1,561 research outputs found

    Forebrain CRF<sub>1</sub> modulates early-life stress-programmed cognitive deficits

    Get PDF
    Childhood traumatic events hamper the development of the hippocampus and impair declarative memory in susceptible individuals. Persistent elevations of hippocampal corticotropin-releasing factor (CRF), acting through CRF receptor 1 (CRF1), in experimental models of early-life stress have suggested a role for this endogenous stress hormone in the resulting structural modifications and cognitive dysfunction. However, direct testing of this possibility has been difficult. In the current study, we subjected conditional forebrain CRF1 knock-out (CRF1-CKO) mice to an impoverished postnatal environment and examined the role of forebrain CRF1 in the long-lasting effects of early-life stress on learning and memory. Early-life stress impaired spatial learning and memory in wild-type mice, and postnatal forebrain CRF overexpression reproduced these deleterious effects. Cognitive deficits in stressed wild-type mice were associated with disrupted long-term potentiation (LTP) and a reduced number of dendritic spines in area CA3 but not in CA1. Forebrain CRF1 deficiency restored cognitive function, LTP and spine density in area CA3, and augmented CA1 LTP and spine density in stressed mice. In addition, early-life stress differentially regulated the amount of hippocampal excitatory and inhibitory synapses in wild-type and CRF1-CKO mice, accompanied by alterations in the neurexin-neuroligin complex. These data suggest that the functional, structural and molecular changes evoked by early-life stress are at least partly dependent on persistent forebrain CRF1 signaling, providing a molecular target for the prevention of cognitive deficits in adults with a history of early-life adversity

    Psychological principles of successful aging technologies: A mini-review

    Get PDF
    Based on resource-oriented conceptions of successful life-span development, we propose three principles for evaluating assistive technology: (a) net resource release; (b) person specificity, and (c) proximal versus distal frames of evaluation. We discuss how these general principles can aid the design and evaluation of assistive technology in adulthood and old age, and propose two technological strategies, one targeting sensorimotor and the other cognitive functioning. The sensorimotor strategy aims at releasing cognitive resources such as attention and working memory by reducing the cognitive demands of sensory or sensorimotor aspects of performance. The cognitive strategy attempts to provide adaptive and individualized cuing structures orienting the individual in time and space by providing prompts that connect properties of the environment to the individual's action goals. We argue that intelligent assistive technology continuously adjusts the balance between `environmental support' and `self-initiated processing' in person-specific and aging-sensitive ways, leading to enhanced allocation of cognitive resources. Furthermore, intelligent assistive technology may foster the generation of formerly latent cognitive resources by activating developmental reserves (plasticity). We conclude that `lifespan technology', if co-constructed by behavioral scientists, engineers, and aging individuals, offers great promise for improving both the transition from middle adulthood to old age and the degree of autonomy in old age in present and future generations. Copyright (C) 2008 S. Karger AG, Basel

    Mammalian models of extended healthy lifespan

    Get PDF
    Over the last two centuries, there has been a significant increase in average lifespan expectancy in the developed world. One unambiguous clinical implication of getting older is the risk of experiencing age-related diseases including various cancers, dementia, type-2 diabetes, cataracts and osteoporosis. Historically, the ageing process and its consequences were thought to be intractable. However, over the last two decades or so, a wealth of empirical data has been generated which demonstrates that longevity in model organisms can be extended through the manipulation of individual genes. In particular, many pathological conditions associated with the ageing process in model organisms, and importantly conserved from nematodes to humans, are attenuated in long-lived genetic mutants. For example, several long-lived genetic mouse models show attenuation in age-related cognitive decline, adiposity, cancer and glucose intolerance. Therefore, these long-lived mice enjoy a longer period without suffering the various sequelae of ageing. The greatest challenge in the biology of ageing is to now identify the mechanisms underlying increased healthy lifespan in these model organisms. Given that the elderly are making up an increasingly greater proportion of society, this focused approach in model organisms should help identify tractable interventions that can ultimately be translated to humans

    Early Stage Drug Treatment that Normalizes Proinflammatory Cytokine Production Attenuates Synaptic Dysfunction in a Mouse Model that Exhibits Age-Dependent Progression of Alzheimer\u27s Disease-Related Pathology

    Get PDF
    Overproduction of proinflammatory cytokines in the CNS has been implicated as a key contributor to pathophysiology progression in Alzheimer\u27s disease (AD), and extensive studies with animal models have shown that selective suppression of excessive glial proinflammatory cytokines can improve neurologic outcomes. The prior art, therefore, raises the logical postulation that intervention with drugs targeting dysregulated glial proinflammatory cytokine production might be effective disease-modifying therapeutics if used in the appropriate biological time window. To test the hypothesis that early stage intervention with such drugs might be therapeutically beneficial, we examined the impact of intervention with MW01-2-151SRM (MW-151), an experimental therapeutic that selectively attenuates proinflammatory cytokine production at low doses. MW-151 was tested in an APP/PS1 knock-in mouse model that exhibits increases in AD-relevant pathology progression with age, including increases in proinflammatory cytokine levels. Drug was administered during two distinct but overlapping therapeutic time windows of early stage pathology development. MW-151 treatment attenuated the increase in microglial and astrocyte activation and proinflammatory cytokine production in the cortex and yielded improvement in neurologic outcomes, such as protection against synaptic protein loss and synaptic plasticity impairment. The results also demonstrate that the therapeutic time window is an important consideration in efficacy studies of drugs that modulate glia biological responses involved in pathology progression and suggest that such paradigms should be considered in the development of new therapeutic regimens that seek to delay the onset or slow the progression of AD

    Protection of p-coumaric acid against chronic stress-induced neurobehavioral deficits in mice via activating the PKA-CREB-BDNF pathway

    Get PDF
    There is a body of evidence to suggest that chronic stress modulates neurochemical homeostasis, alters neuronal structure, inhibits neurogenesis and contributes to development of mental disorders. Chronic stress-associated mental disorders present common symptoms of cognitive impairment and depression with complex disease mechanisms. P-coumaric acid (p-CA), a natural phenolic compound, is widely distributed in vegetables, cereals and fruits. P-CA exhibits a wide range of health-related effects, including anti-oxidative-stress, anti-mutagenesis, anti-inflammation and anti-cancer activities. The current study aims to evaluate the therapeutic potential of p-CA against stress-associated mental disorders. We assessed the effect of p-CA on cognitive deficits and depression-like behavior in mice exposed to chronic restraint stress (CRS); we used network pharmacology, biochemical and molecular biological approaches to elucidate the underlying molecular mechanisms. CRS exposure caused memory impairments and depression-like behavior in mice; p-CA administration attenuated these CRS-induced memory deficits and depression-like behavior. Network pharmacology analysis demonstrated that p-CA was possibly involved in multiple targets and a variety of signaling pathways. Among them, the protein kinase A (PKA) - cAMP-response element binding protein (CREB) - brain derived neurotrophic factor (BDNF) signaling pathway was predominant and further characterized. The levels of PKA, phosphorylated CREB (pCREB) and BDNF were significantly lowered in the hippocampus of CRS mice, suggesting disruption of the PKA-CREB-BDNF signaling pathway signaling pathway; p-CA treatment restored the signaling pathway. Furthermore, CRS upregulated expression of proinflammatory cytokines in hippocampus, while p-CA reversed the CRS-induced effects. Our findings suggest that p-CA will offer therapeutic benefit to patients with stress-associated mental disorders

    Tau as the converging protein between chronic stress and Alzheimer's disease synaptic pathology

    Get PDF
    Background: Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder with a complex physiopathology and still undefined initiators. Several risk factors have been suggested for AD with recent evidence supporting an etiopathogenic role of chronic environmental stress and glucocorticoids (GCs, stress hormones) in the development of the disease. Indeed, both AD and chronic stress are associated with neuronal atrophy, synaptic loss and cognitive impairment. Our previous studies have demonstrated the aggravating role of stress and GCs on AD pathology, including Tau hyperphosphorylation and aggregation and cognitive deficits in various AD models. In light of the suggested involvement of Tau missorting in AD synaptotoxity and the dual cytoplasmic and synaptic role of Tau, our recent studies focused on the possible role of Tau in the underlying cascades of stress/GC neuronal malfunction/atrophy in wild type animals by monitoring the intracellular localization of Tau and its phosphorylation status in different cellular compartments. Summary: Biochemical, ultrastructural, behavioral and neurostructural analysis have helped demonstrate that prolonged GC administration leads to dendritic remodeling and spine atrophy and loss in the rat hippocampus triggering Tau missorting at hippocampal synapses with the participation of specific phosphorylated Tau isoforms in this synaptic accumulation. Key Messages: The above findings suggest that Tau plays an essential role in mediating the neurodegenerative effects of stress and GCs towards the development of AD pathology. In addition, they highlight the involvement of Tau missorting in mechanism(s) of synaptic atrophy, beyond AD adding to our limited knowledge of the mechanisms through which stress causes brain pathology
    corecore