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Abstract

In this paper, we present a novel approach to unsupervised

texture segmentation that is based on a very general statisti-

cal model of image neighborhoods. We treat image neigh-

borhoods as samples from an underlying, high-dimensional

probability density function (PDF). We obtain an optimal

segmentation via the minimization of an entropy-based met-

ric on the neighborhood PDFs conditioned on the classifi-

cation. Unlike previous work in this area, we model image

neighborhoods directly without preprocessing or the con-

struction of intermediate features. We represent the un-

derlying PDFs nonparametrically, using Parzen windowing,

thus enabling the method to model a wide variety of tex-

tures. The entropy minimization drives a level-set evolution

that provides a degree of spatial homogeneity. We show

that the proposed approach easily generalizes, from the two-

class case, to an arbitrary number of regions by incorporat-

ing an efficient multi-phase level-set framework. This pa-

per presents results on synthetic and real images from the

literature, including segmentations of electron microscopy

images of cellular structures.

1. Introduction

Image segmentation is one of the most extensively stud-

ied problems in computer vision. Many different ap-

proaches have been proposed for the partitioning of images

based on a variety of criteria including brightness (inten-

sity), color, texture, depth, and motion. This paper ad-

dresses the problem of segmenting textured images. By

texture segmentation we mean the partitioning of static,

grayscale images, with regions that are not easily distin-

guished from one another by their average intensity val-

ues. Textured regions do not necessarily adhere to the

piecewise-smooth or piecewise-constant assumptions that

underly most intensity-based segmentation problems; they

are defined by some kind of regularity in the higher-order

statistics of their pixel neighborhoods.

In recent years researchers have pushed the state-of-the-

art in texture segmentation in several important directions.

The first direction concerns the mechanism used to model or

quantify the regularity in image textures. Researchers have

been developing progressively richer descriptions of local

image structure and thereby capturing more complex and

subtle distinctions between regions. Another direction has

been in modeling the variability with textured regions, typ-

ically through more sophisticated, statistically-based met-

rics. Finally, the research in texture segmentation, like seg-

mentation in general, has pursued more robust mechanisms

for enforcing geometric regularity in texture segmentations,

usually through the construction of a patchwork of regions

that simultaneously minimize a set of geometric and statis-

tical criteria.

This paper advances the state-of-the-art in texture seg-

mentation by proposing a strategy that takes the richness

of the image descriptors and the generality of the statistical

representations to new levels. The proposed method relies

on a complete representation of image neighborhoods that

exist in a very high dimensional probability space. It re-

lies on nonparametric description of image statistics, and

therefore imposes very few assumptions on the statistical

structure of neighborhoods. Therefore, it is easily applica-

ble to a wide range of segmentation problems. The pro-

posed method also incorporates relatively recent advances

in the computation of level-set evolution, and hence offers

a practical way of combining sufficient levels of geometric

regularity with an extensive set of statistical computations.

2 Related Work

Many texture segmentation algorithms rely on signatures to

summarize the underlying spatial intensity patterns. This

strategy reduces the dimensionality (and complexity) of

neighborhood relationships, thereby making analysis more

manageable. For instance, intensity (or grayscale) his-

tograms, computed in local neighborhoods go a long way

toward capturing interesting differences in textures [15, 14].

As in this paper, that work relies on nonparametric den-

sity estimation. However, the grayscale intensity statistics

(i.e. 1D histograms), fail to capture the geometric structure

of neighborhoods, which is essential for distinguishing tex-

tured regions with similar grayscale distributions. Thus, we
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have taken nonparametric estimation to a very large number

of dimensions in order to capture local geometric structure.

Much of the previous work in texture analysis relies on fil-

ter banks to described the local structure of images. For in-

stance, Gabor filters [11] produce texture features that have

been used to discriminate textured regions [20, 23, 24]. Ga-

bor filters are a prominent example of a very large class of

oriented, multiscale filters [4, 27].

Other authors have proposed even more compact repre-

sentations. For instance, Bigun et al. [2] use the structure

tensor (second-order moment matrix—used, for instance, to

analyze flow-like patterns [30]), for texture segmentation.

Rousson et al. [22] refine this strategy by using vector-

valued anisotropic diffusion instead of Gaussian blurring

to compute the structure tensor. However, this strategy re-

quires that the structure tensors of the image has a sufficient

degree of homogeneity within patches and sufficient degree

of difference between patches. Not all images meet these

criteria, and we propose to use the full statistics of image

neighborhoods; in other words, the complete set of unfil-

tered pixel intensities.

Recently, researchers have investigated modeling image

statistics more directly. For instance, Doretto et al. [6] use a

hidden Markov process to model the relationships between

all pixels within regions, and they apply their method to dy-

namic textures, capturing relationships in space and time.

However, that method assumes a Gaussian process, a very

strong assumption that cannot easily account for complex or

subtle texture geometries. We take an alternative approach,

which is to use a more general statistical model but limit

this model to the analysis of small to medium image neigh-

borhoods.

Researchers analyzing the statistics of natural images in

terms of local neighborhoods have drawn conclusions that

are consistent with Markov random field models of im-

ages [12]. For instance, Huang et al. [13] analyze single

pixel statistics, two-point statistics and derivative statistics

of natural images. They found that the mutual information

between the intensities of two adjacent pixels in natural im-

ages is rather large and attributed this to the presence of

spatial correlation in the images. Lee et al. [16] and Silva et

al. [5] analyze the statistics of ✸ × ✸ high-contrast patches

in optical images, in the corresponding high-dimensional

spaces, and find the the data to be concentrated in clus-

ters and low-dimensional manifolds exhibiting a nontrivial

topologies.

Popat et al. [21] were among the first to use nonparamet-

ric Markov sampling in images. They attempt to capture

the higher-order nonlinear image statistics via cluster-based

nonparametric density estimation and apply their technique

for image restoration, image compression and texture clas-

sification. However, their method takes a supervised ap-

proach for learning neighborhood relationships. The work

in this paper also relies on the hypothesis that natural im-

ages exhibit some regularity in neighborhood structure, but

this regularity is discovered for each image individually in

a nonparametric manner. The proposed method builds on

the work in [1], which lays down the foundations for un-

supervised learning of higher-order image statistics. That

work however, proposes reducing the entropy of image-

neighborhood statistics as a method for denoising grayscale

images.

The literature dealing with texture synthesis also sheds

some light on the proposed method. Texture synthesis algo-

rithms rely on image statistics from an input image to con-

struct novel images that exhibit a qualitative resemblance

to the input [3, 9, 29]. This paper describes a very differ-

ent application, but the texture synthesis work demonstrates

the power of neighborhood statistics in capturing essential

aspects of image structure.

This paper also relies on a rather extensive body of work

on variational methods for image segmentation. In particu-

lar the Mumford-Shah model [18], its extensions to motion,

depth, and texture [18], and its implementation via level-set

flows [28]. In particular we use the very fast approximation

proposed by Esedoglu [10], and extend it to include multi-

ple regions within a probabilistic framework.

3. Methodology

This section overviews the random field image model with

the associated notation and then describes the optimal seg-

mentation formulation based on an entropy minimization.

3.1. Random Field Image Model

A random field/process [7] is a family of random variables

❳✭�✁ ❚ ✮, for an index set ❚ , where, for each fixed ❚ ❂ t,

the random variable❳✭�✁ t✮ is defined on the sample space

�. If we let ❚ be a set of points defined on a discrete Carte-

sian grid and fix� ❂ ✂, we have a realization of the random

field called the digital image, ❳✭✂✄ ❚ ✮. In this case ④t⑥☎✆✝
is the set of pixels in the image. For two-dimensional im-

ages t is a two-vector. If we fix ❚ ❂ t and let ✂ vary then

❳✭t✮ is a random variable on the sample space. We denote

a specific realization❳✭✂✁ t✮ (the image), as a deterministic

function ①✭t✮.

If we associate with ❚ a family of pixel neighborhoods

◆ ❂ ④◆☎⑥☎✆✝ such that ◆☎ ✞ ❚ , and ✉ ✟ ◆☎ if and only

if t ✟ ◆✠, then ◆ is called a neighborhood system for the

set ❚ and points in ◆☎ are called neighbors of t. We define

a random vector ❩✭t✮ ❂ ④❳✭t✮⑥☎✆✡☛ , denoting its realiza-

tion by ②✭t✮, corresponding to the set of intensities at the

neighbors of pixel t. For the formulation in this paper, we

assume that the intensities in each texture patch arise out

of a stationary ergodic process. For notational simplicity
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we use the short hand for random variables ❳✭t✮ as ❳ and

their realizations ①✭t✮ as ①, dropping the index t.

3.2. Texture Segmentation via Entropy Mini-

mization

Let ♣❦✭❩ ❂ ③✮ be the probability of observing the image

neighborhood ③ given that the center pixel of the neighbor-

hood belongs to the texture class �. The total entropy asso-

ciated with a set of❑ texture probability distributions is

❤ ❂ ❾

✁✂

❦✄☎

✆

✝♠
♣❦✭❩ ❂ ③✮ ✞♦❣ ♣❦✭❩ ❂ ③✮❞③ (1)

where✟ ❂ ⑤◆✠⑤ is the neighborhood size. Let ④❚❦⑥
✁
❦✄☎ de-

note a mutually exclusive and exhaustive decomposition of

the image domain into regions generated by the ❑ texture

classes. Let ❘❦ ✿ ❚ ✡ ❬☛✱ ✶☞ denote the indicator function

for ❚❦, i.e. ❘❦✭t✮ ❂ ✶ for t ✌ ❚❦ and ❘❦✭t✮ ❂ ☛ oth-

erwise. The total entropy generated by a particular region

decomposition is

❤ ❂ ❾

✁✂

❦✄☎

✆

✍
❘❦✭t✮♣❦✭③✭t✮✮ ✞♦❣ ♣❦✭③✭t✮✮❞t (2)

We consider the optimal decomposition to be the set of

functions ❘❦ where ❤ attains a minimum. The strategy in

this paper is, therefore, to minimize the total entropy given

in (2) by manipulating the regions defined by ❘❦. This

rather large nonlinear optimization problem has, potentially,

many local minima. Furthermore, as a practical considera-

tion, textures incorporate some degree of randomness, and

regions that are too small will not generate a sufficient num-

ber of samples to estimate their statistics. To regularize the

solution, and alleviate these problems, variational formula-

tions typically penalize the boundary length of the segmen-

tation [18]. With this modification the objective function

becomes

❊ ❂ ❤ ✰ ✎

✁✂

❦✄☎

✆

✍
✏ ✑❘❦✭t✮ ✏ ❞t✱ (3)

where ✎ is a regularization parameter.

3.3. Level Set Formulation

The level set framework [19] is an attractive option for solv-

ing the variational problem defined by (3), because it does

not restrict the shapes or topologies of regions. However,

the method carries some significant computational costs—

in particular the CFL condition for stability limits the mo-

tion of the moving wavefront (patch boundaries) to one

pixel per iteration.

Recently, Esedoglu and Tsai introduced a fast level set

algorithm based on threshold dynamics for minimizing

Mumford-Shah type energies [10]. In this paper, we adopt

their approach to implement the speed term given in (4),

but rely on a multiphase extension of the basic formulation

to enable multiple regions [17, 28]. We now let ④❘❦⑥
✁
❦✄☎

be a set of level-set functions. The segmentation for texture

� is then defined as ❚❦ ❂ ④t ✌ ❚ ⑤❘❦✭t✮ ❃ ❘❥✭t✮✱ ✒✓ ✔❂ �⑥.

The level set speed term for minimizing the energy defined

in (3) is therefore

✕❘❦✭t✮

✕✖
❂ ♣❦✭③✭t✮✮ ✞♦❣ ♣❦✭③✭t✮✮ ✰ ✎✑ ✗

✘
✑❘❦✭t✮

✏ ✑❘❦✭t✮ ✏

✙

✱

(4)

where ✖ denotes the time evolution variable.

In accordance with Esedoglu and Tsai’s scheme [10],

given an initialization for texture regions ④❘❦⑥
✁
❦✄☎, the al-

gorithm iterates over the following steps:

1. Estimate ♣❦✭③✭t✮✮

2. ❘✚❦ ❂ ❘✛❦ ✰ ✜♣❦✭③✭t✮✮ ✞♦❣ ♣❦✭③✭t✮✮

3. ❘✚✚❦ ❂ ❑✢ ✣ ❘✚❦, where❑✢ is a Gaussian kernel with a

standard deviation ✤ and ✣ denotes convolution.

4. Set ❘✛✥☎❦ ✭t✮ ❂ ✶ if ❘❦✭t✮ ❃ ❘❥✭t✮ for all ✓ ✔❂ �, set

❘
✛✥☎
❦ ✭t✮ ❂ ☛ otherwise.

5. Stop when the change in the segmentation, i.e. the sets

④❘❦⑥, falls below a small threshold.

For a discussion of the relationship of the new parameters,

namely ✤ and ✜, to the parameter ✎ in the traditional level

set framework, we refer the reader to [10]. For this work,

the critical problem lies in the estimation of ♣❦✭③✭t✮✮, which

is addressed in the next section. These updates represent an

approximation to a gradient descent algorithm on the image

entropy. We use an initial segmentation of randomly gen-

erated regions and segment the image in an unsupervised

manner, as shown in Section 4.

3.4. Nonparametric Density Estimation

Entropy optimization entails the estimation of higher-order

conditional PDFs. This introduces the challenge of high-

dimensional, scattered-data interpolation, even for modest

sized image neighborhoods. High-dimensional spaces are

notoriously challenging for data analysis (regarded as the

the curse of dimensionality [26, 25]), because they are so

sparsely populated. Despite theoretical arguments suggest-

ing that density estimation beyond a few dimensions is im-

practical, the empirical evidence from the literature is more

optimistic [25, 21]. The results in this paper confirm that

observation. Furthermore, stationarity implies that the ran-

dom vector ❩ exhibits identical marginal PDFs, and thereby

lends itself to more accurate density estimates [25, 26]. We

also rely on the neighborhoods in natural images having a

3



lower-dimensional topology in the multi-dimensional fea-

ture space [16, 5]. Therefore, locally (in the feature space)

the PDFs of images are lower dimensional entities that lend

themselves to better density estimation.

We use the Parzen-window nonparametric density esti-

mation technique [8] with an ♥-dimensional Gaussian ker-

nel ●�✭✁③✂✄�✮. We have no a priori information on the

structure of the PDFs, and therefore we choose an isotropic

Gaussian, i.e. ✄�=✞☎�, where ☎� is the ♥ × ♥ identity

matrix. For a stationary ergodic process, the multivariate

Parzen-window estimate is

♣❦✭❩ ❂ ③✮ ✠
✶

⑤❆❦⑤

✆

t❥✝✟✡

●�✭③ ❾ ③☛✂ ✄�✮ (5)

where the set ❆❦ is a small subset of ❚❦ , chosen randomly

and ③☛ is shorthand for ③✭☞☛✮.

Using optimal values of the Parzen-window parameters

is critical for success, and that can be especially difficult in

such high-dimensional spaces. The best choice depends on

a variety of factors including the sample size ⑤❆❦⑤ and the

natural variability in the data. To address this problem we

have developed a method for automatically choosing opti-

mal value of this parameter [1]. We choose ✞ to minimize

the entropy of the associated PDF via a Newton-Raphson

optimization scheme. This entropy minimizing choice for

✞ is consistent with the entropy minimization segmenta-

tion formulation. Our experiments show that for sufficiently

large ⑤❆❦⑤ additional samples do not significantly affect the

estimates of entropy and ✞, and thus ⑤❆❦⑤ can also be gen-

erated automatically from the input data.

The quality of the results also depends on the neighbor-

hood size—bigger neighborhoods are generally more effec-

tive but take longer to compute. Typically ✾ × ✾ neigh-

borhoods suffice. To obtain rotational invariance we use

a metric in the feature space that controls the influence of

each neighborhood pixel so that the distances in this space

are less sensitive to neighborhood rotations [1]. In this

way, feature space dimensions corresponding to corners of

the square neighborhood collapse so that they do not influ-

ence the filtering. Likewise image boundaries are handled

through such anisotropic metrics so that they do not distort

the neighborhood statistics of the image.

4. Results

In this section, we discuss results from experiments with

real and artificial data. For the level-set initialization

we used a checkerboard image, with ❑ different labeled

checks. The number ❑ is a user parameter and should be

chosen to match the desired number of texture classes. Fig-

ure 1(a) is an electron microscopy image of a cell. This

image is challenging to segment using edge or intensity in-

formation because it is not piecewise homogeneous. The

(a) (b) (d)

(c) (e)

Figure 1: (a) An electron microscope image of a cell, (b)

initialization with checkerboard pattern, (c) result of 2-

class segmentation, (d) different initialization with smaller

checkerboard pattern, and (e) result.

discriminating feature of these two cell types (type A: up-

per left and bottom right, type B: middle) is their textures

formed by the arrangements of sub-cellular structures. Fig-

ure 1(b) illustrates a checkerboard pattern with two classes

used to initialize the algorithm. Figure 1(c) shows the re-

sult of the proposed algorithm starting from this initializa-

tion. The two cell types are segmented with a high degree

of accuracy; however, notice that the membranes between

the cells are grouped together with the middle cell. A third

texture class could be used for the membrane, but this is

not a trivial extension due to the thin, elongated geometric

structure of the membrane and the difficulties of sampling

associated with such structures. Figure 1(d) and (e) show

another initialization with a finer scale checkerboard pat-

tern and the segmentation results, respectively. The final

segmentation is almost the same as before demonstrating

the robustness of the algorithm to initializations.

Figure 2(a) is a kind of image often used in the texture

segmentation literature. Figure 2(b) demonstrates a suc-

cessful segmentation of this image using the proposed al-

gorithm.

Figure 3 depicts an image having multiple classes and a

successful segmentation with the proposed algorithm using

the multiphase level-set framework.
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(a) (b)

Figure 2: (a) Zebra image and (b) final segmentation.

(a) (b)

Figure 3: (a) An image of ✹ different Brodatz textures. (b) A

segmentation into ✹ regions using the multiphase version of

the level-set algorithm.

5. Conclusions

We have presented a novel approach toward texture seg-

mentation that exploits higher-order image statistics in an

entropy-minimizing framework. The method automatically

learns the image statistics via nonparametric density esti-

mation and, unlike typical prevalent techniques, does not

impose an adhoc image model. We incorporate an efficient

multiphase level-set evolution framework [10] to obtain an

optimal segmentation. The method relies on the informa-

tion content of input data for setting important parameters,

and does not require significant parameter tuning. Hence it

is easily applicable to a wide spectrum of images.

The computational complexity of the proposed method

is significant: ❖✭⑤❚ ⑤⑤❆❦⑤❊
❉✮ where � is the image di-

mension and ❊ is the extent of the neighborhood along a

dimension. This is exponential in ❊, and our current re-

sults are limited to 2D images. The literature suggests some

potential improvements (e.g. [31]). However, the purpose

of this paper is to introduce the theory and methodology—

algorithmic improvements are the subject of future work.
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