495 research outputs found

    Prediction of Alzheimer Disease using LeNet-CNN model with Optimal Adaptive Bilateral Filtering

    Get PDF
    Alzheimer's disease is a kind of degenerative dementia that causes progressively worsening memory loss and other cognitive and physical impairments over time. Mini-Mental State Examinations and other screening tools are helpful for early detection, but diagnostic MRI brain analysis is required. When Alzheimer's disease (AD) is detected in its earliest stages, patients may begin protective treatments before permanent brain damage has occurred. The characteristics of the lesion sites in AD affected role, as identified by MRI, exhibit great variety and are dispersed across the image space, as demonstrated in cross-sectional imaging investigations of the disease. Optimized Adaptive Bilateral filtering using a deep learning model was suggested as part of this study's approach toward this end. Denoising the pictures with the help of the suggested adaptive bilateral filter is the first stage (ABF). The ABF improves denoising in edge, detail, and homogenous areas separately. After then, the ABF is given a weight, and the Adaptive Equilibrium Optimizer is used to determine the best possible value for that weight (AEO). LeNet, a CNN model, is then used to complete the AD organization. The first step in using the LeNet-5 network model to identify AD is to study the model's structure and parameters. The ADNI experimental dataset was used to verify the suggested technique and compare it to other models. The experimental findings prove that the suggested method can achieve a classification accuracy of 97.43%, 98.09% specificity, 97.12% sensitivity, and 89.67% Kappa index. When compared against competing algorithms, the suggested model emerges victorious

    A Neuroimaging Web Interface for Data Acquisition, Processing and Visualization of Multimodal Brain Images

    Get PDF
    Structural and functional brain images are generated as essential modalities for medical experts to learn about the different functions of the brain. These images are typically visually inspected by experts. Many software packages are available to process medical images, but they are complex and difficult to use. The software packages are also hardware intensive. As a consequence, this dissertation proposes a novel Neuroimaging Web Services Interface (NWSI) as a series of processing pipelines for a common platform to store, process, visualize and share data. The NWSI system is made up of password-protected interconnected servers accessible through a web interface. The web-interface driving the NWSI is based on Drupal, a popular open source content management system. Drupal provides a user-based platform, in which the core code for the security and design tools are updated and patched frequently. New features can be added via modules, while maintaining the core software secure and intact. The webserver architecture allows for the visualization of results and the downloading of tabulated data. Several forms are ix available to capture clinical data. The processing pipeline starts with a FreeSurfer (FS) reconstruction of T1-weighted MRI images. Subsequently, PET, DTI, and fMRI images can be uploaded. The Webserver captures uploaded images and performs essential functionalities, while processing occurs in supporting servers. The computational platform is responsive and scalable. The current pipeline for PET processing calculates all regional Standardized Uptake Value ratios (SUVRs). The FS and SUVR calculations have been validated using Alzheimer\u27s Disease Neuroimaging Initiative (ADNI) results posted at Laboratory of Neuro Imaging (LONI). The NWSI system provides access to a calibration process through the centiloid scale, consolidating Florbetapir and Florbetaben tracers in amyloid PET images. The interface also offers onsite access to machine learning algorithms, and introduces new heat maps that augment expert visual rating of PET images. NWSI has been piloted using data and expertise from Mount Sinai Medical Center, the 1Florida Alzheimer’s Disease Research Center (ADRC), Baptist Health South Florida, Nicklaus Children\u27s Hospital, and the University of Miami. All results were obtained using our processing servers in order to maintain data validity, consistency, and minimal processing bias

    MRI analysis for Hippocampus segmentation on a distributed infrastructure

    Get PDF
    Medical image computing raises new challenges due to the scale and the complexity of the required analyses. Medical image databases are currently available to supply clinical diagnosis. For instance, it is possible to provide diagnostic information based on an imaging biomarker comparing a single case to the reference group (controls or patients with disease). At the same time many sophisticated and computationally intensive algorithms have been implemented to extract useful information from medical images. Many applications would take great advantage by using scientific workflow technology due to its design, rapid implementation and reuse. However this technology requires a distributed computing infrastructure (such as Grid or Cloud) to be executed efficiently. One of the most used workflow manager for medical image processing is the LONI pipeline (LP), a graphical workbench developed by the Laboratory of Neuro Imaging (http://pipeline.loni.usc.edu). In this article we present a general approach to submit and monitor workflows on distributed infrastructures using LONI Pipeline, including European Grid Infrastructure (EGI) and Torque-based batch farm. In this paper we implemented a complete segmentation pipeline in brain magnetic resonance imaging (MRI). It requires time-consuming and data-intensive processing and for which reducing the computing time is crucial to meet clinical practice constraints. The developed approach is based on web services and can be used for any medical imaging application

    Evaluation of recurrent glioma and Alzheimer’s disease using novel multimodal brain image processing and analysis

    Get PDF
    Novel analysis techniques were applied to two different sets of multi-modality brain images. Localised metabolic rate within the hippocampus was assessed for its ability to differentiate between groups of healthy, mildly cognitively impaired, and Alzheimer’s disease brains, and an investigation of its potential clinical diagnostic utility was conducted. Relative uptake and retention of two PET tracers (11Carbon Methionine and 18Fluoro Thymidine) in a post-treatment glioma patient cohort was utilized to perform survival prediction analysis

    Robust Brain Tissue Segmentation in AD Using Comparative Linear Transformation and Deep Learning

    Get PDF
    As a progressive neurological disease, Alzheimer's disease (AD), if no preventative measures are   taken, can result in dementia and a severe decline in brain function, making it difficult to perform basic tasks. Over 1 in 9 people suffer from dementia caused by Alzheimer's disease and require uncompensated care. The hippocampus is extracted from MRI scans of the brain via image segmentation have been useful for diagnosing Alzheimer's disease (AD).The segmentation of the CSF region in brain MRI is critical for analyzing the stages of AD. The extraction of Hippocampus from an MRI of the brain is greatly influenced by the contrast of the images. Using comparative linear transformation in the horizontal and vertical dimensions as well as statistical edge-based features, this article proposes a robust method for segmentation technique for the extraction of Hippocampus from brain MRI. These transformations aid in balancing the brain image's thin and dense fluid extractions. Through use of the ADNI dataset, the proposed approach had a 99% success rate in segmentation

    Gene-SGAN: a method for discovering disease subtypes with imaging and genetic signatures via multi-view weakly-supervised deep clustering

    Full text link
    Disease heterogeneity has been a critical challenge for precision diagnosis and treatment, especially in neurologic and neuropsychiatric diseases. Many diseases can display multiple distinct brain phenotypes across individuals, potentially reflecting disease subtypes that can be captured using MRI and machine learning methods. However, biological interpretability and treatment relevance are limited if the derived subtypes are not associated with genetic drivers or susceptibility factors. Herein, we describe Gene-SGAN - a multi-view, weakly-supervised deep clustering method - which dissects disease heterogeneity by jointly considering phenotypic and genetic data, thereby conferring genetic correlations to the disease subtypes and associated endophenotypic signatures. We first validate the generalizability, interpretability, and robustness of Gene-SGAN in semi-synthetic experiments. We then demonstrate its application to real multi-site datasets from 28,858 individuals, deriving subtypes of Alzheimer's disease and brain endophenotypes associated with hypertension, from MRI and SNP data. Derived brain phenotypes displayed significant differences in neuroanatomical patterns, genetic determinants, biological and clinical biomarkers, indicating potentially distinct underlying neuropathologic processes, genetic drivers, and susceptibility factors. Overall, Gene-SGAN is broadly applicable to disease subtyping and endophenotype discovery, and is herein tested on disease-related, genetically-driven neuroimaging phenotypes

    Deep learning of brain asymmetry digital biomarkers to support early diagnosis of cognitive decline and dementia

    Get PDF
    Early identification of degenerative processes in the human brain is essential for proper care and treatment. This may involve different instrumental diagnostic methods, including the most popular computer tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) scans. These technologies provide detailed information about the shape, size, and function of the human brain. Structural and functional cerebral changes can be detected by computational algorithms and used to diagnose dementia and its stages (amnestic early mild cognitive impairment - EMCI, Alzheimer’s Disease - AD). They can help monitor the progress of the disease. Transformation shifts in the degree of asymmetry between the left and right hemispheres illustrate the initialization or development of a pathological process in the brain. In this vein, this study proposes a new digital biomarker for the diagnosis of early dementia based on the detection of image asymmetries and crosssectional comparison of NC (normal cognitively), EMCI and AD subjects. Features of brain asymmetries extracted from MRI of the ADNI and OASIS databases are used to analyze structural brain changes and machine learning classification of the pathology. The experimental part of the study includes results of supervised machine learning algorithms and transfer learning architectures of convolutional neural networks for distinguishing between cognitively normal subjects and patients with early or progressive dementia. The proposed pipeline offers a low-cost imaging biomarker for the classification of dementia. It can be potentially helpful to other brain degenerative disorders accompanied by changes in brain asymmetries

    Random forest feature selection, fusion and ensemble strategy: combining multiple morphological MRI measures to discriminate among healthy elderly, MCI, cMCI and Alzheimer's disease patients: from the Alzheimer's disease neuroimaging initiative (ADNI) database

    Get PDF
    Background In the era of computer-assisted diagnostic tools for various brain diseases, Alzheimer’s disease (AD) covers a large percentage of neuroimaging research, with the main scope being its use in daily practice. However, there has been no study attempting to simultaneously discriminate among Healthy Controls (HC), early mild cognitive impairment (MCI), late MCI (cMCI) and stable AD, using features derived from a single modality, namely MRI. New method Based on preprocessed MRI images from the organizers of a neuroimaging challenge,3 we attempted to quantify the prediction accuracy of multiple morphological MRI features to simultaneously discriminate among HC, MCI, cMCI and AD. We explored the efficacy of a novel scheme that includes multiple feature selections via Random Forest from subsets of the whole set of features (e.g. whole set, left/right hemisphere etc.), Random Forest classification using a fusion approach and ensemble classification via majority voting. From the ADNI database, 60 HC, 60 MCI, 60 cMCI and 60 CE were used as a training set with known labels. An extra dataset of 160 subjects (HC: 40, MCI: 40, cMCI: 40 and AD: 40) was used as an external blind validation dataset to evaluate the proposed machine learning scheme. Results In the second blind dataset, we succeeded in a four-class classification of 61.9% by combining MRI-based features with a Random Forest-based Ensemble Strategy. We achieved the best classification accuracy of all teams that participated in this neuroimaging competition. Comparison with existing method(s) The results demonstrate the effectiveness of the proposed scheme to simultaneously discriminate among four groups using morphological MRI features for the very first time in the literature. Conclusions Hence, the proposed machine learning scheme can be used to define single and multi-modal biomarkers for AD
    • …
    corecore