84 research outputs found

    Evaluation of satellite rainfall estimates over Ethiopian river basins

    Get PDF

    Hydrological Assessment of Daily Satellite Precipitation Products over a Basin in Iran

    Get PDF
    In order to measure precipitation as the main variable for estimating the runoff and designing hydraulic structures, the satellite algorithm products that have the proper spatial and temporal coverage, can be used. In this study, at first, the daily streamflow simulation of Sarough-Cahy River from the Zarinehroud basin was conducted through the artificial neural network (ANN) and ground data of daily precipitation, temperature and discharge for the years of 1988 to 2008. The developed network was trained, validated and tested. Then, in order to evaluate the products of satellite precipitation algorithms in streamflow simulation which is the aim of this study, daily satellite rainfall data of PERSIANN, TMPA-3B42V7, TMPA-3B42RT and CMORPH between 2003 and 2008 were used as an input data to the trained ANN model. Considering indices of R2, RMSE and MAE implemented for evaluations, the results indicated that satellite rainfall algorithms are able to simulate runoff efficiently over the study area

    Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS

    Get PDF
    New precipitation (P) datasets are released regularly, following innovations in weather forecasting models, satellite retrieval methods, and multi-source merging techniques. Using the conterminous US as a case study, we evaluated the performance of 26 gridded (sub-)daily P datasets to obtain insight into the merit of these innovations. The evaluation was performed at a daily timescale for the period 2008–2017 using the Kling–Gupta efficiency (KGE), a performance metric combining correlation, bias, and variability. As a reference, we used the high-resolution (4&thinsp;km) Stage-IV gauge-radar P dataset. Among the three KGE components, the P datasets performed worst overall in terms of correlation (related to event identification). In terms of improving KGE scores for these datasets, improved P totals (affecting the bias score) and improved distribution of P intensity (affecting the variability score) are of secondary importance. Among the 11 gauge-corrected P datasets, the best overall performance was obtained by MSWEP V2.2, underscoring the importance of applying daily gauge corrections and accounting for gauge reporting times. Several uncorrected P datasets outperformed gauge-corrected ones. Among the 15 uncorrected P datasets, the best performance was obtained by the ERA5-HRES fourth-generation reanalysis, reflecting the significant advances in earth system modeling during the last decade. The (re)analyses generally performed better in winter than in summer, while the opposite was the case for the satellite-based datasets. IMERGHH V05 performed substantially better than TMPA-3B42RT V7, attributable to the many improvements implemented in the IMERG satellite P retrieval algorithm. IMERGHH V05 outperformed ERA5-HRES in regions dominated by convective storms, while the opposite was observed in regions of complex terrain. The ERA5-EDA ensemble average exhibited higher correlations than the ERA5-HRES deterministic run, highlighting the value of ensemble modeling. The WRF regional convection-permitting climate model showed considerably more accurate P totals over the mountainous west and performed best among the uncorrected datasets in terms of variability, suggesting there is merit in using high-resolution models to obtain climatological P statistics. Our findings provide some guidance to choose the most suitable P dataset for a particular application.</p

    Object-based assessment of satellite precipitation products

    Get PDF
    An object-based verification approach is employed to assess the performance of the commonly used high-resolution satellite precipitation products: Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), Climate Prediction center MORPHing technique (CMORPH), and Tropical Rainfall Measurement Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) 3B42RT. The evaluation of the satellite precipitation products focuses on the skill of depicting the geometric features of the localized precipitation areas. Seasonal variability of the performances of these products against the ground observations is investigated through the examples of warm and cold seasons. It is found that PERSIANN is capable of depicting the orientation of the localized precipitation areas in both seasons. CMORPH has the ability to capture the sizes of the localized precipitation areas and performs the best in the overall assessment for both seasons. 3B42RT is capable of depicting the location of the precipitation areas for both seasons. In addition, all of the products perform better on capturing the sizes and centroids of precipitation areas in the warm season than in the cold season, while they perform better on depicting the intersection area and orientation in the cold season than in the warm season. These products are more skillful on correctly detecting the localized precipitation areas against the observations in the warm season than in the cold season

    Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling

    Get PDF
    Abstract. We undertook a comprehensive evaluation of 22 gridded (quasi-)global (sub-)daily precipitation (P) datasets for the period 2000–2016. Thirteen non-gauge-corrected P datasets were evaluated using daily P gauge observations from 76 086 gauges worldwide. Another nine gauge-corrected datasets were evaluated using hydrological modeling, by calibrating the HBV conceptual model against streamflow records for each of 9053 small to medium-sized ( <  50 000 km2) catchments worldwide, and comparing the resulting performance. Marked differences in spatio-temporal patterns and accuracy were found among the datasets. Among the uncorrected P datasets, the satellite- and reanalysis-based MSWEP-ng V1.2 and V2.0 datasets generally showed the best temporal correlations with the gauge observations, followed by the reanalyses (ERA-Interim, JRA-55, and NCEP-CFSR) and the satellite- and reanalysis-based CHIRP V2.0 dataset, the estimates based primarily on passive microwave remote sensing of rainfall (CMORPH V1.0, GSMaP V5/6, and TMPA 3B42RT V7) or near-surface soil moisture (SM2RAIN-ASCAT), and finally, estimates based primarily on thermal infrared imagery (GridSat V1.0, PERSIANN, and PERSIANN-CCS). Two of the three reanalyses (ERA-Interim and JRA-55) unexpectedly obtained lower trend errors than the satellite datasets. Among the corrected P datasets, the ones directly incorporating daily gauge data (CPC Unified, and MSWEP V1.2 and V2.0) generally provided the best calibration scores, although the good performance of the fully gauge-based CPC Unified is unlikely to translate to sparsely or ungauged regions. Next best results were obtained with P estimates directly incorporating temporally coarser gauge data (CHIRPS V2.0, GPCP-1DD V1.2, TMPA 3B42 V7, and WFDEI-CRU), which in turn outperformed the one indirectly incorporating gauge data through another multi-source dataset (PERSIANN-CDR V1R1). Our results highlight large differences in estimation accuracy, and hence the importance of P dataset selection in both research and operational applications. The good performance of MSWEP emphasizes that careful data merging can exploit the complementary strengths of gauge-, satellite-, and reanalysis-based P estimates

    Assessment of satellite rainfall products for streamflow simulation in medium watersheds of the Ethiopian highlands

    Get PDF
    The objective is to assess the suitability of commonly used high-resolution satellite rainfall products (CMORPH, TMPA 3B42RT, TMPA 3B42 and PERSIANN) as input to the semi-distributed hydrological model SWAT for daily streamflow simulation in two watersheds (Koga at 299 km&lt;sup&gt;2&lt;/sup&gt; and Gilgel Abay at 1656 km&lt;sup&gt;2&lt;/sup&gt;) of the Ethiopian highlands. First, the model is calibrated for each watershed with respect to each rainfall product input for the period 2003–2004. Then daily streamflow simulations for the validation period 2006–2007 are made from SWAT using rainfall input from each source and corresponding model parameters; comparison of the simulations to the observed streamflow at the outlet of each watershed forms the basis for the conclusions of this study. Results reveal that the utility of satellite rainfall products as input to SWAT for daily streamflow simulation strongly depends on the product type. The 3B42RT and CMORPH simulations show consistent and modest skills in their simulations but underestimate the large flood peaks, while the 3B42 and PERSIANN simulations have inconsistent performance with poor or no skills. Not only are the microwave-based algorithms (3B42RT, CMORPH) better than the infrared-based algorithm (PERSIANN), but the infrared-based algorithm PERSIANN also has poor or no skills for streamflow simulations. The satellite-only product (3B42RT) performs much better than the satellite-gauge product (3B42), indicating that the algorithm used to incorporate rain gauge information with the goal of improving the accuracy of the satellite rainfall products is actually making the products worse, pointing to problems in the algorithm. The effect of watershed area on the suitability of satellite rainfall products for streamflow simulation also depends on the rainfall product. Increasing the watershed area from 299 km&lt;sup&gt;2&lt;/sup&gt; to 1656 km&lt;sup&gt;2&lt;/sup&gt; improves the simulations obtained from the 3B42RT and CMORPH (i.e. products that are more reliable and consistent) rainfall inputs while it deteriorates the simulations obtained from the 3B42 and PERSIANN (i.e. products that are unstable and inconsistent) rainfall inputs
    • …
    corecore