16 research outputs found

    Evaluation of the Effectiveness of ACK Filtering and ACK Congestion Control in Mitigating the Effects of Bandwidth Asymmetry

    Get PDF
    The user demand for high speed and ubiquitous connectivity has led to the development and deployment of many new technologies, such as DSL and satellite-based networks, for accessing the Internet network. The goal of these technologies is to mitigate the bottleneck. Other technologies, such as wireless and packet radio networks aimed at providing the user with unrestricted access to their mobile devices and the Internet. Given that these networks are increasingly being deployed as high-speed access networks, it is highly desirable to achieve good network performance over such networks. These technologies show different characteristics (asymmetry) in uplink and downlink directions. Network asymmetry (uneven bandwidth) can negatively affect the performance of feedback-based transport protocol such as Transmission Control Protocol (TCP). This is because that congestion in any direction can affect the flow of feedback in the other direction. ACK Filtering and ACK Congestion Control techniques are used to diminish the congestion on the upstream link. These techniques suffer from sender burstiness and a slowdown in congestion window growth problems. This project addresses the TCP performance problems caused by network asymmetry and discuss the reasons for the inapplicability between TCP and asymmetric networks. It studies the effectiveness of these techniques in mitigating the effects of bandwidth asymmetry in TCP/IP networks and provides suggestions to overcome the problems associated with these techniques. Based on the performance model presented in this project, achieving optimum TCP performance under different asymmetric conditions is described

    Impact of Delayed Acknowledgment on TCP performance over LEO satellite constellations

    Get PDF
    This paper aims at quantifying the impact of a default TCP option, known as Delayed Acknowledgment (DelAck), in the context of LEO satellite constellations. Satellite transmissions can suffer from high channel impairments, especially on the link between a satellite and a ground gateway. To cope with these errors, physical and link layer reliability schemes have been introduced, at the price of an increase of the end-to-end delay seen by the transport layer (e.g. TCP). Although DelAck is used to decrease the feedback path load and for overall system performance, the use of this option conjointly with satellite link layer recovery schemes might increase the delay and might be counterproductive. To assess the impact of this option, we drive simulation measurements with two well-deployed TCP variants. The results show that the performance gain depends on the variant used and that this option should be carefully set or disabled as a function of the network characteristics. DelAck has a negative impact on TCP variants which are more aggressive such as TCP Hybla, and should be disabled for these versions. However, it shows benefits for TCP variants less aggressive such as NewReno

    Enhancing TCP Performance in Mobile Ad Hoc Network Using Explicit Link Failure Notification (ELFN)

    Get PDF
    The dynamics and the unpredictable behaviour of a wireless mobile ad hoc network results in the hindrance of providing adequate reliability to network connections. Frequent route changes in the network relatively introduce incessant link failures which eventually degrade TCP performance considerably. In this research, we are going to study the potential improvement of TCP performance when Explicit Link Failure Notification is implemented as opposed to the standard TCP mechanism. ELFN modifies the ‘slow start’ mechanism that is used in standard TCP so that the throughput achieved from the network can be maximized

    Smart Acknowledgement Distributed Channel Access Scheme for TCP in MANETs

    Get PDF
    TCP upon wireless networks is most challenging issue because of random losses and ACK interference. Also, TCP suffers from performance declination in terms of creating delay and overhead in network because of poor characteristics of wireless channel. In order to overcome these issues, we proposed a Smart Acknowledgement Distributed Channel Access (SADCA) scheme for TCP in MANETs. In the proposed scheme, first a separate Access Category (AC) for data less TCP acknowledgement packets is used and then it is assigned with highest priority. In this way, delay during transmission of packet can be reduced and also packet can be acknowledged immediately. Also, to increase the performance, delay window size can be adjusted by considering the parameters such as transmission rate, number of hops, and channel occupied ratio (COR). Hence the proposed scheme helps to avoid any kind of delay and overhead for sending TCP acknowledgemen

    A model for congestion control control of transmission control protocol in mobile wireless ad hoc networks

    Get PDF
    Transmission Control Protocol (TCP) is a fundamental protocol in the TCP/IP Protocol Suite.TCP was well designed and optimized to work over wired networks where most packet loss occurs due to network congestion.In theory, TCP should not care whether it is running over wired networks, WLANs, or Mobile Ad hoc Networks (MANETs).In practice, it does matter because most TCP deployments have been carefully designed based on the assumption that congestion is the main factor of network instability.However, MANETs have other dominating factors that cause network instability. Forgetting the impact of these factors violates some design principles of TCP congestion control and open questions for future research to address.This study aims to introduce a model that shows the impact of MANET factors on TCP congestion control.To achieve this aim, Design Research Methodology (DRM) proposed by BLESSING was used as a guide to present this model. The proposed model describes the existing situation of TCP congestion control.Furthermore, it points to the factors that are most suitable to be addressed by researchers in order to improve TCP performance.This research proposes a novel model to present the impact of MANET factors on TCP congestion control.The model is expected to serve as a benchmark for any intended improvement and enhancement of TCP congestion control over MANET

    A survey of performance enhancement of transmission control protocol (TCP) in wireless ad hoc networks

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2011 Springer OpenTransmission control protocol (TCP), which provides reliable end-to-end data delivery, performs well in traditional wired network environments, while in wireless ad hoc networks, it does not perform well. Compared to wired networks, wireless ad hoc networks have some specific characteristics such as node mobility and a shared medium. Owing to these specific characteristics of wireless ad hoc networks, TCP faces particular problems with, for example, route failure, channel contention and high bit error rates. These factors are responsible for the performance degradation of TCP in wireless ad hoc networks. The research community has produced a wide range of proposals to improve the performance of TCP in wireless ad hoc networks. This article presents a survey of these proposals (approaches). A classification of TCP improvement proposals for wireless ad hoc networks is presented, which makes it easy to compare the proposals falling under the same category. Tables which summarize the approaches for quick overview are provided. Possible directions for further improvements in this area are suggested in the conclusions. The aim of the article is to enable the reader to quickly acquire an overview of the state of TCP in wireless ad hoc networks.This study is partly funded by Kohat University of Science & Technology (KUST), Pakistan, and the Higher Education Commission, Pakistan

    TCP-MAC Interaction in Multi-hop Ad-hoc Networks

    Get PDF

    Reducing the acknowledgement frequency in IETF QUIC

    Get PDF
    Research Funding European Space Agency University of AberdeenPeer reviewedPublisher PD
    corecore