4,410 research outputs found

    T1 mapping in cardiac MRI

    Get PDF
    Quantitative myocardial and blood T1 have recently achieved clinical utility in numerous pathologies, as they provide non-invasive tissue characterization with the potential to replace invasive biopsy. Native T1 time (no contrast agent), changes with myocardial extracellular water (edema, focal or diffuse fibrosis), fat, iron, and amyloid protein content. After contrast, the extracellular volume fraction (ECV) estimates the size of the extracellular space and identifies interstitial disease. Spatially resolved quantification of these biomarkers (so-called T1 mapping and ECV mapping) are steadily becoming diagnostic and prognostically useful tests for several heart muscle diseases, influencing clinical decision-making with a pending second consensus statement due mid-2017. This review outlines the physics involved in estimating T1 times and summarizes the disease-specific clinical and research impacts of T1 and ECV to date. We conclude by highlighting some of the remaining challenges such as their community-wide delivery, quality control, and standardization for clinical practice

    Assessment of hepatic fibrosis and inflammation with Look-Locker T1 Mapping and Magnetic Resonance Elastography with histopathology as reference standard

    Full text link
    Purpose: To compare the diagnostic performance of T1 mapping and MR elastography (MRE) for staging of hepatic fibrosis and grading inflammation with histopathology as standard of reference. Methods: 68 patients with various liver diseases undergoing liver biopsy for suspected fibrosis or with an established diagnosis of cirrhosis prospectively underwent look-locker inversion recovery T1 mapping and MRE. T1 relaxation time and liver stiffness (LS) were measured by two readers. Hepatic fibrosis and inflammation were histopathologically staged according to a standardized fibrosis (F0-F4) and inflammation (A0-A2) score. For statistical analysis, independent t test, and Mann-Whitney U test and ROC analysis were performed, the latter to determine the performance of T1 mapping and MRE for fibrosis staging and inflammation grading, as compared to histopathology. Results: Histopathological analysis diagnosed 9 patients with F0 (13.2%), 21 with F1 (30.9%), 11 with F2 (16.2%), 10 with F3 (14.7%), and 17 with F4 (25.0%). Both T1 mapping and MRE showed significantly higher values for patients with significant fibrosis (F0-1 vs. F2-4; T1 mapping p < 0.0001, MRE p < 0.0001) as well as for patients with severe fibrosis or cirrhosis (F0-2 vs. F3-4; T1 mapping p < 0.0001, MRE p < 0.0001). T1 values and MRE LS were significantly higher in patients with inflammation (A0 vs. A1-2, both p = 0.01). T1 mapping showed a tendency toward lower diagnostic performance without statistical significance for significant fibrosis (F2-4) (AUC 0.79 vs. 0.91, p = 0.06) and with a significant difference compared to MRE for severe fibrosis (F3-4) (AUC 0.79 vs. 0.94, p = 0.03). For both T1 mapping and MRE, diagnostic performance for diagnosing hepatic inflammation (A1-2) was low (AUC 0.72 vs. 0.71, respectively). Conclusion: T1 mapping is able to diagnose hepatic fibrosis, however, with a tendency toward lower diagnostic performance compared to MRE and thus may be used as an alternative to MRE for diagnosing hepatic fibrosis, whenever MRE is not available or likely to fail due to intrinsic factors of the patient. Both T1 mapping and MRE are probably not sufficient as standalone methods to diagnose hepatic inflammation with relatively low diagnostic accuracy. Keywords: Biopsy; Fibrosis; Liver; MR elastography; T1 mappin

    Assessment of hepatic fibrosis and inflammation with look-locker T1 mapping and magnetic resonance elastography with histopathology as reference standard

    Full text link
    Purpose: To compare the diagnostic performance of T1 mapping and MR elastography (MRE) for staging of hepatic fibrosis and grading inflammation with histopathology as standard of reference. Methods: 68 patients with various liver diseases undergoing liver biopsy for suspected fibrosis or with an established diagnosis of cirrhosis prospectively underwent look-locker inversion recovery T1 mapping and MRE. T1 relaxation time and liver stiffness (LS) were measured by two readers. Hepatic fibrosis and inflammation were histopathologically staged according to a standardized fibrosis (F0-F4) and inflammation (A0-A2) score. For statistical analysis, independent t test, and Mann-Whitney U test and ROC analysis were performed, the latter to determine the performance of T1 mapping and MRE for fibrosis staging and inflammation grading, as compared to histopathology. Results: Histopathological analysis diagnosed 9 patients with F0 (13.2%), 21 with F1 (30.9%), 11 with F2 (16.2%), 10 with F3 (14.7%), and 17 with F4 (25.0%). Both T1 mapping and MRE showed significantly higher values for patients with significant fibrosis (F0-1 vs. F2-4; T1 mapping p < 0.0001, MRE p < 0.0001) as well as for patients with severe fibrosis or cirrhosis (F0-2 vs. F3-4; T1 mapping p < 0.0001, MRE p < 0.0001). T1 values and MRE LS were significantly higher in patients with inflammation (A0 vs. A1-2, both p = 0.01). T1 mapping showed a tendency toward lower diagnostic performance without statistical significance for significant fibrosis (F2-4) (AUC 0.79 vs. 0.91, p = 0.06) and with a significant difference compared to MRE for severe fibrosis (F3-4) (AUC 0.79 vs. 0.94, p = 0.03). For both T1 mapping and MRE, diagnostic performance for diagnosing hepatic inflammation (A1-2) was low (AUC 0.72 vs. 0.71, respectively). Conclusion: T1 mapping is able to diagnose hepatic fibrosis, however, with a tendency toward lower diagnostic performance compared to MRE and thus may be used as an alternative to MRE for diagnosing hepatic fibrosis, whenever MRE is not available or likely to fail due to intrinsic factors of the patient. Both T1 mapping and MRE are probably not sufficient as standalone methods to diagnose hepatic inflammation with relatively low diagnostic accuracy. Keywords: Biopsy; Fibrosis; Liver; MR elastography; T1 mappin

    Quantitative T1 mapping in cardiomyopathy

    Full text link
    Recent advancements in techniques of Cardiac Magnetic Resonance Imaging provide extended quantitative measurements of myocardial T1. Important tissue characteristics can be tracked noninvasively to allow practitioners to quantify important properties of regional and global myocardium function. Quantification of these T1 measures involves the compilation of multiple images to create a T1 recovery curve, providing a map that estimates the T1 value as an encoded pixel value. After contrast injection, the data is compared with native (no applied contrast agent) T1 to examine myocardial disease involving the interstitium as well as the extracellular volume fraction. Myocardial T1 mapping is an emerging biomarker for quantification of myocardial disease (since an important indicator of heart disease is the expansion of myocardial interstitial space, as is fibrosis). This paper explores the detection and quantification of cardiac involvement using delayed gadolinium enhancement combined with T1 mapping and myocardial extracellular volume fraction. It extends the research being conducted on Cardiac sarcoidosis, an important cardiomyopathy. Cardiac sarcoidosis is a multisystem granulomatous disease of unknown etiology. Cardiac MR is able to detect the active, inflammatory phase of the disease as well as the chronic phase where scarring and fibrosis are dominant. The use of gadolinium-based contrast agents improves the ability to discriminate ischemic from nonischemic etiologies, owing to different patterns among the various nonischemic cardiomyopathies. Since gadolinium shortens T1 relaxation time, the result is a brighter signal intensity in areas with increased interstitial space on inversion recovery T1-weighted sequences. The 1.5 Tesla Philips Achieva XR Scanner was used to collect the pre- and post- contrast images from five anonymous patients (subjects), following the MOLLI protocol. These images were stacked and run through MRMap, which creates parametric image maps of the MOLLI data. Data was graphed employing the Gado Partition Coefficient

    Magnetic resonance multitasking for motion-resolved quantitative cardiovascular imaging.

    Get PDF
    Quantitative cardiovascular magnetic resonance (CMR) imaging can be used to characterize fibrosis, oedema, ischaemia, inflammation and other disease conditions. However, the need to reduce artefacts arising from body motion through a combination of electrocardiography (ECG) control, respiration control, and contrast-weighting selection makes CMR exams lengthy. Here, we show that physiological motions and other dynamic processes can be conceptualized as multiple time dimensions that can be resolved via low-rank tensor imaging, allowing for motion-resolved quantitative imaging with up to four time dimensions. This continuous-acquisition approach, which we name cardiovascular MR multitasking, captures - rather than avoids - motion, relaxation and other dynamics to efficiently perform quantitative CMR without the use of ECG triggering or breath holds. We demonstrate that CMR multitasking allows for T1 mapping, T1-T2 mapping and time-resolved T1 mapping of myocardial perfusion without ECG information and/or in free-breathing conditions. CMR multitasking may provide a foundation for the development of setup-free CMR imaging for the quantitative evaluation of cardiovascular health

    T1 Mapping Basic Techniques and Clinical Applications

    Get PDF
    AbstractIn cardiac magnetic resonance (CMR) imaging, the T1 relaxation time for the 1H magnetization in myocardial tissue may represent a valuable biomarker for a variety of pathological conditions. This possibility has driven the growing interest in quantifying T1, rather than just relying on its effect on image contrast. The techniques have advanced to where pixel-level myocardial T1 mapping has become a routine component of CMR examinations. Combined with the use of contrast agents, T1 mapping has led an expansive investigation of interstitial remodeling in ischemic and nonischemic heart disease. The purpose of this review was to introduce the reader to the physical principles of T1 mapping, the imaging techniques developed for T1 mapping, the pathophysiological markers accessible by T1 mapping, and its clinical uses

    Left ventricular T1-mapping in diastole versus systole in patients with mitral regurgitation

    Get PDF
    Cardiovascular magnetic resonance T1-mapping enables myocardial tissue characterisation, and is capable of quantifying both intracellular and extracellular volume. T1-mapping is conventionally performed in diastole, however, we hypothesised that systolic readout would reduce variability due to a reduction in myocardial blood volume. This study investigated whether T1-mapping in systole alters T1 values compared to diastole and whether reproducibility alters in atrial fibrillation compared to sinus rhythm. We prospectively identified 103 consecutive patients recruited to the Mitral FINDER study who had T1 mapping in systole and diastole. These patients had moderate or severe mitral regurgitation and a high incidence of ventricular dilatation and atrial fibrillation. T1, ECV and goodness-of-fit (R2) values of the T1 times were calculated offline using Circle cvi42 and in house-developed software. Systolic T1 mapping was associated with fewer myocardial segments being affected by artefact compared to diastolic T1 mapping [217/2472 (9%) vs 515/2472 (21%)]. Mean native T1 values were not significantly different when measured in systole and diastole (985 ± 26 ms vs 988 ± 29 respectively; p = 0.061) and mean post-contrast values showed similar good agreement (462 ± 32 ms vs 459 ± 33 respectively, p = 0.052). No clinically significant differences in ECV, native T1 and post-contrast T1 were identified between diastolic and systolic T1 maps in males versus females, or in patients with permanent atrial fibrillation versus sinus rhythm. A statistically significant improvement in R2 value was observed with systolic over diastolic T1 mapping in all analysed maps (n = 411) (96.2 ± 1.4% vs 96.0 ± 1.4%; p &lt; 0.001) and in subgroup analyses [Sinus rhythm: 96.1 ± 1.4 vs 96.3 ± 1.4 (n = 327); p &lt; 0.001. AF: 95.5 ± 1.3 vs 95.9 ± 1.2 (n = 80); p &lt; 0.001] [Males: 95.8 ± 1.4 vs 96.1 ± 1.3 (n = 264); p &lt; 0.001; Females: 96.2 ± 1.3 vs 96.4 ± 1.4 (n = 143); p = 0.009]. In conclusion, myocardial T1 mapping is associated with similar T1 and ECV values in systole and diastole. Furthermore, systolic acquisition is less prone to gating artefact in arrhythmia.</p

    Myocardial t1 Mapping Techniques for Quantification of Myocardial Fibrosis

    Get PDF
    Identifying and quantifying diffuse myocardial fibrosis is important to provide insights into the relationship between myocardial fibrosis, diastolic and systolic dysfunction, as well as clinical outcomes. T1 mapping is a promising technique for noninvasively identifying diffuse myocardial fibrosis in heart failure. A quantitative T1 map provides sensitivity to the full range of T1 values and is advantageous over the traditional T1-weighted imaging by reducing the reliance on visual interpretation of the signal intensity in the myocardium. However, in-vivo myocardial T1 quantification is challenging because of cardiac and respiratory motion. During the past few years, a variety of T1 mapping techniques, including the modified Look Locker inversion recovery (MOLLI) sequence, have been developed and optimized to measure the myocardial T1 value. Importantly, there have been significant differences between the T1 values determined by various methods, and several aspects of T1 mapping are incompletely understood. The accuracy of T1 mapping is sensitive to several confounding factors, such as the types of T1 mapping acquisition sequence and individual physiologic parameters. It also remains unclear if myocardial T1 values are constant throughout the cardiac cycle or the cyclic variation from the error of the variable flip angle (VFA) technique. Lastly, it is necessary to validate these techniques against the endomyocardial biopsy. The work intends to validate several aspects of T1 mapping. Firstly, whether there is significant cyclic variation of myocardial T1 at 1.5T was assessed in healthy volunteers and patients without myocardial disease. Secondly, a fast 3D DFA technique with B1 correction was developed to measure T1 comparably with gold standard in a wide range of T1 values, which showed it is necessary to incorporate B1 correction at 3T. Thirdly, Look Locker and MOLLI were compared to evaluate their agreement and difference in 3 patient groups precontrast and postcontrast situations. Finally, the T1 mapping te

    Myocardial t1 Mapping Techniques for Quantification of Myocardial Fibrosis

    Get PDF
    Identifying and quantifying diffuse myocardial fibrosis is important to provide insights into the relationship between myocardial fibrosis, diastolic and systolic dysfunction, as well as clinical outcomes. T1 mapping is a promising technique for noninvasively identifying diffuse myocardial fibrosis in heart failure. A quantitative T1 map provides sensitivity to the full range of T1 values and is advantageous over the traditional T1-weighted imaging by reducing the reliance on visual interpretation of the signal intensity in the myocardium. However, in-vivo myocardial T1 quantification is challenging because of cardiac and respiratory motion. During the past few years, a variety of T1 mapping techniques, including the modified Look Locker inversion recovery (MOLLI) sequence, have been developed and optimized to measure the myocardial T1 value. Importantly, there have been significant differences between the T1 values determined by various methods, and several aspects of T1 mapping are incompletely understood. The accuracy of T1 mapping is sensitive to several confounding factors, such as the types of T1 mapping acquisition sequence and individual physiologic parameters. It also remains unclear if myocardial T1 values are constant throughout the cardiac cycle or the cyclic variation from the error of the variable flip angle (VFA) technique. Lastly, it is necessary to validate these techniques against the endomyocardial biopsy. The work intends to validate several aspects of T1 mapping. Firstly, whether there is significant cyclic variation of myocardial T1 at 1.5T was assessed in healthy volunteers and patients without myocardial disease. Secondly, a fast 3D DFA technique with B1 correction was developed to measure T1 comparably with gold standard in a wide range of T1 values, which showed it is necessary to incorporate B1 correction at 3T. Thirdly, Look Locker and MOLLI were compared to evaluate their agreement and difference in 3 patient groups precontrast and postcontrast situations. Finally, the T1 mapping te
    • …
    corecore