectors. Prompt characterization of instrumental and environmental noise transients will be critical for improving the sensitivity of the advanced detectors in the upcoming science runs. During the science runs of the initial gravitational-wave detectors, noise transients were manually classified by visually examining the time-frequency scan of each event. Here, we present three new algorithms designed for the automatic classification of noise transients in advanced detectors. Two of these algorithms are based on Principal Component Analysis. They are Principal Component Analysis for Transients (PCAT), and an adaptation of LALInference Burst (LIB). The third algorithm is a combination of an event generator called Wavelet Detection Filter (WDF) and machine learning techniques for classification. We test these algorithms on simulated data sets, and we show their ability to automatically classify transients by frequency, SNR and waveform morphology

    Reconstructing solar wind inhomogeneous structures from stereoscopic observations in white-light: Small transients along the Sun-Earth line

    Full text link
    The Heliospheric Imagers (HI) on board the two spacecraft of the Solar Terrestrial Relations Observatory (STEREO) provided white-light images of transients in the solar wind from dual perspectives from 2007 to 2014. In this paper, we develop a new method to identify and locate the transients automatically from simultaneous images from the two inner telescopes, known as HI-1, based on a correlation analysis. Correlation coefficient (cc) maps along the Sun-Earth line are constructed for the period from 1 Jan 2010 to 28 Feb 2011. From the maps, transients propagating along the Sun-Earth line are identified, and a 27-day periodic pattern is revealed, especially for small-scale transients. Such a periodicity in the transient pattern is consistent with the rotation of the Sun's global magnetic structure and the periodic crossing of the streamer structures and slow solar wind across the Sun-Earth line, and this substantiates the reliability of our method and the high degree of association between the small-scale transients of the slow solar wind and the coronal streamers. Besides, it is suggested by the cc map that small-scale transients along the Sun-Earth line are more frequent than large-scale transients by a factor of at least 2, and that they quickly diffused into background solar wind within about 40 Rs in terms of the signal-to-noise ratio of white-light emissions. The method provides a new tool to reconstruct inhomogeneous structures in the heliosphere from multiple perspectives.Comment: 24 pages, 9 figures, to be published on Journal of Geophysical Research - Space Physic

    Upconversion Luminescence Transients

    Get PDF
    Inhomogeneous active-ion distributions in laser materials lead to strong deviations of upconversion versus direct luminescence transients from the quadratic law of energy-transfer upconversion. Measured luminescence decay curves in LaSc3(BO3)4:Nd3+LaSc_{3}(BO_{3})_{4}:Nd^{3+} and GdVO4:Nd3+GdVO_{4}:Nd^{3+} confirm experimentally the predicted deviations. Differences in energy migration within the metastable level of Nd3+Nd^{3+} are indentified
    • …
    corecore