719,652 research outputs found

    Nonparametric statistics of image neighborhoods for unsupervised texture segmentation

    Get PDF
    technical reportIn this paper, we present a novel approach to unsupervised texture segmentation that is based on a very general statistical model of image neighborhoods. We treat image neighborhoods as samples from an underlying, high-dimensional probability density function (PDF). We obtain an optimal segmentation via the minimization of an entropy-based metric on the neighborhood PDFs conditioned on the classification. Unlike previous work in this area, we model image neighborhoods directly without preprocessing or the construction of intermediate features. We represent the underlying PDFs nonparametrically, using Parzen windowing, thus enabling the method to model a wide variety of textures. The entropy minimization drives a level-set evolution that provides a degree of spatial homogeneity. We show that the proposed approach easily generalizes, from the two-class case, to an arbitrary number of regions by incorporating an efficient multi-phase level-set framework. This paper presents results on synthetic and real images from the literature, including segmentations of electron microscopy images of cellular structures

    Texture Segmentation by Evidence Gathering

    No full text
    A new approach to texture segmentation is presented which uses Local Binary Pattern data to provide evidence from which pixels can be classified into texture classes. The proposed algorithm, which we contend to be the first use of evidence gathering in the field of texture classification, uses Generalised Hough Transform style R-tables as unique descriptors for each texture class and an accumulator is used to store votes for each texture class. Tests on the Brodatz database and Berkeley Segmentation Dataset have shown that our algorithm provides excellent results; an average of 86.9% was achieved over 50 tests on 27 Brodatz textures compared with 80.3% achieved by segmentation by histogram comparison centred on each pixel. In addition, our results provide noticeably smoother texture boundaries and reduced noise within texture regions. The concept is also a "higher order" texture descriptor, whereby the arrangement of texture elements is used for classification as well as the frequency of occurrence that is featured in standard texture operators. This results in a unique descriptor for each texture class based on the structure of texture elements within the image, which leads to a homogeneous segmentation, in boundary and area, of texture by this new technique

    Multi-resolution texture classification based on local image orientation

    Get PDF
    The aim of this paper is to evaluate quantitatively the discriminative power of the image orientation in the texture classification process. In this regard, we have evaluated the performance of two texture classification schemes where the image orientation is extracted using the partial derivatives of the Gaussian function. Since the texture descriptors are dependent on the observation scale, in this study the main emphasis is placed on the implementation of multi-resolution texture analysis schemes. The experimental results were obtained when the analysed texture descriptors were applied to standard texture databases

    Evaluation of color representation for texture analysis

    Get PDF
    Since more than 50 years texture in image material is a topic of research. Hereby, color was ignored mostly. This study compares 70 different configurations for texture analysis, using four features. For the configurations we used: (i) a gray value texture descriptor: the co-occurrence matrix and a color texture descriptor: the color correlogram, (ii) six color spaces, and (iii) several quantization schemes. A three classifier combination was used to classify the output of the configurations on the VisTex texture database. The results indicate that the use of a coarse HSV color space quantization can substantially improve texture recognition compared to various other gray and color quantization schemes

    TextureGAN: Controlling Deep Image Synthesis with Texture Patches

    Full text link
    In this paper, we investigate deep image synthesis guided by sketch, color, and texture. Previous image synthesis methods can be controlled by sketch and color strokes but we are the first to examine texture control. We allow a user to place a texture patch on a sketch at arbitrary locations and scales to control the desired output texture. Our generative network learns to synthesize objects consistent with these texture suggestions. To achieve this, we develop a local texture loss in addition to adversarial and content loss to train the generative network. We conduct experiments using sketches generated from real images and textures sampled from a separate texture database and results show that our proposed algorithm is able to generate plausible images that are faithful to user controls. Ablation studies show that our proposed pipeline can generate more realistic images than adapting existing methods directly.Comment: CVPR 2018 spotligh
    corecore