16,446 research outputs found

    Role for targeted resection in the multidisciplinary treatment of metastatic gastrointestinal stromal tumor

    Get PDF
    The management of advanced gastrointestinal stromal tumors (GISTs) has evolved in the modern era due to the discovery of c-kit mutations and the development of tyrosine kinase inhibitors (TKIs). Until the advent of TKIs such as imatinib, the median survival reported for patients with advanced GIST was 19 months. Although surgery is the treatment of choice for resectable primary GIST, its role in cases of recurrence and metastasis remains to be unclear. This review outlines the potential beneficial role of repeat surgical resection in the multidisciplinary treatment of advanced GIST in the era of TKIs

    Relation of common ABL kinase domain mutations with resistance to Tyrosine Kinase Inhibiters in patients with Chronic Myeloid Leukemia in Middle Euphrates of Iraq

    Get PDF
    Background: Chronic myeloid leukemia (CML) is a hematopoietic stem cell disease, associated with a reciprocal translocation between chromosomes 9 and chromosome 22, lead to the formation of the BCRABL fusion gene (Philadelphia chromosome). This fusion gene is believed to play golden role in the initial development of CML with constitutive tyrosine kinase activation. Successful use of tyrosine kinase inhibiters (TKIs) play a role in improve survival and increase prevalence of CML, but un fortunately mutations in the BCR-ABL kinase domain may cause, or contribute to increase, resistance to TKIs in CML patients. . Objective: This study was designed to assess the association of five most common BCR-ABL kinase domain mutations (T315I, M351T, E255K, M244V and E255V) with resistance state of CML patients on TKIs in Iraqi Middle Euphrates region. Patients and methods: A retrospective case-control study in which 85 patients with chronic myeloid leukemia in chronic phase (45 patients as cases group and 40 patient as control group) were selected from three hemato-oncology centers in middle Euphrates in Iraq during the period from January 2016 till October 2016 out of a total of 240 CML patients (108 male and 132 female) who were registered during this period in these three centers and all patients on TKI (Imatinib and Nilotinib). Venous blood sampling done for BCRABL kinase domain mutations screening. Results: four patients from cases group (4/45) were carriers of one of five selected ABL kinase domain mutations and no one of control group. T315I mutation was detected in 3/45 (6.6 %) of resistant patients, with a significant risk association to develop resistance to TKI therapy (odd ratio and C. I.) (6.67, 0.3340 - 133.2255). E255V was detected in 1/45 (2.2 %) and also had significant risk association to develop resistance to TKIs (odd ratio, C.I.) (2.73, 0.1081 -68.9424). No one of these mutations had significance correlation with demographic or hematological features. M351T, E255K and M244V were not detected in any one of our study groups CML patients. Conclusions: T315I and E255V among five ABL kinas domain mutations were detected in our CML patients with resistance to TKIs. All of them may play a role in development variable degree of resistance to first and second generation TKIs weather primary or secondary.T315I mutation is most common mutation within BCR-ABL domain kinase gene

    Toxicity of cancer therapy: what the cardiologist needs to know about angiogenesis inhibitors

    Get PDF
    Clinical outcomes for patients with a wide range of malignancies have improved substantially over the last two decades. Tyrosine kinase inhibitors (TKIs) are potent signalling cascade inhibitors and have been responsible for significant advances in cancer therapy. By inhibiting vascular endothelial growth factor receptor (VEGFR)-mediated tumour blood vessel growth, VEGFR-TKIs have become a mainstay of treatment for a number of solid malignancies. However, the incidence of VEGFR-TKI-associated cardiovascular toxicity is substantial and previously under-recognised. Almost all patients have an acute rise in blood pressure, and the majority develop hypertension. They are associated with the development of left ventricular systolic dysfunction (LVSD), heart failure and myocardial ischaemia and can have effects on myocardial repolarisation. Attention should be given to rigorous baseline assessment of patients prior to commencing VEGFR-TKIs, with careful consideration of baseline cardiovascular risk factors. Baseline blood pressure measurement, ECG and cardiac imaging should be performed routinely. Hypertension management currently follows national guidelines, but there may be a future role forendothelin-1 antagonism in the prevention or treatment of VEGFR-TKI-associated hypertension. VEGFR-TKI-associated LVSD appears to be independent of dose and is reversible. Patients who develop LVSD and heart failure should be managed with conventional heart failure therapies, but the role of prophylactic therapy is yet to be defined. Serial monitoring of left ventricular function and QT interval require better standardisation and coordinated care. Management of these complex patients requires collaborative, cardio-oncology care to allow the true therapeutic potential from cancer treatment while minimising competing cardiovascular effects

    BCR-ABL1 doubling-times and halving-times may predict CML response to tyrosine kinase inhibitors

    Get PDF
    In Chronic Myeloid Leukemia (CML), successful treatment requires accurate molecular monitoring to evaluate disease response and provide timely interventions for patients failing to achieve the desired outcomes. We wanted to determine whether measuring BCR-ABL1 mRNA doubling-times (DTs) could distinguish inconsequential rises in the oncogene’s expression from resistance to tyrosine kinase inhibitors (TKIs). Thus, we retrospectively examined BCR-ABL1 evolution in 305 chronic-phase CML patients receiving imatinib mesylate (IM) as a first line treatment. Patients were subdivided in two groups: those with a confirmed rise in BCR-ABL1 transcripts without MR3.0 loss and those failing IM. We found that the DTs of the former patients were significantly longer than those of patients developing IM resistance (57.80 vs. 41.45 days, p = 0.0114). Interestingly, the DT values of individuals failing second-generation (2G) TKIs after developing IM resistance were considerably shorter than those observed at the time of IM failure (27.20 vs. 41.45 days; p = 0.0035). We next wanted to establish if decreases in BCR-ABL1 transcripts would identify subjects likely to obtain deep molecular responses. We therefore analyzed the BCR-ABL1 halving-times (HTs) of a different cohort comprising 174 individuals receiving IM in first line and observed that, regardless of the time point selected for our analyses (6, 12, or 18 months), HTs were significantly shorter in subjects achieving superior molecular responses (p = 0.002 at 6 months; p < 0.001 at 12 months; p = 0.0099 at 18 months). Moreover, 50 patients receiving 2G TKIs as first line therapy and obtaining an MR3.0 (after 6 months; p = 0.003) or an MR4.0 (after 12 months; p = 0.019) displayed significantly shorter HTs than individuals lacking these molecular responses. Our findings suggest that BCR-ABL1 DTs and HTs are reliable tools to, respectively, identify subjects in MR3.0 that are failing their assigned TKI or to recognize patients likely to achieve deep molecular responses that should be considered for treatment discontinuation

    Anti-proliferative but not anti-angiogenic tyrosine kinase inhibitors enrich for cancer stem cells in soft tissue sarcoma.

    Get PDF
    BackgroundIncreasing studies implicate cancer stem cells (CSCs) as the source of resistance and relapse following conventional cytotoxic therapies. Few studies have examined the response of CSCs to targeted therapies, such as tyrosine kinase inhibitors (TKIs). We hypothesized that TKIs would have differential effects on CSC populations depending on their mechanism of action (anti-proliferative vs. anti-angiogenic).MethodsWe exposed human sarcoma cell lines to sorafenib, regorafenib, and pazopanib and assessed cell viability and expression of CSC markers (ALDH, CD24, CD44, and CD133). We evaluated survival and CSC phenotype in mice harboring sarcoma metastases after TKI therapy. We exposed dissociated primary sarcoma tumors to sorafenib, regorafenib, and pazopanib, and we used tissue microarray (TMA) and primary sarcoma samples to evaluate the frequency and intensity of CSC markers after neoadjuvant therapy with sorafenib and pazopanib. Parametric and non-parametric statistical analyses were performed as appropriate.ResultsAfter functionally validating the CSC phenotype of ALDHbright sarcoma cells, we observed that sorafenib and regorafenib were cytotoxic to sarcoma cell lines (P < 0.05), with a corresponding 1.4 - 2.8 fold increase in ALDHbright cells from baseline (P < 0.05). In contrast, we observed negligible effects on viability and CSC sub-populations with pazopanib. At low doses, there was progressive CSC enrichment in vitro after longer term exposure to sorafenib although the anti-proliferative effects were attenuated. In vivo, sorafenib improved median survival by 11 days (P < 0.05), but enriched ALDHbright cells 2.5 - 2.8 fold (P < 0.05). Analysis of primary human sarcoma samples revealed direct cytotoxicity following exposure to sorafenib and regorafenib with a corresponding increase in ALDHbright cells (P < 0.05). Again, negligible effects from pazopanib were observed. TMA analysis of archived specimens from sarcoma patients treated with sorafenib demonstrated significant enrichment for ALDHbright cells in the post-treatment resection specimen (P < 0.05), whereas clinical specimens obtained longitudinally from a patient treated with pazopanib showed no enrichment for ALDHbright cells (P > 0.05).ConclusionsAnti-proliferative TKIs appear to enrich for sarcoma CSCs while anti-angiogenic TKIs do not. The rational selection of targeted therapies for sarcoma patients may benefit from an awareness of the differential impact of TKIs on CSC populations

    The antiproliferative activity of kinase inhibitors in chronic myeloid leukemia cells is mediated by FOXO transcription factors

    Get PDF
    Chronic myeloid leukemia (CML) is initiated and maintained by the tyrosine kinase BCR-ABL which activates a number of signal transduction pathways, including PI3K/AKT signaling and consequently inactivates FOXO transcription factors. ABL-specific tyrosine kinase inhibitors (TKIs) induce minimal apoptosis in CML progenitor cells, yet exert potent antiproliferative effects, through as yet poorly understood mechanisms. Here, we demonstrate that in CD34+ CML cells, FOXO1 and 3a are inactivated and relocalized to the cytoplasm by BCR-ABL activity. TKIs caused a decrease in phosphorylation of FOXOs, leading to their relocalization from cytoplasm (inactive) to nucleus (active), where they modulated the expression of key FOXO target genes, such as Cyclin D1, ATM, CDKN1C, and BCL6 and induced G1 arrest. Activation of FOXO1 and 3a and a decreased expression of their target gene Cyclin D1 were also observed after 6 days of in vivo treatment with dasatinib in a CML transgenic mouse model. The over-expression of FOXO3a in CML cells combined with TKIs to reduce proliferation, with similar results seen for inhibitors of PI3K/AKT/mTOR signaling. While stable expression of an active FOXO3a mutant induced a similar level of quiescence to TKIs alone, shRNA-mediated knockdown of FOXO3a drove CML cells into cell cycle and potentiated TKI-induced apoptosis. These data demonstrate that TKI-induced G1 arrest in CML cells is mediated through inhibition of the PI3K/AKT pathway and reactivation of FOXOs. This enhanced understanding of TKI activity and induced progenitor cell quiescence suggests that new therapeutic strategies for CML should focus on manipulation of this signaling network
    • …
    corecore