25 research outputs found

    Advanced Simulation for ESD Protection Elements

    Get PDF

    Design, Characterization And Compact Modeling Of Novel Silicon Controlled Rectifier (scr)-based Devices For Electrostatic Discha

    Get PDF
    Electrostatic Discharge (ESD), an event of a sudden transfer of electrons between two bodies at different potentials, happens commonly throughout nature. When such even occurs on integrated circuits (ICs), ICs will be damaged and failures result. As the evolution of semiconductor technologies, increasing usage of automated equipments and the emerging of more and more complex circuit applications, ICs are more sensitive to ESD strikes. Main ESD events occurring in semiconductor industry have been standardized as human body model (HBM), machine model (MM), charged device model (CDM) and international electrotechnical commission model (IEC) for control, monitor and test. In additional to the environmental control of ESD events during manufacturing, shipping and assembly, incorporating on-chip ESD protection circuits inside ICs is another effective solution to reduce the ESD-induced damage. This dissertation presents design, characterization, integration and compact modeling of novel silicon controlled rectifier (SCR)-based devices for on-chip ESD protection. The SCR-based device with a snapback characteristic has long been used to form a VSS-based protection scheme for on-chip ESD protection over a broad rang of technologies because of its low on-resistance, high failure current and the best area efficiency. The ESD design window of the snapback device is defined by the maximum power supply voltage as the low edge and the minimum internal circuitry breakdown voltage as the high edge. The downscaling of semiconductor technology keeps on squeezing the design window of on-chip ESD protection. For the submicron process and below, the turn-on voltage and sustain voltage of ESD protection cell should be lower than 10 V and higher than 5 V, respectively, to avoid core circuit damages and latch-up issue. This presents a big challenge to device/circuit engineers. Meanwhile, the high voltage technologies push the design window to another tough range whose sustain voltage, 45 V for instance, is hard for most snapback ESD devices to reach. Based on the in-depth elaborating on the principle of SCR-based devices, this dissertation first presents a novel unassisted, low trigger- and high holding-voltage SCR (uSCR) which can fit into the aforesaid ESD design window without involving any extra assistant circuitry to realize an area-efficient on-chip ESD protection for low voltage applications. The on-chip integration case is studied to verify the protection effectiveness of the design. Subsequently, this dissertation illustrate the development of a new high holding current SCR (HHC-SCR) device for high voltage ESD protection with increasing the sustain current, not the sustain voltage, of the SCR device to the latchup-immune level to avoid sacrificing the ESD protection robustness of the device. The ESD protection cells have been designed either by using technology computer aided design (TCAD) tools or through trial-and-error iterations, which is cost- or time-consuming or both. Also, the interaction of ESD protection cells and core circuits need to be identified and minimized at pre-silicon stage. It is highly desired to design and evaluate the ESD protection cell using simulation program with integrated circuit emphasis (SPICE)-like circuit simulation by employing compact models in circuit simulators. And the compact model also need to predict the response of ESD protection cells to very fast transient ESD events such as CDM event since it is a major ESD failure mode. The compact model for SCR-based device is not widely available. This dissertation develops a macromodeling approach to build a comprehensive SCR compact model for CDM ESD simulation of complete I/O circuit. This modeling approach offers simplicity, wide availability and compatibility with most commercial simulators by taking advantage of using the advanced BJT model, Vertical Bipolar Inter-Company (VBIC) model. SPICE Gummel-Poon (SGP) model has served the ICs industry well for over 20 years while it is not sufficiently accurate when using SGP model to build a compact model for ESD protection SCR. This dissertation seeks to compare the difference of SCR compact model built by using VBIC and conventional SGP in order to point out the important features of VBIC model for building an accurate and easy-CAD implement SCR model and explain why from device physics and model theory perspectives

    Design and Simulation of Device Failure Models for Electrostatic Discharge (ESD) Event

    Get PDF
    In this dissertation, the research mainly focused on discussing ESD failure event simulation and ESD modeling, seeking solutions for ESD issues by simulating ESD event and predict possible ESD reliability problem in IC design. The research involves failure phenomenon caused by ESD/ EOS stress, mainly on the thermal failure due to inevitable self-heating during an ESD stress. Standard Complementary Metal-Oxide-Semiconductor (CMOS) process and high voltage Doublediffusion Metal-Oxide-Semiconductor (DMOS) process are used for design of experiment. A multi-function test platform High Power Pulse Instrument (HPPI) is used for ESD event evaluation and device characterization. SPICE-like software ADICE is for back-end simulation. Electrostatic Discharges (ESD) is one of the hazard that may affect IC circuit function and cause serious damage to the chip. The importance of ESD protection has been raised since the CMOS technology advanced and the dimension of transistors scales down. On the other hand, the variety of applications of chips is also making corresponding ESD protection difficult to meet different design requirement. Aside from typical requirements such as core circuit operation voltage, maximum accepted leakage current, breakdown conditions for the process and overall device sizes, special applications like radio frequency and power electronic requires ESD to be low parasitic capacitance and can sustain high level energy. In that case, a proper ESD protection design demands not only a robust ESD protection scheme, but co-design with the inner circuit. For that purpose, it is necessary to simulate the results of ESD impact on IC and find out possible weak point of the circuit and improve it. The first step of the simulation is to have corresponding models available. Unfortunately, ESD models, especially there are lack of circuit-level ESD models that provide quick and accurate prediction of ESD event. In this dissertation paper, ESD models, especially ESD failure models for device thermal failure are introduced, with modeling methodology accordingly. First, an introduction for ESD event and typical ESD protection schemes are introduced. Its purpose is to give basic concept of ESD. For ESD failure models, two typical types can be categorized depends on the physical mechanisms that cause the ESD damage. One is the gate oxide breakdown, which is electric field related. The other is the thermal-related failure, which stems from the self-heating effect associated with the large current passing through the ESD protection structure. The first one has become increasingly challenging with the aggressive scaling of the gate dielectric in advanced processes and ESD protection for that need to be carefully designed. The second one, thermal failure widely exists in semiconductor devices as long as there is ESD current flow through the device and accumulate heat at junctions. Considering the universality of thermal failure in ESD device, it is imperative to establish a model to simulate ESD caused thermal failure. Several works related to ESD model can be done. One crucial part for a failure model is to define the failure criterion. As common solution for ESD simulation and failure prediction. The maximum current level or breakdown voltage is used to judge whether a device fails under ESD stresses. Such failure criteria based on measurable voltage or current values are straightforward and can be easy to implemented in simulation tools. However, the shortcoming of these failure criteria is each failure criterion is specifically designed for certain ESD stress condition. For example, the failure voltage level for Human Body Model and Charged Device Model are quite different, and it is hard to judge a device\u27s ESD capability under standard test conditions based on its transmission line pulse test result. So it is necessary to look deeper into the physical mechanism of device failure under ESD and find a more universal failure criterion for various stress conditions. As one of the major failure mechanisms, thermal failure evaluated by temperature is a more universal failure criterion for device failure under ESD stress. Whatever the stress model is, the device will fail if a critical temperature is reached at certain part inside the device and cause structural damage. Then finding out that critical temperature is crucial to define the failure point for device thermal failure. One chapter of this dissertation will focus on discussing this issue and propose a simple method to give close estimation of the real failure temperature for typical ESD devices. Combined these related works, a comprehensive diode model for ESD simulation is proposed. Using existing ESD models, diode I-V characteristic from low current turn-on to high current saturation can be simulated. By using temperature as the failure criterion, the last point of diode operation, or the second breakdown point, can be accurately predicted. Additional investigation of ESD capability of devices for special case like vertical GaN diode is discussed in Chapter IV. Due to the distinct material property of GaN, the vertical GaN diode exhibits unique and interesting quasi-static I-V curves quite different from conventional silicon semiconductor devices. And that I-V curve varies with different pulse width, indicating strong conductivity modulation of diode neutral region that will delay the complete turn-on of the vertical GaN diode

    Semiconductor Device Modeling, Simulation, and Failure Prediction for Electrostatic Discharge Conditions

    Get PDF
    Electrostatic Discharge (ESD) caused failures are major reliability issues in IC industry. Device modeling for ESD conditions is necessary to evaluate ESD robustness in simulation. Although SPICE model is accurate and efficient for circuit simulations in most cases, devices under ESD conditions operate in abnormal status. SPICE model cannot cover the device operating region beyond normal operation. Thermal failure is one of the main reasons to cause device failure under ESD conditions. A compact model is developed to predict thermal failure with circuit simulators. Instead of considering the detailed failure mechanisms, a failure temperature is introduced to indicate device failure. The developed model is implemented by a multiple-stage thermal network. P-N junction is the fundamental structure for ESD protection devices. An enhanced diode model is proposed and is used to simulate the device behaviors for ESD events. The model includes all physical effects for ESD conditions, which are voltage overshoot, self-heating effect, velocity saturation and thermal failure. The proposed model not only can fit the I-V and transient characteristics, but also can predict failure for different pulses. Safe Operating Area (SOA) is an important factor to evaluate the LDMOS performance. The transient SOA boundary is considered as power-defined. By placing the failure monitor under certain conditions, the developed modeling methodology can predict the boundary of transient SOA for any short pulse stress conditions. No matter failure happens before or after snapback phenomenon. Weibull distribution is popular to evaluate the dielectric lifetime for CVS. By using the transformative version of power law, the pulsing stresses are converted into CVS, and TDDB under ESD conditions for SiN MIMCAPs is analyzed. The thickness dependency and area independency of capacitor breakdown voltage is observed, which can be explained by the constant ?E model instead of conventional percolation model

    Analysis and modeling methods for predicting functional robustness of integrated circuits during fast transient events

    Get PDF
    La miniaturisation des circuits intégrés se poursuit de nos jours avec le développement de technologies toujours plus fines et denses. Elle permet une intégration des circuits toujours plus massive, avec des performances plus élevées et une réduction des coûts de production. La réduction de taille des circuits s'accompagne aussi d'une augmentation de leur sensibilité électrique. L'électronique automobile est un acteur majeur dans la nouvelle tendance des véhicules autonomes. Ce type d'application a besoin d'analyser des données et d'appliquer des actions sur le véhicule en temps réel. L'objectif à terme est d'améliorer la sécurité des usagers. Il est donc vital de garantir que ces modules électroniques pourront effectuer leurs tâches correctement malgré toutes les perturbations auxquelles ils seront exposés. Néanmoins, l'environnement automobile est particulièrement sévère pour l'électronique. Parmi tous les stress rencontrés, les décharges électrostatiques (ESD - Electrostatic Discharge) sont une importante source d'agression électrique. Ce type d'évènement très bref est suffisamment violent pour détruire des composants électroniques ou les perturber pendant leur fonctionnement. Les recherches présentées ici se concentrent sur l'analyse des défaillances fonctionnelles. À cause des ESD, des fonctions électroniques peuvent cesser temporairement d'être opérantes. Des méthodes d'analyse et de prédiction sont requises au niveau-circuit intégré afin de détecter des points de faiblesses susceptibles de générer des fautes fonctionnelles pendant l'exposition à un stress électrostatique. Différentes approches ont été proposées dans ce but. Une méthode hiérarchique de modélisation a été mise au point afin d'être capable de reproduire la forme d'onde ESD jusqu'à l'entrée du circuit intégré. Avec cette approche, chaque élément du système est modélisé individuellement puis son modèle ajouté au schéma complet. Un cas d'étude réaliste de défaillance fonctionnelle d'un circuit intégré a été analysé à l'aide d'outils de simulation. Afin d'obtenir plus de données sur cette faute, une puce de test a été développée, contenant des structures de surveillance et de mesure directement intégrées dans la puce. La dernière partie de ce travail de recherche est concentrée sur le développement de méthodes d'analyse dans le but d'identifier efficacement des fautes par simulation. Une des techniques développées consiste à modéliser chaque bloc d'une fonction individuellement puis permet de chaîner ces modèles afin de déterminer la robustesse de la fonction complète. La deuxième méthode tente de construire un modèle équivalent dit boite-noire d'une fonction de haut-niveau d'un circuit intégré. Ces travaux de recherche ont mené à la mise au point de prototypes matériels et logiciels et à la mise en évidence de points bloquants qui pourront constituer une base pour de futurs travaux.Miniaturization of electronic circuits continues nowadays with the more recent technology nodes being applied to diverse fields of application such as automotive. Very dense and small integrated circuits are interesting for economic reasons, because they are cheaper to manufacture in mass and can pack more functionalities with elevated performances. The counterpart of size reduction is integrated circuits becoming more fragile electrically. In the automotive world, the new trend of fully autonomous driving is seeing tremendous progress recently. Autonomous vehicles must take decisions and perform critical actions such as braking or steering the wheel. Those decisions are taken by electronic modules, that have now very high responsibilities with regards of our safety. It is important to ensure that those modules will operate no matter the kind of disturbances they can be exposed to. The automotive world is a quite harsh environment for electronic systems. A major source of electrical stress is called the Electrostatic Discharge (ESD). It is a very sudden flow of electricity of large amplitude capable of destroying electronic components, or disturb them during their normal operation. This research focuses on functional failures where functionality can be temporarily lost after an ESD with various impact on the vehicle. To guarantee before manufacturing that a module and its components will perform their duty correctly, new analysis and prediction methods are required against soft-failures caused by electrostatic discharges. In this research, different approaches have been explored and proposed towards that goal. First, a modelling method for reproducing the ESD waveforms from the test generator up to the integrated circuit input is presented. It is based on a hierarchical approach where each element of the system is modelled individually, then added to the complete setup model. A practical case of functional failure at silicon-level is analyzed using simulation tools. To acquire more data on this fault, a testchip has been designed. It contains on-chip monitoring structures to measure voltage and current, and monitor function behavior directly at silicon-level. The last part of this research details different analysis methods developed for identifying efficiently functional weaknesses. The methods rely heavily on simulation tools, and prototypes have been implemented to prove the initial concepts. The first method models each function inside the chip individually, using behavioral models, then enables to connect the models together to deduce the full function's robustness. It enables hierarchical analysis of complex integrated circuit designs, to identify potential weak spots inside the circuit that could require more shielding or protection. The second method is focused on constructing equivalent electrical black box models of integrated circuit functions. The goal is to model the IC with a behavioral, black-box model capable of reproducing waveforms in powered conditions during the ESD. In summary, this research work has led to the development of several hardware and software prototypes. It has also highlighted important modelling challenges to solve in future works to achieve better functional robustness against electrostatic discharges

    Modeling of reverse current effects in trench-based smart power technologies

    Get PDF
    The increase in complexity in todays automotive products is driven by the trend to implement new features in the area of safety, comfort and entertainment. This significantly raises the safety requirements of new ICs and the identification of possible sources of failures gains in priority. One of these failure sources is the injection of parasitic currents into the common substrate of a chip. This does not only occur during exceptions in the operation of the IC but also affects applications which require switching of inductive loads. The difficulty to handle substrate current injection originates from its nonlocality as it potentially influences the entire IC. In this thesis a point-to-point modeling scheme for Spice-based circuit simulation is proposed. It addresses parasitic coupling effects caused by minority carrier injection into the substrate of a deep-trench based BCD technology. Since minority carriers can diffuse over large distances in the common substrate and disturb circuits in their normal operation, a quantitative approach is necessary to address this parasitic effect early during design. An equivalent circuit based on the chip's design is extracted and the coupling effect between the perturbing devices and the susceptible nodes is represented by Verilog-AMS models. These models represent the three main components in the coupling path which are the forward biased diode at the perturbing device, the reverse biased diode at the susceptible node, and the intermediary common substrate of the chip. An automated layout extraction framework identifies the injectors of the minority carriers and the sensitive devices. Additionally, it determines the relevant parameters for the models. The curve fitting functions of the models are derived from calibrated TCAD simulations which are based on the measurement results of two dedicated test chips. The test chips were specifically designed to provide detailed analysis capabilities of this parasitic coupling effect. This led to a design which contains several different injector nodes and a large number of susceptible nodes spread over the entire area of the chip. Additionally, the chip incorporates the most commonly used layout-based guard structures to obtain an in-depth insight on their efficiency in recent BCD technologies. Based on the results obtained by measurements of the test chips the underlying physics of the coupling effect are discussed in detail. Minority carrier injection in the substrate is not much different to the operating principle of a bipolar transistor and the differences and similarities between them are presented. This forms the basis of the model development and explains how the equations of the Verilog-AMS models were derived. Finally, the entire simulation flow is evaluated and the simulation results are compared to measurements of the chip

    Transient Safe Operating Area (tsoa) For Esd Applications

    Get PDF
    A methodology to obtain design guidelines for gate oxide input pin protection and high voltage output pin protection in Electrostatic Discharge (ESD) time frame is developed through measurements and Technology Computer Aided Design (TCAD). A set of parameters based on transient measurements are used to define Transient Safe Operating Area (TSOA). The parameters are then used to assess effectiveness of protection devices for output and input pins. The methodology for input pins includes establishing ESD design targets under Charged Device Model (CDM) type stress in low voltage MOS inputs. The methodology for output pins includes defining ESD design targets under Human Metal Model (HMM) type stress in high voltage Laterally Diffused MOS (LDMOS) outputs. First, the assessment of standalone LDMOS robustness is performed, followed by establishment of protection design guidelines. Secondly, standalone clamp HMM robustness is evaluated and a prediction methodology for HMM type stress is developed based on standardized testing. Finally, LDMOS and protection clamp parallel protection conditions are identifie

    On-chip Electro-static Discharge (esd) Protection For Radio-frequency Integrated Circuits

    Get PDF
    Electrostatic Discharge (ESD) phenomenon is a common phenomenon in daily life and it could damage the integrated circuit throughout the whole cycle of product from the manufacturing. Several ESD stress models and test methods have been used to reproduce ESD events and characterize ESD protection device\u27s performance. The basic ESD stress models are: Human Body Model (HBM), Machine Model (MM), and Charged Device Model (CDM). On-chip ESD protection devices are widely used to discharge ESD current and limit the overstress voltage under different ESD events. Some effective ESD protection devices were reported for low speed circuit applications such as analog ICs or digital ICs in CMOS process. On the contrast, only a few ESD protection devices available for radio frequency integrated circuits (RF ICs). ESD protection for RF ICs is more challenging than traditional low speed CMOS ESD protection design because of the facts that: (1) Process limitation: High-performance RF ICs are typically fabricated in compound semiconductor process such as GaAs pHEMT and SiGe HBT process. And some proved effective ESD devices (e.g. SCR) are not able to be fabricated in those processes due to process limitation. Moreover, compound semiconductor process has lower thermal conductivity which will worsen its ESD damage immunity. (2) Parasitic capacitance limitation: Even for RF CMOS process, the inherent parasitic capacitance of ESD protection devices is a big concern. Therefore, this dissertation will contribute on ESD protection designs for RF ICs in all the major processes including GaAs pHEMT, SiGe BiCMOS and standard CMOS. iv The ESD protection for RF ICs in GaAs pHEMT process is very difficult, and the typical HBM protection level is below 1-kV HBM level. The first part of our work is to analyze pHEMT\u27s snapback, post-snapback saturation and thermal failure under ESD stress using TLP-like Sentaurus TCAD simulation. The snapback is caused by virtual bipolar transistor due to large electron-hole pairs impacted near drain region. Postsnapback saturation is caused by temperature-induced mobility degradation due to IIIV compound semiconductor materials\u27 poor thermal conductivity. And thermal failure is found to be caused by hot spot located in pHEMT\u27s InGaAs layer. Understanding of these physical mechanisms is critical to design effective ESD protection device in GaAs pHEMT process. Several novel ESD protection devices were designed in 0.5um GaAs pHEMT process. The multi-gate pHEMT based ESD protection devices in both enhancementmode and depletion-mode were reported and characterized then. Due to the multiple current paths available in the multi-gate pHEMT, the new ESD protection clamp showed significantly improved ESD performances over the conventional single-gate pHEMT ESD clamp, including higher current discharge capability, lower on-state resistance, and smaller voltage transient. We proposed another further enhanced ESD protection clamp based on a novel drain-less, multi-gate pHEMT in a 0.5um GaAs pHEMT technology. Based on Barth 4002 TLP measurement results, the ESD protection devices proposed in this chapter can improve the ESD level from 1-kV (0.6 A It2) to up to 8-kV ( \u3e 5.2 A It2) under HBM. v Then we optimized SiGe-based silicon controlled rectifiers (SiGe SCR) in SiGe BiCMOS process. SiGe SCR is considered a good candidate ESD protection device in this process. But the possible slow turn-on issue under CDM ESD events is the major concern. In order to optimize the turn-on performance of SiGe SCR against CDM ESD, the Barth 4012 very fast TLP (vfTLP) and vfTLP-like TCAD simulation were used for characterization and analysis. It was demonstrated that a SiGe SCR implemented with a P PLUG layer and minimal PNP base width can supply the smallest peak voltage and fastest response time which is resulted from the fact that the impact ionization region and effective base width in the SiGe SCR were reduced due to the presence of the P PLUG layer. This work demonstrated a practical approach for designing optimum ESD protection solutions for the low-voltage/radio frequency integrated circuits in SiGe BiCMOS process. In the end, we optimized SCRs in standard silicon-based CMOS process to supply protection for high speed/radio-frequency ICs. SCR is again considered the best for its excellent current handling ability. But the parasitic capacitance of SCRs needs to be reduced to limit SCR\u27s impact to RF performance. We proposed a novel SCR-based ESD structure and characterize it experimentally for the design of effective ESD protection in high-frequency CMOS based integrated circuits. The proposed SCR-based ESD protection device showed a much lower parasitic capacitance and better ESD performance than the conventional SCR and a low-capacitance SCR reported in the literature. The physics underlying the low capacitance was explained by measurements using HP 4284 capacitance meter. vi Throughout the dissertation work, all the measurements are mainly conducted using Barth 4002 transimission line pulsing (TLP) and Barth 4012 very fast transmission line pulsing (vfTLP) testers. All the simulation was performed using Sentaurus TCAD tool from Synopsys

    Miniaturized Transistors

    Get PDF
    What is the future of CMOS? Sustaining increased transistor densities along the path of Moore's Law has become increasingly challenging with limited power budgets, interconnect bandwidths, and fabrication capabilities. In the last decade alone, transistors have undergone significant design makeovers; from planar transistors of ten years ago, technological advancements have accelerated to today's FinFETs, which hardly resemble their bulky ancestors. FinFETs could potentially take us to the 5-nm node, but what comes after it? From gate-all-around devices to single electron transistors and two-dimensional semiconductors, a torrent of research is being carried out in order to design the next transistor generation, engineer the optimal materials, improve the fabrication technology, and properly model future devices. We invite insight from investigators and scientists in the field to showcase their work in this Special Issue with research papers, short communications, and review articles that focus on trends in micro- and nanotechnology from fundamental research to applications

    Study of Layout Techniques in Dynamic Logic Circuitry for Single Event Effect Mitigation

    Get PDF
    Dynamic logic circuits are highly suitable for high-speed applications, considering the fact that they have a smaller area and faster transition. However, their application in space or other radiation-rich environments has been significantly inhibited by their susceptibility to radiation effects. This work begins with the basic operations of dynamic logic circuits, elaborates upon the physics underlying their radiation vulnerability, and evaluates three techniques that harden dynamic logic from the layout: drain extension, pulse quenching, and a proposed method. The drain extension method adds an extra drain to the sensitive node in order to improve charge sharing, the pulse quenching scheme utilizes charge sharing by duplicating a component that offsets the transient pulse, and the proposed technique takes advantage of both. Domino buffers designed using these three techniques, along with a conventional design as reference, were modeled and simulated using a 3D TCAD tool. Simulation results confirm a significant reduction of soft error rate in the proposed technique and suggest a greater reduction with angled incidence. A 130 nm chip containing designed buffer and register chains was fabricated and tested with heavy ion irradiation. According to the experiment results, the proposed design achieved 30% soft error rate reduction, with 19%, 20%, and 10% overhead in speed, power, and area, respectively
    corecore