6,956 research outputs found

    Equilibrium of Heterogeneous Congestion Control: Optimality and Stability

    Get PDF
    When heterogeneous congestion control protocols that react to different pricing signals share the same network, the current theory based on utility maximization fails to predict the network behavior. The pricing signals can be different types of signals such as packet loss, queueing delay, etc, or different values of the same type of signal such as different ECN marking values based on the same actual link congestion level. Unlike in a homogeneous network, the bandwidth allocation now depends on router parameters and flow arrival patterns. It can be non-unique, suboptimal and unstable. In Tang et al. (“Equilibrium of heterogeneous congestion control: Existence and uniqueness,” IEEE/ACM Trans. Netw., vol. 15, no. 4, pp. 824–837, Aug. 2007), existence and uniqueness of equilibrium of heterogeneous protocols are investigated. This paper extends the study with two objectives: analyzing the optimality and stability of such networks and designing control schemes to improve those properties. First, we demonstrate the intricate behavior of a heterogeneous network through simulations and present a framework to help understand its equilibrium properties. Second, we propose a simple source-based algorithm to decouple bandwidth allocation from router parameters and flow arrival patterns by only updating a linear parameter in the sources’ algorithms on a slow timescale. It steers a network to the unique optimal equilibrium. The scheme can be deployed incrementally as the existing protocol needs no change and only new protocols need to adopt the slow timescale adaptation

    Heterogeneous Congestion Control: Efficiency, Fairness and Design

    Get PDF
    When heterogeneous congestion control protocols that react to different pricing signals (e.g. packet loss, queueing delay, ECN marking etc.) share the same network, the current theory based on utility maximization fails to predict the network behavior. Unlike in a homogeneous network, the bandwidth allocation now depends on router parameters and flow arrival patterns. It can be non-unique, inefficient and unfair. This paper has two objectives. First, we demonstrate the intricate behaviors of a heterogeneous network through simulations and present a rigorous framework to help understand its equilibrium efficiency and fairness properties. By identifying an optimization problem associated with every equilibrium, we show that every equilibrium is Pareto efficient and provide an upper bound on efficiency loss due to pricing heterogeneity. On fairness, we show that intra-protocol fairness is still decided by a utility maximization problem while inter-protocol fairness is the part over which we don¿t have control. However it is shown that we can achieve any desirable inter-protocol fairness by properly choosing protocol parameters. Second, we propose a simple slow timescale source-based algorithm to decouple bandwidth allocation from router parameters and flow arrival patterns and prove its feasibility. The scheme needs only local information

    A cross-layer jitter-based TCP for wireless networks

    Get PDF
    The Transmission Control Protocol (TCP) is one of the main communication protocols in the Internet, and it has been designed to provide an efficient reaction to packet loss events which are due to network congestion. Congestion is the main cause of losses in wired networks, but in today heterogeneous networks, loss events can also be introduced due to higher error rates on wireless channels, host mobility, and frequent handovers. Unfortunately, all packet losses are interpreted by TCP as a sign of congestion, triggering an inappropriate reaction which reduces its transmission rate and leads to performance degradation. In order to avoid this problem, it is important for TCP to correctly understand whether the reason of a packet loss is due to congestion or to a problem in the wireless link. This paper presents an innovative jitter-based cross-layer TCP algorithm, named XJTCP. It adopts the jitter ratio as loss predictor, joined with a layer two notification, in order to correctly infer the nature of a loss event. Performance evaluation and comparison with other common TCP implementations shows how XJTCP can be an interesting solution in the presence of wireless environments

    FAST TCP: Motivation, Architecture, Algorithms, Performance

    Get PDF
    We describe FAST TCP, a new TCP congestion control algorithm for high-speed long-latency networks, from design to implementation. We highlight the approach taken by FAST TCP to address the four difficulties which the current TCP implementation has at large windows. We describe the architecture and summarize some of the algorithms implemented in our prototype. We characterize its equilibrium and stability properties. We evaluate it experimentally in terms of throughput, fairness, stability, and responsiveness

    Q-AIMD: A Congestion Aware Video Quality Control Mechanism

    Get PDF
    Following the constant increase of the multimedia traffic, it seems necessary to allow transport protocols to be aware of the video quality of the transmitted flows rather than the throughput. This paper proposes a novel transport mechanism adapted to video flows. Our proposal, called Q-AIMD for video quality AIMD (Additive Increase Multiplicative Decrease), enables fairness in video quality while transmitting multiple video flows. Targeting video quality fairness allows improving the overall video quality for all transmitted flows, especially when the transmitted videos provide various types of content with different spatial resolutions. In addition, Q-AIMD mitigates the occurrence of network congestion events, and dissolves the congestion whenever it occurs by decreasing the video quality and hence the bitrate. Using different video quality metrics, Q-AIMD is evaluated with different video contents and spatial resolutions. Simulation results show that Q-AIMD allows an improved overall video quality among the multiple transmitted video flows compared to a throughput-based congestion control by decreasing significantly the quality discrepancy between them
    corecore