6,971 research outputs found

    Performance Evaluation of Real Time Traffic in LTE Networks

    Get PDF
    Long-Term Evolution, commonly known as 4G LTE, is a standard for wireless communication of high-speed data for mobile phones and data terminals. TCP protocol plays a significant role in LTE network. Congestion control algorithm is an integral module of TCP that directly determines the performance of the protocol in IP Network. Many TCP variants like TCP-Vegas, TCP-Tahoe, TCP-Reno, TCP-NewReno, TCP-SACK, and TCP-FACK have been proposed for high bandwidth real time services in LTE network [1]. These TCP variants can be used to improve quality of service parameters i.e., throughput, average delay and lost packet in LTE network [2]. Since LTE systems has high-data-rate, low-latency and packet-optimized radio access technology therefore these parameters directly affect the traffic. In this paper, complete LTE Network is simulated using the OPNET simulator to evaluate network performance in real time [3]. The simulated LTE network is tested for each type of TCP protocol and the result is monitored for throughput, end to end delay, http and FTP traffic, re-transmission response time and packets drop etc and the results are plotted. At the end, it is concluded that TCP New Reno has outperformed in terms of throughput, re-transmission rate and http uplink and downlink traffic. In medium size network, the performance of Reno is satisfactory. Similarly changes in mobility rate enhance the performance of TCP Reno in other congestion control algorithms. On the other hand, TCP Cubic is found to be the worst performer for throughput, re-transmission rate and http traffic parameters. Keywords: LTE, QoS, EUTRAN, TCP, http, Opne

    Techniques for End-to-End Tcp Performance Enhancement Over Wireless Networks

    Get PDF
    Today’s wireless network complexity and the new applications from various user devices call for an in-depth understanding of the mutual performance impact of networks and applications. It includes understanding of the application traffic and network layer protocols to enable end-to-end application performance enhancements over wireless networks. Although Transport Control Protocol (TCP) behavior over wireless networks is well known, it remains as one of the main drivers which may significantly impact the user experience through application performance as well as the network resource utilization, since more than 90% of the internet traffic uses TCP in both wireless and wire-line networks. In this dissertation, we employ application traffic measurement and packet analysis over a commercial Long Term Evolution (LTE) network combined with an in-depth LTE protocol simulation to identify three critical problems that may negatively affect the application performance and wireless network resource utilization: (i) impact of the wireless MAC protocol on the TCP throughput performance, (ii) impact of applications on network resource utilization, and (iii) impact of TCP on throughput performance over wireless networks. We further propose four novel mechanisms to improve the end-to-end application and wireless system performance: (i) an enhanced LTE uplink resource allocation mechanism to reduce network delay and help prevent a TCP timeout, (ii) a new TCP snooping mechanism, which according to our experiments, can save about 20% of system resources by preventing unnecessary video packet transmission through the air interface, and (iii) two Split-TCP protocols: an Enhanced Split-TCP (ES-TCP) and an Advanced Split-TCP (AS-TCP), which significantly improve the application throughput without breaking the end-to-end TCP semantics. Experimental results show that the proposed ES-TCP and AS-TCP protocols can boost the TCP throughput by more than 60% in average, when exercised over a 4G LTE network. Furthermore, the TCP throughput performance improvement may be even superior to 200%, depending on network and usage conditions. We expect that these proposed Split-TCP protocol enhancements, together with the new uplink resource allocation enhancement and the new TCP snooping mechanism may provide even greater performance gains when more advanced radio technologies, such as 5G, are deployed. Thanks to their superior resource utilization efficiency, such advanced radio technologies will put to greater use the techniques and protocol enhancements disclosed through this dissertation

    Multipath TCP in LTE networks

    Get PDF
    The results of experiments with Multipath TCP (Multipath Transmission Control Protocol) in LTE (3GPP Long Term Evolution) networks are presented. Our results show increased resiliency and availability of network Multipath TCP connection. Using multiple sub-flows over diverse network paths inside Multipath TCP session results in greatly increased bandwidth and availability. When Multipath TCP is used the behavior of this protocol is consistent in situation of adding new sub-flow or removing flow on a faulty line. Different strategies for path selection are possible with great impact on Multipath TCP session performance. Network structure consisting of few connections with similar parameters is optimal for full mesh Multipath TCP path topology. In this case the behavior of Multipath TCP predictable

    A Model for Behavioral Tendency of TCP Congestion Control Variants in LTE Cellular and 802.11ac Networks

    Get PDF
    As a reliable protocol, TCP protocol configuration requires many parameters to be set before the actual packet transmissions happen. However, the TCP parameters need to be changed from the initial fixed default values to suit the network requirements since it is utilized on many dissimilar mobile networks, including the LTE cellular and the 802.11ac. On the other hand, LTE cellular and 802.11ac networks also have their own design parameters. In this case, utilizing the TCP in these networks will result in the TCP parameters to interact with LTE and 802.11ac parameters, which subsequently can optimize or degrade the network performance due to correct or poor parameters setting. Therefore, it is highly important to determine the correct values for both protocol parameters and network parameters to achieve optimal network performance. This work presents a model to determine the interaction between the TCP protocol parameters, including the congestion control variants and the size of packets and network parameters that include RLC modes in LTE and A-MPDU aggregation mechanism in 802.11ac. Drawn from an extensive set of scenarios and experiments, the results show significant performance improvements achieved by the verified matching parameters

    Congestion mitigation in LTE base stations using radio resource allocation techniques with TCP end to end transport

    Get PDF
    As of 2019, Long Term Evolution (LTE) is the chosen standard for most mobile and fixed wireless data communication. The next generation of standards known as 5G will encompass the Internet of Things (IoT) which will add more wireless devices to the network. Due to an exponential increase in the number of wireless subscriptions, in the next few years there is also an expected exponential increase in data traffic. Most of these devices will use Transmission Control Protocol (TCP) which is a type of network protocol for delivering internet data to users. Due to its reliability in delivering data payload to users and congestion management, TCP is the most common type of network protocol used. However, the ability for TCP to combat network congestion has certain limitations especially in a wireless network. This is due to wireless networks not being as reliable as fixed line networks for data delivery because of the use of last mile radio interface. LTE uses various error correction techniques for reliable data delivery over the air-interface. These cause other issues such as excessive latency and queuing in the base station leading to degradation in throughput for users and congestion in the network. Traditional methods of dealing with congestion such as tail-drop can be inefficient and cumbersome. Therefore, adequate congestion mitigation mechanisms are required. The LTE standard uses a technique to pre-empt network congestion by a mechanism known as Discard Timer. Additionally, there are other algorithms such as Random Early Detection (RED) that also are used for network congestion mitigation. However, these mechanisms rely on configured parameters and only work well within certain regions of operation. If the parameters are not set correctly then the TCP links can experience congestion collapse. In this thesis, the limitations of using existing LTE congestion mitigation mechanisms such as Discard Timer and RED have been explored. A different mechanism to analyse the effects of using control theory for congestion mitigation has been developed. Finally, congestion mitigation in LTE networks has been addresses using radio resource allocation techniques with non-cooperative game theory being an underlying mathematical framework. In doing so, two key end-to-end performance measurements considered for measuring congestion for the game theoretic models were identified which were the total end-to-end delay and the overall throughput of each individual TCP link. An end to end wireless simulator model with the radio access network using LTE and a TCP based backbone to the end server was developed using MATLAB. This simulator was used as a baseline for testing each of the congestion mitigation mechanisms. This thesis also provides a comparison and performance evaluation between the congestion mitigation models developed using existing techniques (such as Discard Timer and RED), control theory and game theory. As of 2019, Long Term Evolution (LTE) is the chosen standard for most mobile and fixed wireless data communication. The next generation of standards known as 5G will encompass the Internet of Things (IoT) which will add more wireless devices to the network. Due to an exponential increase in the number of wireless subscriptions, in the next few years there is also an expected exponential increase in data traffic. Most of these devices will use Transmission Control Protocol (TCP) which is a type of network protocol for delivering internet data to users. Due to its reliability in delivering data payload to users and congestion management, TCP is the most common type of network protocol used. However, the ability for TCP to combat network congestion has certain limitations especially in a wireless network. This is due to wireless networks not being as reliable as fixed line networks for data delivery because of the use of last mile radio interface. LTE uses various error correction techniques for reliable data delivery over the air-interface. These cause other issues such as excessive latency and queuing in the base station leading to degradation in throughput for users and congestion in the network. Traditional methods of dealing with congestion such as tail-drop can be inefficient and cumbersome. Therefore, adequate congestion mitigation mechanisms are required. The LTE standard uses a technique to pre-empt network congestion by a mechanism known as Discard Timer. Additionally, there are other algorithms such as Random Early Detection (RED) that also are used for network congestion mitigation. However, these mechanisms rely on configured parameters and only work well within certain regions of operation. If the parameters are not set correctly then the TCP links can experience congestion collapse. In this thesis, the limitations of using existing LTE congestion mitigation mechanisms such as Discard Timer and RED have been explored. A different mechanism to analyse the effects of using control theory for congestion mitigation has been developed. Finally, congestion mitigation in LTE networks has been addresses using radio resource allocation techniques with non-cooperative game theory being an underlying mathematical framework. In doing so, two key end-to-end performance measurements considered for measuring congestion for the game theoretic models were identified which were the total end-to-end delay and the overall throughput of each individual TCP link. An end to end wireless simulator model with the radio access network using LTE and a TCP based backbone to the end server was developed using MATLAB. This simulator was used as a baseline for testing each of the congestion mitigation mechanisms. This thesis also provides a comparison and performance evaluation between the congestion mitigation models developed using existing techniques (such as Discard Timer and RED), control theory and game theory

    Modelado de TCP en un entorno celular con dual connectivity

    Get PDF
    This paper proposes a TCP implementation in a system-level simulator. This LTE-Advanced simulator provides Dual Connectivity (DC), which allows user equipments (UEs) to receive data simultaneously from two evolved NodeBs (eNBs) in order to boost the performance in a heterogeneous network. In this work, a TCP abstraction is described to predict TCP version Reno performance in an accurate and computationally efficient way. The proposed model is used to show the impact of DC on the user throughput and dropped packets when UEs are downloading a file through TCP.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Performance of TCP variants over LTE network

    Get PDF
    One of the implementation of a wireless network is based on mobile broadband technology Long Term Evolution (LTE).LTE offers a variety of advantages, especially in terms of access speed, capacity, architectural simplicity and ease of implementation, as well as the breadth of choice of the type of user equipment (UE) that can establish the access.The majority of the Internet connections in the world happen using the TCP (Transmission Control Protocol) due to the TCP’s reliability in transmitting packets in the network.TCP reliability lies in the ability to control the congestion.TCP was originally designed for wired media, but LTE connected through a wireless medium that is not stable in comparison to wired media.A wide variety of TCP has been made to produce a better performance than its predecessor. In this study, we simulate the performance provided by the TCP NewReno and TCP Vegas based on simulation using network simulator version 2 (ns2).The TCP performance is analyzed in terms of throughput, packet loss and end-to-end delay.In comparing the performance of TCP NewReno and TCP Vegas, the simulation result shows that the throughput of TCP NewReno is slightly higher than TCP Vegas, while TCP Vegas gives significantly better end-to-end delay and packet loss. The analysis of throughput, packet loss and end-to-end delay are made to evaluate the simulation

    NexGen D-TCP: Next generation dynamic TCP congestion control algorithm

    Get PDF
    With the advancement of wireless access networks and mmWave New Radio (NR), new applications emerged, which requires a high data rate. The random packet loss due to mobility and channel conditions in a wireless network is not negligible, which degrades the significant performance of the Transmission Control Protocol (TCP). The TCP has been extensively deployed for congestion control in the communication network during the last two decades. Different variants are proposed to improve the performance of TCP in various scenarios, specifically in lossy and high bandwidth-delay product (high- BDP) networks. Implementing a new TCP congestion control algorithm whose performance is applicable over a broad range of network conditions is still a challenge. In this article, we introduce and analyze a Dynamic TCP (D-TCP) congestion control algorithm overmmWave NR and LTE-A networks. The proposed D-TCP algorithm copes up with the mmWave channel fluctuations by estimating the available channel bandwidth. The estimated bandwidth is used to derive the congestion control factor N. The congestion window is increased/decreased adaptively based on the calculated congestion control factor. We evaluated the performance of D-TCP in terms of congestion window growth, goodput, fairness and compared it with legacy and existing TCP algorithms. We performed simulations of mmWave NR during LOS \u3c-\u3e NLOS transitions and showed that D-TCP curtails the impact of under-utilization during mobility. The simulation results and live air experiment points out that D-TCP achieves 32:9% gain in goodput as compared to TCPReno and attains 118:9% gain in throughput as compared to TCP-Cubic
    • …
    corecore