6 research outputs found

    Multi-criteria assessment of the company's location selection : a dynamic approach

    Get PDF
    Purpose: The aim of the study is to present multi-criteria Vector Measure Construction Method (VMCM), which enables the construction of aggregate measures, the creation of rankings, classifications and the investigation of change dynamics. Design/Methodology/Approach: The VMCM is used to build the measure (in dynamic terms) for the purpose of assessing the friendliness of EU countries in the context of supporting investors in the selection of locations for newly established enterprises. Findings: Not all multi-criteria methods give the opportunity to study the dynamics of change. The VMCM allows taking into account objects from outside the sample, which are better than the pattern (the measure is not limited, neither from the bottom nor from the top). Practical Implications: The solution proposed allows to assess the investment friendliness of individual country and compare countries (objects) with each other in different sections of time. Originality/Value: The VMCM allows to eliminate the limitations of the other multi-criteria methods in making rankings, classifications of objects and the analysis of the change dynamics.peer-reviewe

    Analysis and selection of the optimal method of water softening using vikor and ahp method ā€“ case study

    Get PDF
    PrečiŔćavanje sirove vode do nivoa neophodnog da bi se ona koristila za vodosnabdevanje naselja predstavlja veliki izazov, naročito imajući u vidu da sirova voda nikada nije opterećena samo jednim parametrom zagađenja. Napretkom tehnologija za prečiŔćavanje vode, posebno membranskih tehnologija, efikasnost tretmana postala je daleko veća. Postavlja se pitanje koja tehnologija je optimalna, u pogledu odstranjivanja Å”tetnih materija, ekonomskih, ekoloÅ”kih dobiti, itd. U izboru optimalne tehnologije tretmana vode značajnu pomoć mogu da pruže metode viÅ”ekriterijmske optimizacije. U slučaju koji je razmatran u okviru ovog rada primenjene su metode VIKOR i AHP na izbor optimalne konfiguracije postrojenja za omekÅ”avanje vode bazirane na nanofiltraciji. Metoda VIKOR pokazala je bolji uvid u u fizičke karakteristike parametara i značajniju objektivnost donosioca odluke u odnosu na metodu AHP.Treatment of raw water in order to achieve quality requred for drinking water can be a major challenge, especially considering that raw water usually contains more than one pollutiant. With the advancement of water treatment technologies, especially membrane technologies, the efficiency of water purification has been increasing. The question is which technology is optimal, in terms of removal of pollutants, economic, environmental benefits and other criteria. Methods of multi-criteria optimization can provide significant assistence in choosing the optimal water treatment technology. In this paper, the VIKOR and AHP methods were applied for selection of optimal drinking water treatment scheme of water softening plant based on nanofiltration. The VIKOR method showed a better insight into the physical characteristics of the water quality parameters and a more significant objectivity of the decision maker in relation to the AHP method.[https://www.vodoprivreda.net/wp-content/uploads/2020/12/7-Ognjen-Govedarica-i-saradnici.pdf

    Proposing A Web-Based Interactive Module for Education for Sustainable Development in English for Computer Science

    Get PDF
    English for Computer Science (ECS), as part of English for Specific Purposes (ESP), is designed to teach students the English required in computer science. In this paper, the writers proposed to incorporate Education for Sustainable Development (ESD) into ECS to encourage student engagement by presenting current concerns relevant to their life experiences. The work is a position paper in which the writers argue for the importance of building a web-based interactive module for ESD in ECS. Our arguments are supported in the following sections; English for Specific Purposes (ESP), Content Language Integrated Learning (CLIL), English for Computer Science (ECS), Education for Sustainable Development (ESD), Instructional Material limited to Module and E-Module, and related research. The writers propose developing an interactive web-based module for ESD in ECS so that students have more fun while they are studying. It is anticipated that students will be able to study the module at their own pace and according to their capabilities. This module is paperless; it contributes to the Sustainable Development Goals (SDGs). As instructional materials, the module will also assist ECS students in overcoming classroom time constraints and relating what they learn to future concerns, careers, and professionalism

    Evaluation of the business environment of participating countries of the Belt and Road Initiative

    Get PDF
    As an important indicator for measuring the quality of business environment of different countries, ease of doing business (EDB) issued by the World Bank (WB) provides an important reference for investors in making decisions on transnational investment. The calculation method for EDB issued by the WB is improved using a technique for order preference by similarity to an ideal solution (TOPSIS) method based on Mahalanobis distance. Based on various indicator data in 2019, business environments in 121 countries participating in ā€œthe Belt and Road Initiative (BRI)ā€ were empirically analysed and compared through such models. The result showed that TOPSIS method based on Mahalanobis distance can more fully utilise information and take the effect of negative ideal points into account. Therefore, compared with ranking method by the WB, TOPSIS method based on Mahalanobis distance is more applicable for ranking BRI countries. The ranking results indicated significant geographical characteristics. The EDB rankings obtained through the WB overestimate the business environments of countries in Central and Eastern Europe while underestimate those in Southeast Asia, Africa, etc. First published online 22 September 202

    DEVELOPMENT OF A DECISION SUPPORT SYSTEM FOR COMPANIES IN THE ENERGY FROM BIOMASS AREA, APPLYING CIRCULAR ECONOMY PRINCIPLES WITH A LIFE CYCLE THINKING APPROACH

    Get PDF
    The biomass supply chain (BSC) for energy production has emerged as a promising alternative to traditional fossil fuels, playing a crucial role in mitigating climate change and promoting sustainable development. Biomass utilisation offers numerous environmental, economic, and social benefits, including reduced greenhouse gas (GHG) emissions, enhanced energy security, and job creation in rural areas, which are known as important aspects of sustainable development. Moreover, the use of waste, by-products, and residue in BSC is essential to improving the circular economy (CE) in agriculture, wood, and paper processing industries, as well as waste treatment and management. Therefore, to further harness the potential of biomass energy production in sustainability and transition to the CE context, it is significant for companies in the BSC to apply circular business models (CBM).While the role of biomass in the CE has been confirmed, the gap still exists in evaluating the application of CE to the BSC. Up to the authorsā€™ knowledge, currently, there is no set of circularity and sustainability indicators as standard for the company in the BSC. The variety of CE approaches and indicators makes it difficult to convert linear business models into circular ones. In addition, the variety of biomass materials, differences in biomass processing technology and multiple end-products lead to transformation into a CE model in many alternatives with many stages and different technology processes. Furthermore, some indicators assessing aspects of sustainability and circularity of different alternatives are subject to conflict and trade-offs. A more sustainable solution might not necessarily be better in terms of circularity and similar trade-offs exist within the pillars of sustainability. Given the trade-offs between sustainability and circularity, decision support systems (DSS) based on life cycle thinking with a standard set of indicators are promising tools for evaluating and selecting the best alternative of sustainability and circularity BSC.For what is above, this PhD research project was focused on developing a decision support system for a biomass company in the energy sector based on CE and sustainability models with a life cycle thinking approach. With the CE and sustainability model, a set of circularity and sustainability indicators is developed, and it is considered a criteria set to assess the circularity and sustainability of biomass companies and BSC. The life cycle thinking approach is employed to provide a comprehensive assessment for BSC. It is also basic to collect data from BSC and give value to indicators for assessing and ranking alternatives. The trade-off existing in alternatives is solved by using Multiple-criteria decision-making methods. That is integrated into the methodology framework of the decision support system.The PhD research project is structured around two main objectives. First, from CE and sustainability models, a set of circularity and sustainability is development. Secondly, a DSS tool is created. The set of developed indicators considers various stages during the BSC, such as feedstock plantation, processing, transportation, energy conversion, and end-of-life management, being aligned with the United Nations Sustainable Development Goals (SDGs) and the ECā€™s guidelines on the transition to CE. Meanwhile, the creation of a DSS includes proposing a methodology framework for DSS, creating software in MATLAB GUI and Script as a new tool for DSS, and applying this tool to the rice straw supply chain as testing for the case study.Regarding the case study, a rice straw supply chain for energy production in the Pavia region of Italy is selected. The data for the case study was collected during the internship period at the ENI company, such as parameters of the plant and process. The current of the rice straw supply chain is assessed by the DSS tool, and a re-edited version of this tool was taken. The alternatives of CE applications in the case study were performed through an external internship at the IMDEA Energy Institute (Spain). The data on alternatives is gathered based on the results of the simulation of the chemical process by Aspen plus@ at the IMDEA Energy Institute for suitable parameters of the current supply chain. The sustainability and circularity indicators methodology framework and case study developed during this PhD research project have been published in international journals and conference proceedings. The results of the application and details of the decision support system are present in this thesis. The results of calculating indicators for all indicators show that global warming potential (GWP) is 1.21E+03 ton CO2eq/yr to 55.7E+03 ton CO2eq/yr. Meanwhile, rice straw's acidification potential (AP) in this study ranges from 9.66 tonnes of SO2 eq/yr to 563 tonnes of SO2 eq/yr. The internal rate of return (IRR) of the rice straw supply chain is from 5.92% to 11.3%. In addition, the net present value (NPV) of the case study ranges from 0.72 to 5.79 million euros. Furthermore, the rate of informal labour is from 71.9% to 82.10%, while the percentage of recycling rate out of all waste is from 96.61% to 99.2%, the circular material use is from 54.8% to 88.2%, and the proportion of material losses in primary material is from 14.61% to 15.5%. The ranking results indicate that the digestate pyrolysis option has the best sustainability and circularity points among the other options.This PhD project research shows that the application of a comprehensive approach encompassing Life Cycle Assessment (LCA), Life Cycle Costing (LCC), and Social Life Cycle Assessment (SLCA) to identify sustainability indicators brings about significant advantages to the biomass supply chain. Existing research seldom integrates all three methodologies simultaneously. This integrated approach enhances the understanding of sustainability implications across the biomass supply chain, paving the way for a more holistic assessment.Moreover, the utilization of the Life Cycle Thinking (LCT) tool and Material Flow Analysis (MFA) for circularity indicators introduces a novel dimension to the existing literature. The incorporation of these tools instills confidence in simulating both circularity and sustainability, a consideration often overlooked in previous studies. The resulting circularity and sustainability indicators offer a standardised set that serves as a step-by-step guide for achieving Sustainable Development Goals (SDGs) and transitioning to a circular economy, aligning with the European Commission's roadmap.The development of a Decision Support System (DSS) methodology framework marks another crucial contribution, particularly by integrating circularity and sustainability within a unified framework for biomass companies in the supply chain. Unlike existing frameworks, this approach employs the PROMETHEE II and Entropy methods, leveraging life cycle results to enhance reliability and streamline calculations. Overcoming the limitations of PROMETHEE, this framework incorporates a multiple-criteria decision-making approach to address trade-offs in sustainability and circularity alternatives. This not only improves the robustness of the framework but also extends its applicability to general companies beyond the biomass sector.Furthermore, the accompanying software in this study presents a more practical and potent DSS tool for ranking alternatives. Its flexibility, allowing the use of the DSS tool for calculating sustainability and circularity indicators for individual alternatives, provides users with a versatile platform. The ability to choose indicator groups and methods for weighting indicators enhances the adaptability of the framework, making it applicable in various scenarios for policymakers and researchers committed to advancing circular economy and sustainability initiatives. In summary, based on methods for application, methodology framework and useful software, the DSS tool developed in this thesis can be used to support companies in the biomass supply chain, managers, practitioners, policy-makers, and researchers in assessing and selecting alternatives for application of CBMs to transfer into CE

    DEVELOPMENT OF A DECISION SUPPORT SYSTEM FOR COMPANIES IN THE ENERGY FROM BIOMASS AREA, APPLYING CIRCULAR ECONOMY PRINCIPLES WITH A LIFE CYCLE THINKING APPROACH

    Get PDF
    The biomass supply chain (BSC) for energy production has emerged as a promising alternative to traditional fossil fuels, playing a crucial role in mitigating climate change and promoting sustainable development. Biomass utilisation offers numerous environmental, economic, and social benefits, including reduced greenhouse gas (GHG) emissions, enhanced energy security, and job creation in rural areas, which are known as important aspects of sustainable development. Moreover, the use of waste, by-products, and residue in BSC is essential to improving the circular economy (CE) in agriculture, wood, and paper processing industries, as well as waste treatment and management. Therefore, to further harness the potential of biomass energy production in sustainability and transition to the CE context, it is significant for companies in the BSC to apply circular business models (CBM).While the role of biomass in the CE has been confirmed, the gap still exists in evaluating the application of CE to the BSC. Up to the authorsā€™ knowledge, currently, there is no set of circularity and sustainability indicators as standard for the company in the BSC. The variety of CE approaches and indicators makes it difficult to convert linear business models into circular ones. In addition, the variety of biomass materials, differences in biomass processing technology and multiple end-products lead to transformation into a CE model in many alternatives with many stages and different technology processes. Furthermore, some indicators assessing aspects of sustainability and circularity of different alternatives are subject to conflict and trade-offs. A more sustainable solution might not necessarily be better in terms of circularity and similar trade-offs exist within the pillars of sustainability. Given the trade-offs between sustainability and circularity, decision support systems (DSS) based on life cycle thinking with a standard set of indicators are promising tools for evaluating and selecting the best alternative of sustainability and circularity BSC.For what is above, this PhD research project was focused on developing a decision support system for a biomass company in the energy sector based on CE and sustainability models with a life cycle thinking approach. With the CE and sustainability model, a set of circularity and sustainability indicators is developed, and it is considered a criteria set to assess the circularity and sustainability of biomass companies and BSC. The life cycle thinking approach is employed to provide a comprehensive assessment for BSC. It is also basic to collect data from BSC and give value to indicators for assessing and ranking alternatives. The trade-off existing in alternatives is solved by using Multiple-criteria decision-making methods. That is integrated into the methodology framework of the decision support system.The PhD research project is structured around two main objectives. First, from CE and sustainability models, a set of circularity and sustainability is development. Secondly, a DSS tool is created. The set of developed indicators considers various stages during the BSC, such as feedstock plantation, processing, transportation, energy conversion, and end-of-life management, being aligned with the United Nations Sustainable Development Goals (SDGs) and the ECā€™s guidelines on the transition to CE. Meanwhile, the creation of a DSS includes proposing a methodology framework for DSS, creating software in MATLAB GUI and Script as a new tool for DSS, and applying this tool to the rice straw supply chain as testing for the case study.Regarding the case study, a rice straw supply chain for energy production in the Pavia region of Italy is selected. The data for the case study was collected during the internship period at the ENI company, such as parameters of the plant and process. The current of the rice straw supply chain is assessed by the DSS tool, and a re-edited version of this tool was taken. The alternatives of CE applications in the case study were performed through an external internship at the IMDEA Energy Institute (Spain). The data on alternatives is gathered based on the results of the simulation of the chemical process by Aspen plus@ at the IMDEA Energy Institute for suitable parameters of the current supply chain. The sustainability and circularity indicators methodology framework and case study developed during this PhD research project have been published in international journals and conference proceedings. The results of the application and details of the decision support system are present in this thesis. The results of calculating indicators for all indicators show that global warming potential (GWP) is 1.21E+03 ton CO2eq/yr to 55.7E+03 ton CO2eq/yr. Meanwhile, rice straw's acidification potential (AP) in this study ranges from 9.66 tonnes of SO2 eq/yr to 563 tonnes of SO2 eq/yr. The internal rate of return (IRR) of the rice straw supply chain is from 5.92% to 11.3%. In addition, the net present value (NPV) of the case study ranges from 0.72 to 5.79 million euros. Furthermore, the rate of informal labour is from 71.9% to 82.10%, while the percentage of recycling rate out of all waste is from 96.61% to 99.2%, the circular material use is from 54.8% to 88.2%, and the proportion of material losses in primary material is from 14.61% to 15.5%. The ranking results indicate that the digestate pyrolysis option has the best sustainability and circularity points among the other options.This PhD project research shows that the application of a comprehensive approach encompassing Life Cycle Assessment (LCA), Life Cycle Costing (LCC), and Social Life Cycle Assessment (SLCA) to identify sustainability indicators brings about significant advantages to the biomass supply chain. Existing research seldom integrates all three methodologies simultaneously. This integrated approach enhances the understanding of sustainability implications across the biomass supply chain, paving the way for a more holistic assessment.Moreover, the utilization of the Life Cycle Thinking (LCT) tool and Material Flow Analysis (MFA) for circularity indicators introduces a novel dimension to the existing literature. The incorporation of these tools instills confidence in simulating both circularity and sustainability, a consideration often overlooked in previous studies. The resulting circularity and sustainability indicators offer a standardised set that serves as a step-by-step guide for achieving Sustainable Development Goals (SDGs) and transitioning to a circular economy, aligning with the European Commission's roadmap.The development of a Decision Support System (DSS) methodology framework marks another crucial contribution, particularly by integrating circularity and sustainability within a unified framework for biomass companies in the supply chain. Unlike existing frameworks, this approach employs the PROMETHEE II and Entropy methods, leveraging life cycle results to enhance reliability and streamline calculations. Overcoming the limitations of PROMETHEE, this framework incorporates a multiple-criteria decision-making approach to address trade-offs in sustainability and circularity alternatives. This not only improves the robustness of the framework but also extends its applicability to general companies beyond the biomass sector.Furthermore, the accompanying software in this study presents a more practical and potent DSS tool for ranking alternatives. Its flexibility, allowing the use of the DSS tool for calculating sustainability and circularity indicators for individual alternatives, provides users with a versatile platform. The ability to choose indicator groups and methods for weighting indicators enhances the adaptability of the framework, making it applicable in various scenarios for policymakers and researchers committed to advancing circular economy and sustainability initiatives. In summary, based on methods for application, methodology framework and useful software, the DSS tool developed in this thesis can be used to support companies in the biomass supply chain, managers, practitioners, policy-makers, and researchers in assessing and selecting alternatives for application of CBMs to transfer into CE
    corecore