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Abstract 

Several techniques utilizing multimodal brain image processing and analysis as a 

potential means of improving diagnostic outcomes in recurrent glioma and 

Alzheimer’s disease (AD) have been investigated. 

 

Treatment for late stage glioma involves surgery and chemo-radiotherapy which 

causes necrosis and oedema that can be mistaken for, or mask, cancer recurrence. 

Two positron emission tomography (PET) imaging isotopes (
11

Carbon-Methionine 

(CMET) and 3’-deoxy-3’-
18

Fluorine-fluorothymidine (FLT)) were investigated with 

regards to the ideal length of time that should elapse between isotope administration 

and imaging in a cohort of post-treatment late stage glioma patients in order to 

maximise tumour-healthy tissue contrast. It was found that the ideal times to 

commence post-administration imaging using CMET and FLT were less than 40 and 

75 minutes respectively. The same patient cohort was then used to test the capacity 

of CMET and FLT-PET as well as Gadolinium enhanced T1 weighted magnetic 

resonance imaging (Gd-MRI) to act as a survival predictor, based on the volume of 

tissue that demonstrated substantially elevated uptake/enhancement. CMET was the 

only significant predictor of survival (p<0.05, Log-Rank test).  

 

Inter-subject variability and the nonlinear fashion in which AD symptoms develop 

make definitive early diagnosis very difficult. In vivo brain image analysis could 

increase diagnostic accuracy by identifying characteristic patterns of AD physiology. 

A study was conducted to compare an optimised automated volumetric hippocampal 

mask with one that was manually defined and assessed their utility in separating 

groups of healthy control (HC), mildly cognitively impaired (MCI), and AD brains 

based on hippocampal metabolism as seen on 2-Deoxy-2-[
18

F]fluoroglucose (FDG)-

PET. Both masks were able to find significant differences between the AD and MCI 

(p < 0.005) and AD and HC (p < 0.0005) groups, but not the MCI and HC groups 

using Tukey’s HSD test. The automated mask was then evaluated with regards to its 

potential utility as a clinical diagnostic tool; it was found that it would likely find 

greatest value as a means of screening patients in order to flag those with very low 

hippocampal metabolism as having an increased risk of AD. 

 



 

iii 

 

Acknowledgments 

 

The image data that was shared by the Australian Imaging, Biomarkers and Lifestyle 

study, the Alzheimer’s Disease Neuroimaging Initiative, and the Western Australian 

PET Service at Sir Charles Gairdner Hospital is greatly valued. Without it, this work 

would not have been possible. 

 

The contribution made by my supervisors, Andrew Campbell and Brendan McGann, 

has been paramount to the completion of this research. Andrew’s exhaustive 

commitment to the scientific process and willingness to provide detailed editorial 

scrutiny has lifted the quality of this research immeasurably. Brendan’s ability to 

grease the wheels of academic bureaucracy ensured that deadlines were never 

missed. 

 

The assistance of the following people is also greatly appreciated: John Burrage, 

Robert Day, Helen Dyer, Roslyn Francis, Nelson Loh, and Verena Marshall. 

 

Finally, I’d like to thank my Mum and Dad, and my fiancée, Kate. Without their 

unwavering support and remarkable tolerance for listening to me whinge, I probably 

would have given up long ago. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iv 

 

1 Introduction and Literature Review ......................................................................................... 1 

1.1 Overview .................................................................................................................................. 1 

1.2 Brain Anatomy and Function ................................................................................................... 3 

1.2.1 Vascularisation, the Blood-Brain Barrier, and Energy  Metabolism .............................. 4 

1.2.2 The Cerebrum ................................................................................................................. 8 

1.2.3 The Cerebellum and the Brainstem .............................................................................. 13 

1.3 Glioma ................................................................................................................................... 14 

1.3.1 Symptoms and Diagnosis ............................................................................................. 14 

1.3.2 Pathology ...................................................................................................................... 15 

1.3.3 Treatment ..................................................................................................................... 15 

1.3.4 Imaging ........................................................................................................................ 16 

1.4 Alzheimer’s Disease and Mild Cognitive Impairment ........................................................... 19 

1.4.1 Symptoms ..................................................................................................................... 20 

1.4.2 Diagnosis ...................................................................................................................... 20 

1.4.3 Pathology ...................................................................................................................... 22 

1.4.4 Treatment ..................................................................................................................... 23 

1.4.5 Imaging ........................................................................................................................ 24 

1.5 Brain Image Analysis ............................................................................................................. 24 

1.5.1 Linear Transforms ........................................................................................................ 25 

1.5.2 Nonlinear Transformations ........................................................................................... 26 

1.5.3 Segmentation ................................................................................................................ 27 

1.5.4 The Standardised Uptake Value, SUVMAX and SUVPEAK ............................................. 28 

1.6 Outline of Thesis .................................................................................................................... 29 

2 Optimisation of CMET-PET and FLT-PET Acquisition Time in Glioma patients ............ 31 

2.1 Introduction and Literature Review ....................................................................................... 31 

2.2 Materials and Methods ........................................................................................................... 33 

2.2.1 Subjects and Imaging ................................................................................................... 33 

2.2.2 Image Processing .......................................................................................................... 35 

2.2.3 Defining the SUVPEAK and Performing Background Normalisation ............................ 36 

2.3 Results .................................................................................................................................... 38 

2.4 Discussion .............................................................................................................................. 41 

2.5 Conclusion ............................................................................................................................. 43 

3 Survival Rate Analysis of Gd-MRI, CMET-PET, and FLT-PET in Glioma Patients ........ 44 

3.1 Introduction and Literature Review ....................................................................................... 44 



 

v 

 

3.2 Materials and Methods ........................................................................................................... 45 

3.2.1 Subjects and Imaging ................................................................................................... 45 

3.2.2 Image Processing .......................................................................................................... 46 

3.2.3 Optimisation of Viable Tumour Volume Identification Threshold in FLT-PET .......... 48 

3.2.4 Viable Tumour Volume Optimisation for Each Modality ............................................ 49 

3.3 Results .................................................................................................................................... 50 

3.3.1 Optimisation of Viable Tumour Volume Identification Threshold in FLT-PET .......... 50 

3.3.2 Viable Tumour Volume Optimisation for Each Modality ............................................ 51 

3.3.3 Kaplan Meier Survival Plots and Results of the Log-Rank Test .................................. 53 

3.4 Discussion .............................................................................................................................. 56 

3.5 Conclusion ............................................................................................................................. 58 

4 Diagnostic Performance of Manual Versus Automated Hippocampal Masking in 

Alzheimer’s Disease ........................................................................................................................... 59 

4.1 Introduction and Literature Review ....................................................................................... 59 

4.2 Materials and Methods ........................................................................................................... 61 

4.2.1 Image Cohort ................................................................................................................ 61 

4.2.2 Hippocampal Mask Generation .................................................................................... 62 

4.2.3 Quantification of Hippocampal MRglc ........................................................................ 69 

4.3 Results .................................................................................................................................... 71 

4.3.1 Mask Optimisation and Bootstrapping ......................................................................... 71 

4.3.2 Quantification of Hippocampal MRglc Using the Masks ............................................ 72 

4.4 Discussion .............................................................................................................................. 74 

4.5 Conclusion ............................................................................................................................. 76 

5 Clinical Utility of Hippocampal Masking in the Diagnosis of Alzheimer’s Disease 

and Mild Cognitive Impairment ....................................................................................................... 77 

5.1 Introduction and Literature Review ....................................................................................... 77 

5.1.1 Diagnostic Threshold Selection for Diseases with Three States .................................. 77 

5.1.2 Chapter Summary ......................................................................................................... 79 

5.2 Materials and Methods ........................................................................................................... 80 

5.3 Results .................................................................................................................................... 82 

5.3.1 MRI Driven Template Registration Data Set ............................................................... 82 

5.3.2 PET Driven Template Registration Data Set ................................................................ 88 

5.4 Discussion .............................................................................................................................. 93 



 

vi 

 

5.4.1 MRI Driven Template Registration Data Set ............................................................... 95 

5.4.2 PET Driven Template Registration Data Set ................................................................ 95 

5.4.3 Summary ...................................................................................................................... 96 

5.5 Conclusion ............................................................................................................................. 97 

6 Conclusions and Future Work................................................................................................. 98 

6.1 Summary and Evaluation ....................................................................................................... 98 

6.2 Recommendations for Future Research ............................................................................... 101 

7 References ............................................................................................................................... 103 

8 Appendices .............................................................................................................................. 115 

8.1 Appendix 1: SUV Conversion Factor Script ........................................................................ 115 

8.2 Appendix 2: SUV PEAK Location Script ............................................................................ 119 

8.3 Appendix 3: Bootstrap Resampling Script ........................................................................... 123 

8.4 Appendix 4: Pons Normalisation Script ............................................................................... 127 

8.5 Appendix 5: Hippocampal Mask Volume Sampling ........................................................... 128 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vii 

 

List of Figures 

 

Figure 1, The cerebellum, cerebrum and brainstem (Gray and Lewis 1918, p 766) ... 3 

Figure 2, The locations of the right Internal Carotid and Vertebral Arteries (Gray 

and Lewis 1918, p 567). ............................................................................................... 4 

Figure 3, The network of blood vessels on the inferior brain surface (Gray and 

Lewis 1918, p 572). ...................................................................................................... 5 

Figure 4, The location of the ventricles of the brain (Gray and Lewis 1918, p 

829). ............................................................................................................................. 6 

Figure 5, A coronal cross-section of the inferior horn of the lateral ventricle (Gray 

and Lewis 1918, p 841). ............................................................................................... 7 

Figure 6, The four lobes of the cerebral cortex (Gray and Lewis 1918, p 821). ......... 9 

Figure 7, A coronal slice through the cerebrum showing the location and folds of 

the cerebral cortex (Gray and Lewis 1918, p 810). .................................................... 10 

Figure 8, Some of the major gyri and sulci, and functional areas on the lateral 

surface of the cerebrum. Red denotes the motor areas, general sensation areas in 

blue, auditory areas in green and visual areas in yellow. Modified from Gray and 

Lewis (1918), p 821. .................................................................................................. 10 

Figure 9, A coronal slice of the cerebrum showing several subcortical structures 

(Gray and Lewis 1918, p 809).................................................................................... 11 

Figure 10, An axial cutaway through the cerebrum showing the location of the 

hippocampus and pes hippocampus (Gray and Lewis 1918, p 833). ......................... 12 

Figure 11, A cutaway sagittal view showing the location of the hippocampus 

(Gray and Lewis 1918, p 832).................................................................................... 12 

Figure 12, The brainstem and the cerebellum, shown in sagittal view (Gray and 

Lewis 1918, p 798). .................................................................................................... 13 

Figure 13, A schematic representation of the image co-registration process for the 

glioma study cohort. ................................................................................................... 36 

Figure 14, An illustration of the SUV PEAK normalisation process. A subject T1 

MRI is overlaid with the areas of highest CMET uptake (red-yellow). The green 

rectangle is the SUVPEAK search VOI, inside of which the SUVPEAK volume is 

seen (light blue circle). The contralateral background normalisation volume is the 

dark blue circle. .......................................................................................................... 37 



 

viii 

 

Figure 15, A boxplot of the raw normalised CMET SUVPEAK data, overlaid with 

line plots representing each subject. .......................................................................... 38 

Figure 16, A boxplot of the mean subtracted normalised CMET SUVPEAK data, 

overlaid with line plots representing each subject. .................................................... 39 

Figure 17, A boxplot of the raw normalised FLT SUVPEAK data, overlaid with 

line plots representing each subject. .......................................................................... 40 

Figure 18, A boxplot of the mean subtracted normalised FLT SUVPEAK data, 

overlaid with line plots representing each subject. .................................................... 41 

Figure 19, (Part A): Brain masking the PET images and dividing them into L and 

R hemispheres to allow for calculation of tumour to background uptake, (Part B): 

The resultant viable tumour mass, as seen on the 20 minute CMET scan. ................ 47 

Figure 20, (Part A): A Gd enhanced T1-MRI taken from the study group, (Part 

B): The same image highlighting the volume used as a VOI mask drawn around 

the tumour region, (Part C): The green tissue was defined as viable tumour tissue 

using the manual thresholding technique. .................................................................. 48 

Figure 21, ROC curves for all FLT background normalisation thresholds between 

0.1 and 0.7. Median group survival time was used as the status variable. ................. 51 

Figure 22, The median survival ROC curve for CMET-PET for tumour-

background  SUV ratio > 1.5, including the point on the curve that is closest to Sp 

and Se = 1. .................................................................................................................. 52 

Figure 23, The median survival ROC curve for FLT-PET for tumour-background  

SUV absolute difference > 0.2, including the point on the curve that is closest to 

Sp and Se = 1. ............................................................................................................ 52 

Figure 24, The median survival ROC curve for Gd-MRI enhancement, including 

the points on the curve that are closest to Sp and Se = 1. .......................................... 53 

Figure 25, A Kaplan Meier survival plot for CMET-PET viable tumour volume, 

the delineation between ‘small’ and ‘large’ tumour mass was set at 25 cm
3
. ............ 54 

Figure 26, A Kaplan Meier survival plot for FLT-PET viable tumour volume, the 

delineation between ‘small’ and ‘large’ tumour mass was set at 41.4 cm
3
................ 54 

Figure 27, A Kaplan Meier survival plot for Gd-MRI enhancement volume, the 

delineation between ‘small’ and ‘large’ tumour mass was set at 14.5 cm
3
................ 55 

Figure 28, A Kaplan Meier survival plot for Gd-MRI enhancement volume, the 

delineation between ‘small’ and ‘large’ tumour mass was set at 20 cm
3
................... 55 



 

ix 

 

Figure 29, A coronal outline of the hippocampus in the left hemisphere, made 

using the manual marking technique in ImageJ (RSB, National Institute of Mental 

Health). ....................................................................................................................... 63 

Figure 30, (Part A): Manually marked coronal hippocampal sections, viewed in 

the sagittal plane, (Part B): The continuous hippocampal volume formed by using 

the ‘dilate’ and ‘erode’ functions in ImageJ. ............................................................. 64 

Figure 31, A sagittal view of a subject’s hippocampal volume, defined by FIRST. 65 

Figure 32, (Part A): A native space subject MRI, (Part B): The MRI after skull 

extraction using BET, (Part C): The MRI after affine brain template registration 

using FLIRT, (Part D): The MRI after nonlinear spatial warping to the T1 MNI 

template using FNIRT, (Part E): The T1 MNI template. ........................................... 66 

Figure 33, The location of a subject’s FSL (Smith et al. 2004) marked 

hippocampus in MNI space after nonlinear warping to the MNI template................ 67 

Figure 34, (Part A): The summation volumes displaying the MNI space location 

of all hippocampal volumes for the manual markings, (Part B): The automated 

FSL (Smith et al. 2004) markings. The heat map corresponds to the degree of 

overlap at each voxel. ................................................................................................. 68 

Figure 35, (Part A): A subject FDG-PET volume in its native space, (Part B): The 

subject PET and MRI volumes after intra-subject MRI co-registration, (Part C): 

The subject PET and MRI volumes after nonlinear spatial registration with the 

MNI template. ............................................................................................................ 70 

Figure 36, The VOI used to represent the pons for scaling of a subject’s FDG-

PET images. ............................................................................................................... 71 

Figure 37, Boxplots showing the group level differences between diagnostic 

category for both the manually marked and FSL (Smith et al. 2004)  hippocampus 

masks. ......................................................................................................................... 72 

Figure 38, A graphical representation of the degree of correlation between MRglc 

levels measured in each individual between the automated and manual 

hippocampus masks. .................................................................................................. 73 

Figure 39, (Part A): A native space ADNI PET image, (Part B): The PET image 

after the application of a 12 DOF affine transform, (Part C): The PET image after 

the application of a series of nonlinear warps to co-regiester it with (Part D): The 

SPM (Friston 2007) PET template. ............................................................................ 81 



 

x 

 

Figure 40, A box and whisker plot displaying the pons normalised hippocampal 

MRglc for the 100 subject mask development cohort. .............................................. 83 

Figure 41, A box and whisker plot displaying the pons normalised hippocampal 

MRglc for the mask development cohort after the removal of the outlier from the 

AD group. ................................................................................................................... 83 

Figure 42, A graphical representation of the three group Youden Index and cut-

off threshold selection for the mask development cohort. ......................................... 84 

Figure 43, A box and whisker plot illustrating the distribution of the two group 

pons normalised hippocampal metabolism data for the MRI driven mask 

development cohort. ................................................................................................... 86 

Figure 44, The ROC curve displaying the variation of sensitivity and specificity 

with cut-off threshold selection for the reduced dimension data set (AD vs non-

AD), as well as the point on the curve that optimises the Youden Index for the 

MRI driven mask development cohort. ...................................................................... 87 

Figure 45, A box and whisker plot displaying the pons normalised hippocampal 

MRglc for the mask development cohort after the removal of the outlier from the 

AD group, based on the PET driven spatial warp. ..................................................... 88 

Figure 46, A graphical representation of the three group Youden Index and cut-

off threshold selection for the mask development cohort PET driven spatial warp. . 89 

Figure 47, A box and whisker plot illustrating the distribution of the two group 

pons normalised hippocampal metabolism data for the PET driven mask 

development cohort. ................................................................................................... 91 

Figure 48, The ROC curve displaying the variation of sensitivity and specificity 

with cut-off threshold selection for the reduced dimension data set (AD vs non-

AD), as well as the point on the curve that optimises the Youden Index for the 

PET driven 100 subject mask development cohort. ................................................... 92 

Figure 49, Images of the MNI template spatially normalised subject brain that 

showed an abnormally low measurement of pons normalised hippocampal MRglc 

in Figure 40. (Part A): A trans-axial slice through the subject brain at the level of 

the hippocampus, (Part B): The same slice overlaid with the optimised automated 

FSL (Smith et al. 2004) hippocampal mask (yellow voxels), (Part C): The masked 

region at a higher magnification, (Part D): The mask voxels that fell within the 

lateral ventricles on the subject brain, rather than the hippocampus (red voxels). .... 94 



 

xi 

 

List of Tables 

Table 1, The AUC values calculated for each FLT background normalisation 

threshold ROC curve. ................................................................................................. 51 

Table 2, A summary of the results of the Log-Rank test performed on the survival 

data from each KM plot. ............................................................................................ 56 

Table 3, The significance (Tukey’s HSD) of differences in normalised 

hippocampal MRglc between AD, MCI and HC groups for both manual and FSL 

(Smith et al. 2004) masks. .......................................................................................... 73 

Table 4, The results of applying the cut-off thresholds from the MRI driven 

spatial normalisation mask development data set Three Group Youden Index 

analysis to the 90 subject test data set. ....................................................................... 85 

Table 5, The results of applying the cut-off thresholds from the MRI driven mask 

development data set ROC curve Youden Index Analysis to the 90 subject test 

data set, including 95% confidence intervals for sensitivity and specificity. ............ 88 

Table 6, The results of applying the cut-off thresholds from the PET driven 100 

subject mask development data set Three Group Youden Index analysis to the 90 

subject test data set. .................................................................................................... 90 

Table 7, The results of applying the cut-off thresholds from the PET driven 100 

subject mask development data set ROC curve Youden Index Analysis to the 90 

subject test data set, including 95% confidence intervals for sensitivity and 

specificity. .................................................................................................................. 93 

 

 

 

 

 

 

 

 



 

xii 

 

List of Frequently used Abbreviations 

 

AD – Alzheimer’s Disease 

ADNI – Alzheimer’s Disease Neuroimaging Initiative 

AIBL – Australian Imaging Biomarkers and Lifestyle study 

AUC – Area Under the Curve 

BBB – Blood Brain Barrier 

CDR – Clinical Dementia Rating 

CMET – 
11

Carbon-Methionine 

CNS – Central Nervous System 

CSF – Cerebrospinal Fluid 

FDG – Deoxy-2-[
18

F]Fluoroglucose 

FLT – 3’-Deoxy-3’-
18

Fluorine-Fluorothymidine 

Gd-MRI – Gadolinium enhanced Magnetic Resonance Image 

GDS – Global Deterioration Scale 

HC – Healthy Control 

MCI – Mild Cognitive Impairment  

MMSE – Mini Mental State Examination 

MNI – Montreal Neurological Institute 

MRglc – Glucose Metabolic Rate 

MRI – Magnetic Resonance Imaging 

PET – Positron Emission Tomography  

ROC – Receiver Operating Characteristic 

SUV – Standardised Uptake Value 

VBA – Voxel Based Analysis 

 

 

 

 

 

 

 

 



 

xiii 

 

Conference Presentations Arising from this Thesis 

 

‘Detecting Alzheimer’s Disease Using Automated Volumetric Hippocampal 

Masking’, C. Leatherday, A. Campbell (poster) (EPSM 2013, Nov 3-7, Perth WA) 

 

‘Uptake of 
11

C-Methionine on Glioma at Various Post-Injection Time Points’, C. 

Leatherday, A. Campbell, R. Francis (CSM 2014, Sep 4-7, Melbourne VIC) 

 

‘Predicting Survival Outcomes of Post-Treatment Glioma Patients by Quantification 

of Viable Tumour Volume on CMET/FLT PET and MRI’, C. Leatherday, A. 

Campbell, R. Francis (IUPESM 2015, Jun 7-12, Toronto ON) 

 

 

 

 

 

 



 

1 

 

1 Introduction and Literature Review 

 

1.1 Overview 

 

Disease pathology of the brain was historically difficult to observe in vivo, due to the 

requirement to penetrate the skull in order to expose the brain, and the extremely 

high stakes involved in any attempt at physical intervention in the cranial region. The 

advent of x-ray, magnetic resonance imaging (MRI), and various nuclear medicine 

imaging methods have completely changed the manner in which diseases of the brain 

can be observed and treated. This thesis presents image analysis techniques to aid in 

the identification and treatment of two brain conditions: glioma and Alzheimer’s 

disease (AD). 

 

Glioma, and in particular glioblastoma multiforme, is a tumour type that is notorious 

for its low rates of long term treatment efficacy. Treatment is almost always followed 

by recurrence due to the aggressive radial  growth patterns of the disease and the 

difficulty associated with complete lesion removal (Fortin 2011). Novel brain 

imaging methodologies and image processing techniques are avenues of research that 

aim to increase spatial accuracy of lesion identification and deliver higher sensitivity 

and specificity with respect to the detection of recurrent cancer growth. In this thesis, 

the optimal post-injection delay time for imaging of post-treatment glioma patients is 

investigated for two positron emission tomography (PET) tracers: 
11

Carbon-

Methionine (CMET), and 3’-deoxy-3’-
18

Fluorine-fluorothymidine (FLT). These two 

PET tracers, as well as gadolinium enhanced T1 weighted MRI (Gd-MRI) were then 

assessed for their utility in survival prediction based on the volume of brain tissue 

demonstrating elevated uptake/enhancement in each modality. This research has two 

main aims with regards to brain imaging in glioma: to identify an ideal post-injection 

waiting period for glioma PET imaging with CMET, and with FLT (addressed in 

Chapter 2); and to quantify the degree to which CMET, FLT, and Gd-MRI can be 

used to predict survival in a cohort of post-treatment glioma patients (addressed in 

Chapter 3). 
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The prevalence of AD, and the costs associated with it, has risen inextricably with 

life expectancy in the Western world. The medial temporal lobe of the cerebrum is a 

brain region that shows significant early physical atrophy in AD (Jack et al. 1997). 

Atrophy of the hippocampus in particular is known to be an early indicator of AD 

(Morra et al. 2009). Such severe atrophy can result in a decrease in localised glucose 

metabolic rate (MRglc). The small size of the atrophied hippocampus can result in 

the quantification of a reduction in MRglc to be hampered by partial volume effects. 

Attempts to observe the expected reduction in MRglc in the hippocampus using 

functional brain imaging have often failed in studies that have used voxel based 

analysis (VBA) methods of image spatial normalisation to register images to a 

standard space; this was likely due to registration errors causing inconsistencies in 

hippocampal location between subjects (Mosconi et al. 2005). An optimised 

volumetric mask based on manually outlined subject hippocampal regions has shown 

utility in detecting reductions in localised MRglc in AD and mildly cognitively 

impaired (MCI) brains (Mosconi et al. 2005). In this thesis, a manually outlined 

mask is compared with one that was based on automatically defined hippocampal 

volumes by the program FSL (Smith et al. 2004) with regards to their utility in 

reduced hippocampal MRglc detection in groups of mildly cognitively impaired 

(MCI) and AD brains. The FSL subject hippocampal volume based mask was then 

further tested for its potential utility in the diagnosis of an individual, both when a 

subject MRI is present to guide spatial normalisation, and when it is absent. The aims 

of this research in AD brain image analysis are: to quantify the efficacy of two 

different hippocampal masking techniques in detecting group level differences in 

MRglc between cohorts of Healthy Control (HC), MCI, and AD brains using deoxy-

2-[
18

F]fluoroglucose (FDG)-PET (addressed in Chapter 4); and to assess the potential 

clinical utility of an automated hippocampal masking algorithm in MCI and AD 

diagnosis (addressed in Chapter 5). 

 

This chapter introduces important background concepts for the thesis, and reviews 

relevant literature in the field. 
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1.2 Brain Anatomy and Function 

 

The average adult human brain weighs approximately 1400 grams and has a volume 

of 1200 cm
3
 (Carpenter and Sutin 1983). It has approximate symmetry along the 

central sagittal plane, and as such can be divided into left and right hemispheres. The 

total brain volume can be divided into three regions: the brainstem, the cerebellum, 

and the cerebrum. These three regions are shown in Figure 1. 

 

 

Figure 1, The cerebellum, cerebrum and brainstem (Gray and Lewis 1918, p 766) 

 

The bone structure of the skull, as well as three distinct membranes between the 

brain and the skull, protect the brain from impact trauma. The extremely tough, 

outermost membrane is the dura mater. Inside this is the intermediate membrane, the 

arachnoid. The innermost membrane is the pia mater, which is extremely delicate 

and adheres very closely to the brain’s surface. The brain is suspended in a colourless 

liquid called cerebrospinal fluid (CSF), situated inside the arachnoid membrane. CSF 

also flows down through the spinal column, and acts as an impact-dampening 

mechanism for the brain. CSF forms an important component of the system of 

barriers that allow for “… maintenance of the cerebral environment and protection of 

the brain from the systemic circulation” (Deisenhammer et al. 2015, p 18). 

 

 

Brainstem 
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1.2.1 Vascularisation, the Blood-Brain Barrier, and Energy 

 Metabolism 

 

1.2.1.1 Vascularisation 

 

The human brain receives an extremely large proportion of cardiac and metabolic 

output relative to its size. Roughly 15% of blood flow is directed to the brain, and 

around 20% of the body’s resting metabolic rate is required to maintain brain 

function (Siegel and Agranoff 1999). Despite the fact that normal brain tissue 

accounts for about 2% of the body’s mass, it has the highest rate of glucose 

metabolism of any healthy tissue in the body (Gulyas and Halldin 2012). Blood is 

delivered to the cerebrum via the internal carotid arteries, and to the cerebellum and 

brain stem via the vertebral arteries, both of which are bilateral (Cipolla 2009), 

Figure 2 shows the location of these arteries on the right hand side of the neck. 

 

 

Figure 2, The locations of the right Internal Carotid and Vertebral Arteries (Gray and Lewis 1918, 

p 567). 

 

1.2.1.2 The Blood-Brain Barrier 

 

The blood-brain barrier (BBB) is a term that describes the biological system 

controlling the flow of material between the brain and the rest of the body. This 

barrier is vital for optimal cerebral performance, as it allows the brain to maintain the 

Internal Carotid Artery 

Internal Vertebral Artery 
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correct concentration of ions needed for proper function, and protects it from blood-

borne pathogens (Saunders et al. 2008). The BBB is “… a fundamental physical 

barrier at the level of intercellular junctions between cells” (Saunders et al. 2008, p 

279), and is present across a large number of blood vessels in contact with the brain. 

Part of the overall BBB system is the blood-cerebrospinal fluid barrier (BCSFB), 

located in the choroid plexus, found in each of the brain’s ventricles.  Figure 3 

depicts the location of blood vessels on the inferior surface on the brain, displaying 

the extent of vascularisation that is present. Figure 4 is an illustration of the location 

of the ventricles of the brain. 

 

 

Figure 3, The network of blood vessels on the inferior brain surface (Gray and Lewis 1918, p 572). 
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Figure 4, The location of the ventricles of the brain (Gray and Lewis 1918, p 829). 

 

Figure 5 shows the location of the choroid plexus in a lateral ventricle. The choroid 

plexus “… regulates the exchange of fluid and solutes between blood and CSF in 

part by acting as a passive, paracellular barrier to solutes” (Zheng and Chodobski 

2005, p 26). As well as forming a vital component of the overall BBB, the choroid 

plexus continually produces ‘fresh’ CSF, controls the flow of CSF between the 

ventricles and pia mater-arachnoid cavity, and fulfils a similar role within the brain 

as the kidneys do for the overall blood stream, that is, the filtration and removal of 

waste products and metabolites. 

 

Fourth Ventricle Cerebral Aqueduct 
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Figure 5, A coronal cross-section of the inferior horn of the lateral ventricle (Gray and Lewis 1918, 

p 841). 

 

The BBB is highly effective at allowing the brain to operate in a healthy manner, but 

can prove a significant obstacle in drug delivery and imaging. In-vivo imaging agents 

are often limited to molecules that can freely traverse the BBB. However, pathology 

that includes disruption of the BBB can be highlighted by use of an imaging agent 

that is only able to enter the brain in specific regions of disruption. Clinically, 

disruption of the BBB can be shown using Gd-MRI, as the gadolinium will pool in, 

and therefore highlight, areas of BBB disruption. 

 

1.2.1.3 Energy Metabolism 

 

The majority of cellular work within the body is powered by Adenosine 

Triphosphate (ATP), which is produced by the oxidation of glucose during cellular 

respiration. Some cells, such as those found in muscle, are capable of storing 

significant amounts of glycogen (enough to power them for up to a day without 

replenishment from food). Glycogen can then be converted to glucose via hydrolysis. 

These cells can also store oxygen through the usage of myoglobin (Campbell and 

Reece 2002). The brain stores some glycogen, but in very low concentrations 

compared to the aforementioned tissues, and does not have intracellular oxygen 

storage capacity. The brain therefore requires a constant supply of both glucose and 
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Choroid Plexus 
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oxygen for survival, which is delivered through the vascular system. Oxygen is able 

to diffuse across cell membranes and so is able to freely traverse the BBB in 

accordance with the concentration gradient. Specific transporters exist within the 

endothelial cells of the BBB for the uptake of glucose, so that it may be absorbed 

from the brain’s arterial blood supply through facilitated diffusion (Siegel and 

Agranoff 1999).  

 

Since glucose is absorbed from the blood as required, the total cerebral uptake of 

glucose is proportional to the amount of neuronal activity taking place in the brain at 

a given moment in time. This principle is also applicable to smaller volumes within 

the brain itself; that is, the localised instantaneous rate of glucose uptake and/or 

blood perfusion in a given volume is proportional to the amount of neuronal activity 

within that volume. Therefore, imaging the rate of glucose metabolism within the 

brain serves as a surrogate means to visualise neuronal activity. 

 

1.2.2 The Cerebrum 

 

The outermost layer of the cerebrum is called the cerebral cortex, and is divided 

anatomically into four lobes: frontal, parietal, temporal and occipital. The lobes of 

the cerebral cortex are shown in Figure 6. 
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Figure 6, The four lobes of the cerebral cortex (Gray and Lewis 1918, p 821). 

 

Different regions of the cerebral cortex perform different neurological functions. As 

the brain develops during childhood, the hemispheres specialise in a distinct manner. 

The left hemisphere specialises towards “… language, math, logic operations, and 

the processing of serial sequences of information” (Campbell and Reece 2002, p 

1049), whereas the right hemisphere is “… stronger at pattern recognition, face 

recognition, spatial relations, nonverbal ideation, emotional processing in general, 

and parallel processing of many kinds of information” (Campbell and Reece 2002, p 

1049). As can be seen in the coronal slice depicted in Figure 7, the cerebral cortex is 

arranged in a pattern of ridges (gyri) and furrows (sulci). Major gyri and sulci form 

the borders of the lobes of the cerebrum. Many of the major gyri and sulci and some 

of the functional areas of the cerebrum are highlighted in Figure 8. 
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Figure 7, A coronal slice through the cerebrum showing the location and folds of the cerebral 

cortex (Gray and Lewis 1918, p 810). 

 

 

Figure 8, Some of the major gyri and sulci, and functional areas on the lateral surface of the 

cerebrum. Red denotes the motor areas, general sensation areas in blue, auditory areas in green 

and visual areas in yellow. Modified from Gray and Lewis (1918), p 821. 
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Located inside the cerebrum is the sub-cortex, which contains multitudinal individual 

subcortical structures. Some of these are highlighted in Figure 9. 

 

 

Figure 9, A coronal slice of the cerebrum showing several subcortical structures (Gray and Lewis 

1918, p 809). 

 

Of particular importance to AD is the hippocampus, a bilateral structure situated 

within the temporal lobe of each hemisphere. The inferior horn of the lateral 

ventricle lies around the edge of the hippocampus, and is bordered by the lateral 

ventricle on the superior and lateral sides (refer Figure 10). At the medial edge of the 

hippocampus is the dentate gyrus, and the inferior borders the subiculum and 

parahippocampal gyrus (Gardner et al. 1975). The location of the hippocampus from 

a sagittal viewpoint is shown in Figure 11. 
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Figure 10, An axial cutaway through the cerebrum showing the location of the hippocampus and 

pes hippocampus (Gray and Lewis 1918, p 833). 

 

 

Figure 11, A cutaway sagittal view showing the location of the hippocampus (Gray and Lewis 1918, 

p 832).  
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1.2.3 The Cerebellum and the Brainstem 

 

The cerebellum lies inferior to the occipital and posterior portion of the temporal 

lobes of the cerebrum. The cerebellum is not as ‘advanced’ in an evolutionary sense 

as the cerebrum, and does not play a role in sensory perception or the formation of 

thoughts or memories. Its functions include the coordination of muscle movement 

and balance, which is achieves with the aid of collateral input from the sensory 

system (Waxman 2013).  

 

Attaching the brain to the spinal cord is the brainstem. It lies inferior to the cerebrum 

and to the anterior of the cerebellum. Including such structures as the pons and 

medulla, the brainstem is responsible for the regulation of several essential 

automated functions, such as breathing, heartbeat, and blood pressure (Waxman 

2013). The pons can be of particular interest in AD research. One of the symptoms of 

AD is a reduced metabolic rate across several key areas of the cerebrum (McKhann 

et al. (2011); Minoshima et al. (1997)). The pons, however, has been shown to 

maintain pre-AD levels of glucose metabolism throughout the duration of the disease 

(Minoshima et al. 1995). Consequently, the localised metabolic rate seen in parts of 

the cerebrum of AD patients can be normalised to the metabolic rate in the pons in 

order to provide an estimate of degree of localised cerebral metabolic degradation. 

The brainstem and cerebellum can be seen in sagittal view in Figure 12. 

 

 

Figure 12, The brainstem and the cerebellum, shown in sagittal view (Gray and Lewis 1918, p 798).  
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1.3 Glioma 

 

Glioma is the term given to a range of tumours of the central nervous system (CNS) 

that originate from glial cells. Gliomas are the most common tumour of the brain and 

are responsible for 49% of all primary brain tumours and approximately 2% of new 

cancer cases in the USA; life expectancy following a glioma diagnosis is poor, most 

patients die within 12 months (Hayat 2011). The treatment method of surgical 

debulking, followed by chemoradiotherapy, can increase median life expectancy to 

over a year, and the two year survival rate from 10% to 26% (Stupp et al. 2005). 

 

1.3.1 Symptoms and Diagnosis 

 

Symptoms of glioma can vary depending on their location in the CNS, type and 

severity. Symptoms can include nausea and/or vomiting, headaches, trouble 

balancing or asymmetrical physical weakness, memory and speech difficulty, 

fainting, seizures, incontinence, back and neck pain, as well as depression, irritability 

and other personality changes. Mental symptoms of glioma can also affect the 

patients’ decision-making ability and judgement process, and cause further delays in 

the formation of a proper diagnosis due to sufferers’ lack of willingness to see a 

physician. Symptoms may develop slowly and are often ignored or mistaken for 

other ailments (Salander et al. 1999). 

 

Once symptoms have been assessed and glioma is considered a possibility, a 

preliminary diagnosis can be made using radiologic imaging. Gd-MRI is effective in 

showing increased intensity in a tumour region, provided there is disruption of the 

BBB. The best procedure is to perform two MRIs, one with and one without 

gadolinium enhancement (Behin et al. 2003). If MRI is not available, CT can be used 

to assess a lesion quickly; however, it is much less sensitive than MRI. Due to the 

lack of specificity of imaging methods, histological assessment of a biopsy sample is 

also required for a definitive diagnosis (Behin et al. 2003). Once a diagnosis is made, 

the tumour is staged and graded from ‘I’ to ‘IV’, where IV is the highest grade given, 

corresponding to the worst prognosis. 
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1.3.2 Pathology 

 

Several different types of gliomas exist, variations are dependent on the type of glial 

cell from which they originated. The vast majority of glioma patients included in this 

research were adults with glioblastoma multiforme. The specific pathology of this 

malignancy is discussed below. 

 

More than 50% of malignant gliomas are glioblastoma multiforme, making it the 

most common primary brain tumour among adults. It is a rapid-growing malignancy 

that exhibits resistance to both radio- and chemotherapy; however, even with 

aggressive management, recurrence is almost always inevitable. Glioblastomas “… 

consist mainly of undifferentiated anaplastic cells of astrocytic origin, which exhibit 

marked nuclear pleomorphism, necrosis and vascular endothelial proliferation” 

(Hayat 2011, p 4). Glioblastoma occurs mostly in the cerebrum of adults, and the 

tumour cells are usually arranged radially with respect to the necrotic region. 

Surgical resection, although often performed, is rarely curative due to the highly 

invasive and irregular growth of this type of tumour (Wirth et al. 2011).  

 

1.3.3 Treatment 

 

Treatment options for Glioma patients can vary depending on the location and mass 

of the tumour, as well as the age of the patient. Surgical removal or debulking (if 

possible) followed by chemoradiotherapy, is currently considered the standard 

strategy for treatment. Increased median life expectancy has been reported by using 

fractionated focal irradiation in daily fractions of two Gy given five days per week 

for six weeks, along with continuous temozolomide (75 mg per square metre of 

body-surface area per day), followed by six cycles of temozolomide (150-200 mg 

square metre of body-surface area per day for five days during each 28 day cycle) 

(Stupp et al. 2005). 
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1.3.4 Imaging 

 

As stated in Section 1.3.1, radiologic imaging is used as part of the initial diagnostic 

procedure for glioma. Once a positive diagnosis is made, further imaging is 

performed to aid in surgical guiding and to monitor patient recovery and post-surgery 

condition. CT and MRI are both useful for the formation of an initial diagnosis. MRI 

in glioma imaging is usually enhanced with the intravenously-administered MRI 

contrast agent, gadolinium diethylenetriaminepentaacetate (Gd-DTPA). Once 

administered, Gd-DTPA is distributed throughout the vascular system. If there is a 

breakdown of the BBB, the extravascular leakage leads to pooling of Gd-DTPA in 

the affected region, increasing its intensity on MRI (Carr et al. 1984).  Both CT and 

MRI are of limited use for monitoring treatment outcomes as they “… cannot 

reliably differentiate viable tumour tissue from treatment-induced non neoplastic 

changes, such as oedema, postoperative changes or radiation necrosis” (Vander 

Borght et al. 2010, p 10). Several different nuclear medicine radioisotopes have been 

investigated for use in glioma imaging. FDG is the most widely used PET tracer, and 

has been used extensively in glioma studies. The two tracers used in this research are 

11
Carbon-Methionine (CMET) and 3’-deoxy-3’-

18
Fluorine-fluorothymidine (FLT). 

 

1.3.4.1 2-Deoxy-2-[18F]Fluoroglucose 

 

Neoplasmic cancer cells are known to metabolise glucose at a rate that is much 

higher than that of most healthy tissue, a phenomenon known as the Warburg Effect 

(Warburg 1956). FDG is a glucose analogue that is used to image the relative 

localised cellular metabolic rate (MRglc). As a result, FDG imaging is able to take 

advantage of the Warburg Effect, and is extensively used to stage and re-stage 

various pathologically proven cancers throughout the body, monitor treatment 

progression, and identify distant metastases (Kelloff et al. 2005). 

 

Imaging cancers within the brain with FDG can be more problematic than other parts 

of the body, as healthy brain tissue also has a very high metabolic rate (see Section 

1.2.1). It is therefore more difficult to see a distinction between normal tissue uptake 

and tumour uptake. FDG uptake is more likely to be noticeably elevated in high 
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grade (III and IV) than in low grade (I and II) glioma, with high hazard ratios (4.6 

and 11 for right and left hemisphere tumours respectively) found for patients 

showing high FDG tumour uptake (Padma et al. 2003). However, up to 14% of high 

grade gliomas have been shown to exhibit lower FDG uptake than the surrounding 

tissue (Padma et al. 2003). FDG has shown limited utility in distinguishing tumour 

recurrence from radiation necrosis. Using contralateral white matter uptake as a 

normalisation standard, radiation necrosis has been successfully distinguished from 

tumour progression with a sensitivity of 86 ± 14 %, specificity of 22 ± 6%, positive 

predictive value of 73 ± 20%,  and negative predictive value of 50 ± 49%. These 

results were shown in a study by Ricci and colleagues (1998) where histopathologic 

confirmation of tumour progression was available. 

 

1.3.4.2 11
Carbon-Methionine 

 

Methionine is one of 20 standard amino acids used in the production of proteins and 

generation of metabolic energy. It is one of 10 essential amino acids, meaning that it 

cannot be synthesised inside the human body and must be ingested directly. 

Methionine is required by the body for the processes of protein synthesis and the 

methylation of DNA, guanidoacetate, norepinephrine, and RNA (Fromm and 

Hargrove 2012). The BBB shows selective permeability to amino acids; methionine 

is one of a group of large neutral amino acids that are able to traverse the BBB via 

the L-Type amino acid transporter system (Betz and Goldstein (1978); Okubo et al. 

(2010); Oldendorf (1971)). Capillaries inside glioma tissue have been shown to have 

up-regulated amino acid transporter expression compared with healthy brain tissue 

(Miyagawa et al. 1998); this factor, combined with increased micro vessel density, 

leads to elevated CMET uptake (Kracht et al. 2003). 

 

CMET-PET has been used as a means of imaging the rate of amino acid metabolism 

in glioma (Okubo et al. 2010). It has been found that CMET can provide superior 

tumour-healthy tissue contrast when compared with FDG (Bergstrom et al. 1983). 

Elevated uptake of CMET is also present in low grade tumours (Herholz et al. 1998). 

CMET has shown high utility in tumour detection and delineation, as well as 

differentiation between benign and malignant lesions (Kawai et al. 2011).  
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1.3.4.3 3’-deoxy-3’-
18

Fluorine-Fluorothymidine 

 

The nucleoside thymidine is an essential component in the production and replication 

of DNA and RNA (Fromm and Hargrove 2012). FLT is phosphorylated within cells 

by thymidine kinase-1 (TK1) (Rasey et al. 2002), the increased concentration of 

which is an effective proxy for neoplasmic cellular proliferation. As stated by 

Munch-Peterson and colleagues (1995, p 70) “TK1 activity is known to fluctuate 

with cellular DNA synthesis, the activity being high in proliferating and malignant 

cells and low or absent in quiescent cells”.  

 

FLT cannot cross an intact BBB, resulting in very low uptake in healthy brain tissue 

(Chen et al. 2005). High FLT uptake in brain imaging only occurs when there is 

disruption of the BBB, which is often seen in glioma. Any measure that does not take 

into account transport methods (such as the Standardised Uptake Value (SUV)) can 

be misleading in FLT imaging, as it is likely that most FLT uptake is due to transport 

through the broken down BBB, and not due to trapping of FLT after phosphorylation 

by TK1 (Jacobs et al. 2005). This can result in high uptake in regions of BBB 

breakdown that are not highly proliferating, and low uptake in instances of glioma 

that involve minimal BBB disruption, which is possible even in highly proliferative 

tumours (Muzi et al. 2006).  

 

In spite of the potentially confounding factors surrounding the nature of its uptake in 

the brain, FLT has shown promise as a diagnostic tool for the staging and evaluation 

of glioma. FLT may have greatest utility when used in conjunction with other 

modalities such as Gd-MRI and CMET when evaluating treatment effects and 

tumour recurrence (Jacobs et al. 2005). 
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1.4 Alzheimer’s Disease and Mild Cognitive Impairment 

 

As life expectancy increases, so too does the significance of diseases that primarily 

affect the elderly, such as dementia. It is estimated that there were over 266,000 

Australians with dementia in 2011; that figure is expected to rise to over 942,000 by 

2050 (Deloitte Access Economics 2011). AD is the most common form of dementia, 

accounting for 50-70% of all diagnosed dementia cases. The cost associated with 

dementia in Australia in 2009-10 has been estimated at $4.9bn (Australian Institute 

of Health and Welfare 2012). 

 

Early clinical diagnosis of AD can be extremely difficult due to the gradual onset of 

symptoms and variation of symptomatic experience between individuals. The use of 

in-vivo cerebrospinal fluid (CSF) assays and brain imaging have led to identification 

of AD-related pathophysiological processes occurring as early as decades before the 

onset of clinically evident symptoms (Sperling et al. 2011). There are three main 

phases in the development of AD. The first stage is a pre-clinical, asymptomatic 

phase during which AD pathophysiology may start to present. The second stage is 

known as Mild Cognitive Impairment (MCI) (Albert et al. 2011). During this stage, 

the onset of some clinical signs of AD are observed, although not enough to cause 

significant impairment. Stage three is clinically diagnosable AD. There is a fluid 

continuum of progression between normal cognitive health and AD, and as such it 

can be difficult to establish a definitive diagnostic timeline of disease progression. 

Furthermore, MCI syndrome can occur independent of AD, with other causes such as 

brain trauma and other medical reasons such as Parkinson’s disease being possible 

causes (Albert et al. 2011). 

 

There is currently no cure for AD, and the only treatments available involve methods 

to lessen the severity of symptoms, rather than treat the disease itself. On average, 

life expectancy following diagnosis is seven years; less than three per cent of patients 

live for fourteen years after diagnosis (Shelton 2012). 
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1.4.1 Symptoms 

 

The earliest symptoms of AD are often mistaken for cognitive decline as a normal 

part of aging, or as symptoms of stress or depression. The most commonly seen 

initial symptom is loss of episodic memory (the ability to form and keep new 

memories) (Shelton 2012). AD can remain undiagnosed for years, and the timing of 

the onset of symptoms and progression of the disease can vary greatly between 

patients.  

 

Observable symptoms of MCI are similar to AD, but less severe. MCI symptoms 

include a decline in one or more areas of cognition that has either been noticed by a 

patient themselves or by a carer/family member, or has become evident in 

longitudinal cognitive testing. Symptomatic cognitive decline due to MCI should not 

be so severe as to significantly obstruct the patient’s social or occupational life; such 

catastrophic decline is part of fully developed AD. In MCI due to AD, episodic 

memory is usually the most heavily affected area of cognition (Albert et al. 2011).  In 

AD, the initial loss of memory and onset of confusion is followed by a range of other 

symptoms which varies between patients. These symptoms can include increased 

irritability, mood swings and aggression, loss of long-term memory, language 

breakdown, and gradual withdrawal of the patient as their cognitive decline 

progresses. Eventually the patient’s bodily functions start to fail. Death results, 

although the specific cause can be a coexisting chronic condition or complications 

from other diseases such as pneumonia.  

 

1.4.2 Diagnosis 

 

Ante-mortem AD diagnosis cannot yet be undertaken with 100% certainty (Lu and 

Bludau 2011). The gold standard for AD diagnosis is obtained through post-mortem 

histopathological examination of brain tissue. Neuropathologic change is assessed 

according to three parameters: Amyloid Beta (Aβ) plaque score, neuritic plaque 

score, and neurofibrillary tangle stage (Hyman et al. 2012).  
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The first step in an attempt to make an ante-mortem MCI or AD diagnosis is clinical 

cognitive assessment. Standard criteria exist for clinical diagnosis of MCI due to AD 

(Albert et al. 2011). Cognitive assessment is typically performed by having the 

patient complete a series of assessments that test their cognitive abilities across a 

range of disciplines. The first such test proposed was the Mini Mental State 

Examination (MMSE) (Folstein et al. 1975). An improved, modernised version of 

the MMSE is now available, called the Standardized Mini Mental State Examination 

(Molloy and Standish 1997), which can be used as part of a clinical AD assessment. 

Other clinical cognitive assessment tools include the Clinical Dementia Rating 

(CDR) (Morris 1993) and the Global Deterioration Scale (GDS) (Reisberg et al. 

1982). Assessment ideally occurs over a series of visits to enable some tracking of 

cognitive decline, although it is possible to make a diagnosis in a single visit if an 

informant is available to provide information on the patient’s cognitive history. 

Clinically, MCI is defined as decline in one or more areas of cognition that result in 

the patient scoring significantly lower (1 to 1.5 standard deviations) in a cognitive 

assessment than would typically be expected for a patient of their age and level of 

education (Albert et al. 2011).  

 

Clinical standards also exist for a diagnosis of AD through cognitive assessment 

(McKhann et al. 2011). The most important part of an AD diagnosis (as with an MCI 

due to AD diagnosis) is to attempt to establish episodic memory impairment. 

Generally, a patient is also required to show a decline in at least two other cognitive 

areas (aphasia, agnosia, apraxia, or disturbance in executive function) for a positive 

diagnosis of AD (McKhann et al. 2011).  

 

In-vivo structural brain imaging is used clinically (if available) to help rule out other 

causes for the patient’s symptoms such as stroke, subdural haemorrhage, or a tumour. 

The use of structural and functional brain imaging to detect AD pathology has been 

the subject of a large (and growing) field of research for several decades, and is 

further discussed in Section 1.4.5. 
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1.4.3 Pathology 

 

There are three main pathological characteristics of AD; these are the accumulation 

of amyloid plaques, the formation of neurofibrillary tangles within the cellular 

matrix, and destruction of synapses and neurons (Kadir et al. 2012). Additionally, 

significant loss of white matter and reduction of cholinergic neurons has been 

observed in AD patients (Lombardo and Maskos 2015). An associated reduction in 

nicotine binding sites can be seen in-vivo by uitilising the PET tracers 
11

C-nicotine 

and 
18

F-A85380 (Herholz et al. 2007). 

 

The presence of βA (also called senile) plaques in the brain has long been associated 

with AD, both as a component of intracellular neurofibrillary tangles,  and as 

depositions in the extracellular vascular system (Hyman et al. 1989). The presence of 

βA plaques is considered to be a crucial element in the formation of a post-mortem 

AD diagnosis (The National Institute on Aging 1997). 

 

Neurofibrillary tangles were one of the earliest pathological observations made in the 

study of AD, and are also considered a requirement for a positive post-mortem AD 

diagnosis (Perl 2010). There are several different proteins that comprise AD 

neurofibrillary tangles, including ubiquitin (Perry et al. 1987), cholinesterases 

(Mesulam and Asuncion Moran 1987), βA (Hyman et al. 1989), and tau (Lee et al. 

1991). Tangles are observed in several different diseases (Wisniewski et al. 1979), 

which is why it is important that βA plaques are also observed to make a definitive 

diagnosis. Neurofibrillary tangles and amyloid plaques within the brain can only be 

directly observed in-vitro during a histological examination. Indirect observation of 

βA plaques in-vivo is possible using several PET tracers, including Pittsburgh 

compound B (PiB) and 2-(1-{6-[(2-[fluorine-18]fluoroethyl)(methyl)amino]-2-

naphthyl}-ethylidene)malononitrile (FDDNP) (Vlassenko et al. 2012). Numerous 
18

F 

PET tracers have been utilised to observe tau protein aggregates within 

neurofibrillary tangles, including THK523, T807, and T808 (Chien et al. 2013). 

 

Neuronal and synaptic loss from AD can be seen in vivo using volumetric MRI. 

Sufferers of advanced AD will usually exhibit severe cerebral atrophy, which is 
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particularly evident in the widening of the lateral ventricles (Apostolova et al. 2012) 

and reduction of overall brain volume (Fox and Freeborough 1997). Accelerated 

atrophy of the medial temporal lobe is one of the well-established hallmarks of AD 

(Jack et al. 1997). In particular, increased atrophy of the hippocampus due to AD has 

been the subject of many studies (Morra et al. (2009); Ridha et al. (2006); Schott et 

al. (2005); Villain et al. (2008)). Severe atrophy of the hippocampus is considered to 

be one of the few reliable macroscopic indications of AD. A lack of significant 

hippocampal atrophy in a post-mortem brain examination is considered to be 

strongly suggestive that other causes of dementia need to be sought (Perl 2010). 

 

1.4.4 Treatment 

 

Current FDA-approved drugs for the treatment of AD include several different 

cholinesterase inhibitors and Memantine, which is an N-Methyl-D-asparate (NMDA) 

receptor antagonist. These drugs can provide temporary symptomatic relief, but have 

little to no effect on the progression of the disease. Research aimed at producing 

pharmacological treatments for AD is primarily focussed on development of ‘disease 

modifying drugs’ that may actually slow, halt, or even reverse the progression of the 

disease itself. An early start to treatment is likely to be vital to maximise the efficacy 

of such drugs (Salomone et al. 2012). 

 

Non-pharmacological treatments for AD include cognitive training and stimulation, 

reminiscence, use of music, transcutaneous electrical stimulation, use of light, 

massage and touch, and physical exercise. Also beneficial is education for patients 

and carers, including strategies on how to deal with AD symptoms and episodes. 

Various combinations of these therapies have been shown to temporarily improve 

cognitive function, delay the need for institutionalisation, and improve the mood and 

behaviour of the patient (Olazaran et al. 2010). 
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1.4.5 Imaging 

 

In-vivo brain imaging has been used extensively for AD research. The two 

modalities most relevant in this research are volumetric structural MRI and FDG-

PET. 

 

Volumetric structural MRI has been used to find quantitative differences between 

AD and HC brains in-vivo. Factors such as increased overall brain atrophy (Schott et 

al. 2005), enlargement of the lateral ventricles (Apostolova et al. 2012), and severe 

hippocampal atrophy (Ringman et al. 2010) are observed in AD brains.   

 

Although there are many isotopes that have been developed for PET imaging, by far 

the most commonly used is FDG. As noted in Section 1.2.1, the brain requires a 

constant vascular supply of glucose. FDG in brain imaging is used as a means to 

indirectly observe MRglc. FDG “… is actively transported across the blood-brain 

barrier (BBB) into the cells where it is phosphorylated by hexokinase, then 

effectively ‘trapped’ ” (Vander Borght et al. 2010, p 9). PET brain imaging with 

FDG has been used to detect depressed cellular metabolism in the temporo-parietal 

cortex (and specifically in the hippocampus) as a result of AD (McKhann et al. 

2011). FDG-PET has also been used to detect the depression of cerebral metabolism 

in the posterior cingulate cortex of AD patients that are yet to develop clinically 

observable symptoms (Minoshima et al. 1997). In clinical trials, FDG-PET has been 

shown to be beneficial for diagnostic sensitivity when used in conjunction with other 

diagnostic methods (Silverman and Small 2002). 

 

1.5 Brain Image Analysis 

 

As high resolution structural brain images and a greater variety of functional imaging 

techniques become more widely available, the automated analysis of brain images 

continues to develop as a crucial tool for both research and clinical applications. A 

method that allows for voxel-by-voxel comparison of brain images to be made is to 

transform them to the same co-ordinate space. This is achieved through 

implementation of spatial transformations. Intra-subject image alignment can be 
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achieved using a rigid body transform, as no change to the overall shape or size of 

the images is desired. Inter-subject alignment is generally achieved utilising a two-

stage process. Computationally simple linear transforms can be used to bring the 

images into approximate alignment, this serves as a starting point for the next stage. 

Nonlinear transforms can then be implemented to provide a much closer anatomical 

alignment, which is crucial for the study of small tissue volumes such as the 

hippocampus. 

 

1.5.1 Linear Transforms 

 

A rigid body transform involves up to two different types of transformation: 

translation and rotation. In a three dimensional volume, this provides up to six 

degrees of freedom. A rigid body transformation in the context of brain imaging is 

most useful for intra-subject registration, as no overall changes to brain shape or size 

are required to achieve a precise registration between multiple images of the same 

brain, provided a negligible amount of time has passed between images. Rigid body 

transformations are a subset of affine transformations, which involve up to 12 

degrees of freedom. Affine transformations, as well as translations and rotations, can 

include zooms and shears. 

 

An automated algorithm that attempts to find the optimal set of transformation 

parameters between two volumes will usually do so through an iterative process that 

has the goal of minimising a cost function. A popular cost function to use for within-

modality registration is the sum of squared differences in voxel numbers between the 

two images. It is the minimisation of this parameter that should give the best 

registration (Friston 2007). However, the sum of squared differences is not of great 

use when it comes to inter-modality registrations, since there is not necessarily any 

correlation between anatomy and voxel number between imaging modalities. This is 

particularly relevant when attempting to create a functional-structural registration. 

 

Inter-modality registration requires a more sophisticated approach. Early techniques 

for inter-modality registration involved manually marking corresponding features on 

each image that could then be aligned with one another (Pelizzari et al. 1989). This 
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approach can provide a high level of accuracy; however, it is cumbersome 

(particularly for batch processing of many images) and subject to operator error and 

inter-operator variability. Since then, techniques have been developed that can be 

used for fully automated inter-modality registration such as Mutual Information 

(Viola and Wells Iii 1997) and the Correlation Ratio  (Roche et al. 1998), both of 

which rely on the use of joint probability density functions derived from a series of 

two dimensional intensity histograms to maximise the degree of likelihood between 

two image volumes. 

 

1.5.2 Nonlinear Transformations 

 

Natural variations in overall size and shape, as well as the effects of aging and 

pathology, can create large discrepancies between brains, which may render linear 

transforms useless for all but the most approximate alignment. In order to create a 

close registration that enables the overlay and comparison of small structures within 

the subcortex, higher order nonlinear transforms are required. Nonlinear transforms 

are usually applied after a linear transform has been used to gain an approximate 

alignment. Use of a linear transform to provide a starting estimate is very important, 

as nonlinear transforms for brain alignment usually conduct deformations over a 

small spatial scale (Andersson et al. 2007). 

 

As is the case with linear transforms, nonlinear transforms generally operate by 

minimising a cost function. The assumption is that values of a set of parameters that 

minimise the cost function will correspond to the ‘correct’ alignment of the two 

images. Nonlinear warping is much more complicated and computationally intensive 

than the linear equivalent, involving potentially millions of degrees of freedom.  

 

There are two general types of nonlinear transforms, label-based and intensity-based 

(Friston 2007). Label-based techniques work by identifying points or surfaces within 

the brain material that are common between brains. These elements are then aligned 

with each other, before fitting a series of splines and minimising ‘bending’ 

(Bookstein 1989) or ‘membrane’ energy (Andersson et al. 2007),  or using a fluid 

model (Thompson and Toga 1996) to interpolate between the labelled points. The 
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use of this technique has limited application in brain registration. There can be 

significant variations in physical characteristics between healthy brains, such as 

disparities in the number of sulci. Changes resulting from aging and pathology can 

further reduce the number of physical features that are common between two brains 

(Andersson et al. 2007). 

 

Intensity-based techniques operate by treating brains as unlabelled, continuous 

volumes and applying warping methods to optimise a cost function used to quantify 

the differences between the images. Nonlinear warping in the software package FSL 

(Smith et al. 2004)  for intra-modality alignment uses a weighted combination of 

both label-based and intensity based-techniques (Andersson et al. 2007). 

 

1.5.3 Segmentation 

 

The resolution that can be achieved in cerebral imaging allows for clear definition of 

sub-structures within the brain. Segmentation of cerebral sub-structures allows for 

quantitative analysis of sub-structure volume in a structural image, and 

uptake/activity quantification within a substructure on functional images that are in 

precise alignment with a segmented structural image. This segmentation can be 

achieved manually through the marking of a structure boundary over its volume; this 

process is tedious and cumbersome. It requires significant expertise in cerebral 

anatomy and imaging characteristics, and is vulnerable to inter-operator variability 

and human error. Automated brain image segmentation provides a faster, 

mathematically consistent replacement to the manual option. 

 

The automated segmentation of brain tissue can be performed through several 

different methods. Segmentation can be performed based on generalised tissue 

classification (grey matter, white matter, CSF) on MRI  by creating an intensity-

based separation model (Friston 2007). Some structures and tissue types are 

indistinguishable from one another based solely on signal intensity; models that 

incorporate segmentation of the structures of the subcortex do so through utilization 

of manually labelled data sets to assist in estimation of spatial location of the 

included structures. Since there is often little change in MRI signal intensity between 
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structures of the subcortex, methodologies that include their segmentation must also 

incorporate some means of boundary identification. This can be achieved by 

including the computation of tissue class probability statistics on a voxel-by-voxel 

basis, and estimating boundaries based on a statistical threshold (Fischl et al. 2002), 

and through use of deformable virtual surface meshes for each structure (Patenaude 

et al. 2011). 

 

1.5.4 The Standardised Uptake Value, SUVMAX and SUVPEAK 

 

The intensity of each voxel in a correctly reconstructed nuclear medicine image is 

directly proportional to the amount of radioactivity detected within the volume. 

While this can be useful in a clinical setting (e.g. qualitative visual comparisons of 

regional FDG uptake between brain structures for clinical assessment of AD), the 

ideal scenario is one in which regional volumetric activity concentration can be 

quantified. Such quantification of regional tracer activity allows for comparisons 

between subjects, study protocols and scanners, all of which are crucial for 

researching new imaging modalities and tracer types. Absolute quantification of 

tracer uptake concentration can only be achieved through arterial blood sampling to 

obtain the tracer time-activity curve. This requires insertion of arterial lines so that 

multiple blood samples can be analysed during scanning (Gjedde 2001). SUV was 

developed as a means to achieve semi-quantitation in PET imaging. By correcting for 

isotope decay time, patient weight (or body surface area) and injected dose, an 

activity concentration can be calculated. 

  

PET imaging with FDG is often used in the assessment of treatment response to 

cancer therapy. Changes in SUV within the tumour over time are used as an indicator 

of treatment response. The SUVMAX is often utilised, which is defined as the hottest 

voxel within the tumour volume (Vanderhoek et al. 2012). The SUVMAX has gained 

popularity in clinical settings, largely due to the ease with which it can be identified 

and the simplicity in the way in which it is defined. However, high variance is a 

concern, owing to the fact that the measurement is only taken in a single voxel. 
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The SUVPEAK was proposed to attempt to reduce this degree of variability by taking 

the average uptake of a number of voxels (Wahl et al. 2009). SUVPEAK can be 

broadly defined as an ROI that is considered to be indicative of the highest uptake 

part of the tumour. The SUVPEAK is usually normalised to background uptake, the 

method of which varies depending on the tumour type and location within the body. 

The shape and size of the ROI can also vary depending on the imaging modality and 

tumour site. The PERCIST guidelines (Wahl et al. 2009) were developed to increase 

the degree of uniformity in the way in which SUVPEAK is defined and calculated, 

these guidelines were used for this body of work. According to the PERCIST 

guidelines, the SUVPEAK is the 1cm
3
 sphere of highest average activity inside the 

tumour mass, normalised to background (healthy tissue) uptake, which results in a 

value that quantifies how different the uptake in the tumour volume is from that 

which is seen in healthy tissue.  

 

1.6 Outline of Thesis 

 

This research is comprised of work performed on two different sets of patient data. 

Each Chapter is its own self-contained body of work, and is laid out as such, 

containing chapter-specific sections from literature review to conclusion. 

 

Chapters Two and Three are based on a data set acquired at the Western Australian 

PET centre at Sir Charles Gairdner Hospital, Perth. As part of a study into treatment 

method optimisation in recurrent glioma, 34 patients were subjected to a range of 

structural and functional brain imaging. The PET tracers used for the work, although 

not new, are seldom seen in a clinical setting. Chapter Two focusses on the 

differences in retained activity measured at different post-injection time points for 

each of the tracers. Information of this type will become crucial for the development 

of standardised imaging procedures should these compounds become more 

commonly used in clinical settings. 

 

Chapter Three assesses the survival prediction utility of each of the PET tracers, as 

well as Gd- MRI. The assessment was made using a novel semi-automated process 

that quantifies the volume of elevated tracer uptake/gadolinium enhancement in the 
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tumour affected brain region. Optimisation of treatment planning and survival 

outcomes in recurrent glioma is heavily dependent upon reliable imaging of tumour 

tissue. Novel uptake quantification methods such as the ones used in Chapter Three 

aid in the assessment of various imaging modalities, and can increase their value in 

the post-treatment glioma setting. 

 

Chapters Four and Five utilise data from the Australian Imaging Biomarkers and 

Lifestyle (AIBL) and Alzheimer’s Disease Neuroimaging Initiative (ADNI) archives. 

In Chapter Four, two different methods of volumetric hippocampal masking are 

compared with regards to their ability to find uptake differences between 30-subject 

groups of healthy control (HC), mildly cognitively impaired (MCI), and AD subjects, 

based on FDG-PET uptake in the masked volume. Automated brain image 

assessment has the potential to build upon established clinical AD detection methods, 

with computationally efficient and reliable analysis techniques offering the potential 

to provide earlier and more accurate diagnoses. 

 

Chapter Five examines the utility of an optimised volumetric hippocampal mask as a 

stand-alone diagnostic tool for AD. The scenario in which a brain PET image is 

acquired without an accompanying volumetric MRI is included, as this is often the 

case in a clinical setting. Volumetric hippocampal masking may become a significant 

component of AD diagnosis if a future shift towards imaging and biomarker 

assessment eventuates in clinical practice. 

 

Chapter Six contains a summary and overview of the thesis content, and 

recommendations for expansion and continuation of this research in the future. 
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2 Optimisation of CMET-PET and FLT-PET Acquisition 

Time in Glioma patients 

 

2.1 Introduction and Literature Review 

 

Nuclear medicine studies require the implementation of a waiting period between the 

administration of an isotope and the commencement of imaging. The length of time 

between administration and imaging varies with modality, radionuclide and disease 

pathology. The reason for the waiting period is to allow sufficient time for the 

distribution of the radionuclide within the patient, so that the contrast between target 

and other/background tissue is maximised. 

 

FDG is the most commonly used PET tracer, with 
18

F having a half-life of 

110 minutes. Despite the widespread use of FDG, there is no gold standard 

consensus on the optimal post-injection waiting period for brain imaging, partially 

due to differences in uptake times between patients with varying age and BMI. Due 

to its relatively long half-life, the decay of the nuclide itself need not be of significant 

concern when considering post-injection time differences in the order of an hour. 

Imaging methodology can be altered to adjust the way in which volumes of interest 

are visualised, two such adjustments are dual time point imaging (Matthies et al. 

2002) and delayed imaging (Kubota et al. 2001). The European Association of 

Nuclear Medicine recommends a minimum post-injection wait time for FDG brain 

imaging of 30 minutes (Varrone et al. 2009), but times of 60-90 minutes are common 

(Delbeke et al. 2006).  

 

The 20 minute half-life of 
11

C means that ideal post-injection waiting times are likely 

to be much shorter for CMET than those used for FDG. A study by Herholz and 

colleagues (1998) used 31 subjects with various gliomas with a mixture of images 

taken pre- and post-treatment, and acquired PET data continuously for 60 minutes 

immediately after injection. Data were then reconstructed to produce two sets of 

images, one containing data from 0-30 minutes post-injection and another from 20-

60 minutes. SUVPEAK was utilised to quantify tumour-background contrast, which 

was defined as the average SUV of an 8mm diameter circle in the transaxial plane, in 



 

32 

 

the highest uptake area of the tumour. To account for inter-subject differences in 

healthy brain tissue uptake, the ratio of tumour SUVPEAK to the average SUV within a 

contralateral circle, mirrored about the mid-sagittal plane was taken (scaling 

processes of this nature are referred to as background normalisation from this point 

on). No significant differences in tumour-contralateral tissue uptake were found 

between the image frames. However, the researchers favoured the longer imaging 

delay time due to “… the possibility that a very early measurement could be biased 

by significant intravascular activity” (Herholz et al. 1998, p 1322).  

 

A study by Aki and colleagues (2012) that included 24 pre-treatment Glioblastoma 

Multiforme patients found that the normalised tumour SUV was significantly higher 

at an imaging time of 25-35 minutes than it was at 5-15, and 15-25 minutes. The 

background normalisation method employed was to use the mean SUV from a 

manually drawn ROI in the contralateral frontal cortex. The maximum voxel number 

within the tumour volume (SUVMAX) was used for the tumour SUV, a method which 

is often used due to the ease with which the maximum voxel can be identified. It is, 

however, prone to increased variability and lower reproducibility than the use of a 

volumetric SUVPEAK region centred over the area of highest uptake within the tumour 

volume (Wahl et al. 2009). 

 

A study by Chen and colleagues (2005) comparing FDG and FLT for PET brain 

tumour imaging acquired FLT data using a 75-minute dynamic acquisition protocol 

starting immediately post-injection, to produce 5 x 1, 4 x 5, 2 x 10, and 6 x 5 minute 

frames. These images were acquired for 11 post-treatment patients with a range of 

gliomas. SUVPEAK was defined as the mean SUV within the highest uptake 20% of 

voxels in the tumour region; background normalisation was performed by taking the 

ratio of the SUVPEAK to the uptake in the contralateral cerebellar tissue. The tumour-

background contrast “… peaked slightly after 5-10 min following injection and 

remained constant through the 75-min scan” (Chen et al. 2005, p 948). The 

conclusion drawn was that “… imaging can commence shortly after tracer injection 

and 35 min of imaging is sufficient to obtain excellent image quality” (Chen et al. 

2005, p 950). No quantitative analysis aimed at distinguishing between time points 

was presented. 
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Another study by Jacobs and colleagues (2005) also imaged glioma patients using 

FLT at multiple time points on a mixture of pre and post-treatment gliomas. The 

frames were: 6 x 10s, 3 x 20s, 2 x 30s, 2x 60s, 2 x 150s and 16 x 300s. A circular 

8mm diameter ROI in the axial plane was placed in the area of highest uptake and 

background normalisation was performed by taking the ratio to the contralateral 

8mm circle. Reported findings in regards to tumour-background contrast were in 

accordance with (Chen et al. 2005). 

 

2.2 Materials and Methods 

 

2.2.1 Subjects and Imaging 

 

CMET-PET images from 12 (mean age 60, age range 39-73, eight males and four 

females) and FLT-PET images from 18 (mean age 60, age range 36-77, 13 males and 

5 females) stage III-IV glioblastoma multiforme patients from Sir Charles Gairdner 

Hospital (SCGH) were included in this research, after consulting with their 

oncologist and giving written informed consent. Patients were excluded from the 

research if they were pregnant, had a medical contraindication to MRI or PET 

imaging, or if their clinician considered them too cognitively impaired to give 

informed consent. Each subject was given standard treatment at SCGH, in 

accordance with the Stupp schedule (Stupp et al. 2005). This schedule involves 

surgical debulking/biopsy, followed by radiotherapy and three cycles of 

temozolomide chemotherapy, and Gd enhanced T1 and T2 weighted MRI around the 

time of the final chemotherapy cycle.  

 

PET tracers were synthesised at the R.A.P.I.D laboratories, Medical Technology and 

Physics, in SCGH. FLT “… was produced using the Tracerlab MX Synthesis module 

(GE) with commercially obtained disposable cartridge hardware kits (“ABX-FLT 

Hardware Kit for GE TracerLab MX Synthesizer (Cartridge version) for the 

Synthesis of [18F]-FLT,” #K662TM) and reagents (“ABX-FLT Reagents Kit for GE 

TracerLab MX Synthesizer (Cartridge version) for the Synthesis of [18F]-FLT,” #K-

653TM) purchased from ABX. 25mg BOC-FLT vials were also obtained 

commercially from ABX (“ABX-FLT Reagents Kit for GE TracerLab MX 
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Synthesizer (Cartridge version) Boc-FLT, Precursor for [18F]-FLT,” #K-653TM-P)” 

(P. Gibbons, SCGH Radiochemist, Personal Communication, 30/09/2014). CMET 

“was produced using the C11 Pro Synthesiser (iPhase Technologies) with 

commercially obtained disposable cartridge hardware kits (iPhase-11C Pro 

Disposable Hardware Kit) and reagents obtained from ABX including 1mg L-

homocysteine precursor” (P. Gibbons, SCGH Radiochemist, Personal 

Communication, 30/09/2014). 

 

Subjects fasted for a minimum of four hours prior to the intravenous CMET 

administration, which was performed through a cannula inserted into a peripheral 

vein; the administered dose was adjusted for patient weight [300 MBq x body surface 

area (m
2
)]. No subject preparation was required for FLT imaging. FLT 

administration was identical to CMET, with the exception of dose, which was 100 

MBq x body surface area (m
2
). CMET and FLT PET studies were performed within 

seven days of each other and within two weeks of the MRI. 

 

Volumetric MRIs were acquired on a Phillips Acheiva 3T scanner at SCGH. Images 

were acquired at 3T field strength in the sagittal plane, pixel size 1x1 mm
2
, slice 

thickness 1 mm, matrix size 256x256 pixels. 

 

PET/CT images were acquired on a Siemens Biograph/Sensation 16 slice PET/CT 

scanner at the WA PET Centre, at SCGH. Patients were positioned in the head first, 

supine position. CMET imaging was performed using four consecutive 10 minute 

acquisitions, beginning between five and 15 minutes post-injection. PET images 

were acquired in the axial plane, matrix size 168 x 168, pixel size 2.03 x 2.03 mm, 

slice thickness 2 mm, 82 slices, and Gaussian conv kernel 5 mm FWHM. For 

attenuation correction, an axial CT was performed immediately prior to the first PET 

acquisition with the following specifications: 120 kVp, 150 mAs, 512 x 512 matrix, 

pixel size 0.59 x 0.59 mm, slice thickness 3 mm, slice separation 2 mm, collection 

diameter 500 mm, reconstruction diameter 300 mm. The FLT protocol differed from 

that used for CMET in that there were two separate 15 minute PET acquisitions, 

beginning between 10-20 and 70-80 minutes post-injection. Each FLT acquisition 

was attenuation corrected using a CT taken immediately prior to the acquisition; the 

same CT acquisition parameters used for the CMET scan were employed. 
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2.2.2 Image Processing 

 

Raw PET image voxels were converted to standardised uptake values (SUV) 

(Bq/mL) in accordance with the vendor neutral pseudocode (20120928) developed 

by the Quantitative Imaging Biomarkers Alliance SUV Technical Subcommittee 

(QIBA) (Kinahan et al. 2012). 

 

 The series acquisition time, injection time, injected dose (Dinj), and patient weight 

(w) were acquired from the DICOM header. The decay time (∆t) is the difference 

between the series acquisition time and the injection time. The decay factor (DF) at 

the start of the acquisition was calculated using: 
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SUV conversion factors were calculated using a Matlab script, which can be found in 

Appendix 1. 

 

 Several stages of spatial registration were performed to align all of the PET and MR 

images to a standard space. The FreeSurfer (Martinos Centre for Biomedical 

Imaging, http://surfer.nmr.mgh.harvard.edu/) routine mri_convert was used to 

convert the image DICOMs into FSL (Smith et al. 2004) Nifti format.  

 

CMET Inter-acquisition patient movement correction was performed using the FSL  

(Smith et al. 2004) routine MCFLIRT (Jenkinson et al. 2002). This involved the 

calculation of rigid body transforms (six degrees of freedom) to co-register the 20, 
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30, and 40 minute acquisition to the 10 minute acquisition. Information in the Nifti 

headers was used to translate the origin of the 10 minute acquisition to co-register it 

with the attenuation correction CT. 

 

All CTs were co-registered with each of their intra-subject MRIs using a six degrees 

of freedom rigid body transformation with the FSL (Smith et al. 2004) routine FLIRT 

(Jenkinson et al. 2002). 

 

The T2 MRIs were co-registered to the McConnell Brain Imaging Centre (Montreal 

Neurological Institute (MNI), McGill University Montreal) 152 nonlinear 6
th

 

generation T1 1mm resolution brain template using a 12 degree of freedom affine 

transformation with FLIRT (Jenkinson et al. 2002). The co-registration between the 

T2 subject MRIs and the T1 MNI template was superior to that for the T1 subject 

MRI-MNI. Co-registration of the T1 subject MRI to the MNI template was achieved 

through a six degree of freedom rigid body registration to the T2 image. This process 

is illustrated in Figure 13. 

 

 

Figure 13, A schematic representation of the image co-registration process for the glioma study 

cohort. 

 

 

The transformation matrices that led to a PET-MNI or T1-MNI registration were 

concatenated so that a single transform could be used for each image. This resulted in 

image volumes only being resampled once to minimise resampling errors.  

 

2.2.3 Defining the SUVPEAK and Performing Background Normalisation 

 

SUVPEAK was defined as the 1cm
3
 sphere of highest average activity inside the 

tumour mass, in accordance with the PERCIST criteria  (Wahl et al. 2009). This was 
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found by manually defining a tumour VOI using the MNI co-registered MRIs and 

relevant PET image, then employing a python (Python Software Foundation, version 

2.7) script (Appendix 2) to search the VOI for the central voxel of a 1cm
3
 sphere in 

which the average SUV is maximised. 

 

A contralateral 1cm
3
 sphere was used for the background healthy tissue 

normalisation. The contralateral sphere was found by employing a reflection about 

the mid-sagittal plane, which is parallel with the Y-Z plane in MNI template space. 

The CMET SUVPEAK was normalised to background uptake by taking the ratio of the 

SUVPEAK to the average uptake in the contralateral sphere. Due to the very low 

uptake of FLT in healthy brain tissue, FLT background normalisation was performed 

by subtracting the mean of the contralateral sphere from the SUVPEAK. This was 

performed as the SUVPEAK/background ratio is greatly affected by a small change in 

a very small denominator. Figure 14 illustrates the background normalisation 

procedure: the green rectangles represent the search VOI for this subject. This is 

overlaid onto the T1 MRI and 10 minute CMET PET image, which has been 

thresholded to indicate the location of the uptake peaks (which are well contained 

within the green VOI to ensure the global tumour maximum is found). The light blue 

circle indicates the SUVPEAK volume, and the dark blue circle is the region used for 

background normalisation. 

 

 

Figure 14, An illustration of the SUV PEAK normalisation process. A subject T1 MRI is overlaid with 

the areas of highest CMET uptake (red-yellow). The green rectangle is the SUVPEAK search VOI, 

inside of which the SUVPEAK volume is seen (light blue circle). The contralateral background 

normalisation volume is the dark blue circle. 
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2.3 Results 

 

Figure 15 presents a line plot overlaid with a box and whisker plot showing the 

Normalised SUVPEAK at each post-injection CMET time point, each subject is 

represented by a single coloured line. 

 

 

Figure 15, A boxplot of the raw normalised CMET SUVPEAK data, overlaid with line plots 

representing each subject. 

 

In order to more easily identify the time point differences at group level, inter-subject 

normalisation was performed by subtracting each subject’s mean uptake across all 

time points from their uptake at each time point. The results are presented in Figure 

16. 
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Figure 16, A boxplot of the mean subtracted normalised CMET SUVPEAK data, overlaid with line 

plots representing each subject. 

 

Repeated measures ANOVA with Tukey’s all-pair comparisons was conducted on 

the raw data to determine whether there was a significant difference between time 

points. Statistically significant differences were found between the 20 and 40 minute 

(p < 0.01) and 10 and 40 minute (p < 0.001) time points. 

 

Figure 17 and Figure 18 are graphical displays of the FLT data, utilising the same 

methods depicted in Figure 15 and Figure 16 for the CMET data. 
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Figure 17, A boxplot of the raw normalised FLT SUVPEAK data, overlaid with line plots 

representing each subject. 

 

A two-sided paired t-test found that there was a statistically significant difference 

between the time points in Figure 17 (p<.005). 
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Figure 18, A boxplot of the mean subtracted normalised FLT SUVPEAK data, overlaid with line plots 

representing each subject. 

 

 

2.4 Discussion 

 

The tumour-background contrast as defined on CMET-PET was significantly higher 

at 10 and 20 minutes than at 40 minutes post-injection in this group of post-treatment 

glioblastoma multiforme patients. Consequently, the recommended post-injection 

time is less than 40 minutes. Longer post-injection times ranging from 20-60 minutes 

have been recommended in previous studies (Aki et al. (2012); Herholz et al. 

(1998)). However, those studies used different methods to quantify normalised peak 

tumour uptake that are more prone to operator error and lack of reproducibility (see 

section 2.1). The small sample size (n=12) in this research is of concern, and repeat 
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studies with larger samples are required to achieve increased certainty in the results. 

A single attenuation correction CT was acquired for all four CMET-PET imaging 

time points. Rigid body transformation was employed to minimise movement 

artefacts between acquisitions, however it is possible that small attenuation 

correction errors were introduced as a result of imperfect movement compensation 

during imaging. 

 

The significance in the FLT images between the 15 and 75 minute time points differs 

to those noted in previous studies (Chen et al. (2005); Jacobs et al. (2005)), which 

found a slight increase in tumour-background contrast at 5-10 minutes and that 

uptake remained fairly constant up until 75 minutes post-injection. However, a lack 

of temporal statistical analysis in the aforementioned studies makes it impossible to 

quantify the level of agreement between the results. The aforementioned studies also 

calculated background healthy tissue normalisation by taking the ratio of the tumour 

SUV ROI to a healthy tissue ROI. Given that very low FLT uptake is seen in healthy 

brain tissue where there is no BBB disruption, the method used for this study was to 

subtract the tumour SUV PEAK from the contralateral normalisation volume to 

avoid large changes in the normalised SUV PEAK resulting from a small change in 

the background uptake. Further work is required to make a more precise 

recommendation regarding the ideal post-injection time point for the commencement 

of glioma imaging with FLT; however, it is recommended based on these results that 

it should occur at less than 75 minutes. 

 

Counter-intuitively, image co-registration between the T2 subject MRIs and the T1 

MNI template was superior to that of the T1 subject MRIs; this was possibly due to 

extreme pathology having a greater effect on the intra-modality cost function. An 

affine transformation was used to co-register each subject T2 MRI to the T1 MNI 

template, due to the fact that a closer registration was achievable with an affine 

transformation than with rigid body. Complete removal of yaw and roll tilt was 

essential to the background normalisation process, as calculating the placement of 

the contralateral SUV PEAK sphere was performed via a reflection about the mid-

sagittal plane, which is parallel with the Y-Z plane in MNI space after co-

registration. 
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This method for the determination of a Normalised SUV PEAK region is a 

computationally efficient, largely automated process that can be applied to a range of 

isotopes and imaging modalities. The combination of spatial registration and 

reflection about the mid-sagittal plane for background uptake normalisation 

circumvents the need for manually marking anatomical VOIs, this in turn requires 

significant expertise and time, and is prone to reproducibility errors.  

 

There were some limitations to the method used for SUV background normalisation. 

Any lesions where the SUV PEAK was within 6mm of the mid-sagittal plane could 

not be included in this work, as the tumour and contralateral regions would be at 

least partially sampling the same volume. Patients with bilateral lesions could only 

be included if the region used for background normalisation was healthy tissue. One 

possible method of circumventing this issue would have been to use a VOI within the 

cerebellum for background normalisation. Substantial uptake peaks often exist 

outside the brain for both CMET and FLT, which are obviously not of interest for 

glioma imaging. Separating these peaks from those within the brain can be extremely 

difficult and potentially impossible for lesions that are close to the skull. 

 

2.5 Conclusion 

 

CMET and FLT continue to show utility in glioma imaging, both for pre-treatment 

tumour staging and radiotherapy guidance, as well as in post treatment quantification 

of treatment efficacy and pseudoprogression. In order for these radionuclides to be 

used regularly in a clinical setting, information regarding temporal changes in 

tumour-background contrast will be important for establishment of imaging 

procedures. A semi-automated method was utilised to determine the tumour-

background contrast in a group of post-treatment gliobastoma multiforme subjects. 

CMET images were acquired at 10, 20, 30 and 40 minutes post-injection, and the 

contrast was significantly higher at 10 and 20 minutes than at 40 minutes. FLT 

images were acquired at 15 and 75 minutes post-injection, and the contrast at 15 

minutes was significantly higher than at 75 minutes. It is therefore recommended that 

imaging of glioma patients using CMET and FLT should commence prior to 40 and 

75 minutes post-injection respectively.  
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3 Survival Rate Analysis of Gd-MRI, CMET-PET, and 

FLT-PET in Glioma Patients 

 

3.1 Introduction and Literature Review 

 

The ability to differentiate between healthy tissue, viable tumour mass, and treatment 

related tissue effects such as necrosis and oedema is essential to maximise the 

efficacy of cancer treatment. The extremely invasive nature and radial growth pattern 

of gliomas contribute to a high percentage of treatment failure and tumour recurrence 

(Wirth et al. 2011), partially due to the difficulty in correctly identifying and 

removing viable tumour tissue. 

 

The most commonly used clinical treatment for glioma is surgical debulking (if 

possible) followed by chemo-radiotherapy (Stupp et al. 2005). This can produce a 

range of tissue effects, including necrosis and disruption of the blood brain barrier, 

which can be mistaken for actual tumour progression using Gd-MRI (Brandsma et al. 

2008). This phenomenon is known as pseudoprogression, and it is thought to occur in 

20-30% of cases (Brandsma and van den Bent 2009). The ability to recognise 

treatment-related effects and correctly identify the extent of any tumour recurrence is 

crucial to providing an accurate prognosis. It can also improve patient outcomes by 

allowing for planning of more appropriate follow-up treatment. Used in conjunction 

with structural radiologic imaging, functional imaging using CMET-PET and FLT-

PET may improve the sensitivity and specificity of post-treatment clinical 

assessment. 

 

There is evidence to suggest an SUV peak ROI to contralateral background uptake 

ratio in CMET-PET can be used to evaluate post-treatment high grade brain tumour 

recurrence and predict survival (Van Laere et al. 2005), and that it is superior to 

FDG-PET or T1 Gd-MRI for this purpose (Tripathi et al. (2012); Singhal et al. 

(2012)). CMET PET tumour uptake has also shown utility in predicting survival 

outcome in low grade glioma (Ribom et al. 2001). An optimal tumour/contralateral 

uptake ratio of 1.5 has been determined for the differentiation of tumoural and non-

tumoural lesions using CMET-PET (Herholz et al. 1998). This threshold has been 
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suggested as a means of defining viable tumour volume in order to track the success 

of chemotherapy over time (Herholz et al. 2003).  

 

Studies using multiple FLT-PET images taken during and post-treatment have shown 

a correlation between within-patient treatment response (a reduction in the tumour 

SUVPEAK over time) and increased patient survival time (Hoeben et al. 2013). This 

method of predicting survival time in cancers of the head and neck has produced 

better results than similar methods using Gd enhanced MRI (Chen et al. (2007); 

Schwarzenberg et al. (2012)). There have been attempts to use inter-subject 

differences in tumour uptake as measured by FLT-PET SUV analysis at a single time 

point to discriminate between treatment related effects and genuine progression, and 

to predict survival time that have failed to produce statistically significant results 

(Spence et al. 2009). 

 

Longitudinal survival data is available for a group of glioma patients that have 

undergone standard clinical treatment and follow-up imaging with FLT-PET, 

CMET-PET and volumetric Gd-MRI. This provides an opportunity to investigate 

each modality’s utility in survival time prediction based on volumetric thresholding 

of the tumour affected region. 

 

3.2 Materials and Methods 

 

3.2.1 Subjects and Imaging 

 

The initial patient cohort from which the data was taken is the same as described in 

section 2.2. CMET-PET images from 23 (mean age 58, age range 36-77, 16 males 

and seven females), FLT-PET images from 24 (mean age 57, age range 34-77, 17 

males and seven females), and T1 weighted Gd-MRI images from 26 (mean age 56, 

age range 34-77, 19 males and seven females) subjects were included. The 15 minute 

and 20 minute post-injection scans were used for FLT-PET and CMET-PET 

respectively. This allowed for the largest amount of data to be included (due to some 

inconsistencies with scanning times), whilst using delay time points that were found 
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to produce the highest tumour to background contrast using the normalised SUV 

PEAK method described in Section 2. 

 

3.2.2 Image Processing 

 

All images were normalised to the 1 mm
3 

resolution MNI 152 T1 MRI template 

using FSL (Smith et al. 2004), as outlined in Section 2.2. A modality-dependent 

thresholding method was then employed in an attempt to define a viable tumour 

volume.  

 

To establish and demarcate a viable tumour volume in the CMET-PET images, a 

method that enabled contralateral background normalisation on a voxel by voxel 

basis across an entire hemisphere was used. Firstly, the image volume was masked 

using the FSL (Smith et al. 2004) MNI space brain mask, to remove any counts 

detected outside the brain volume. Secondly, the image was divided along the mid-

sagittal plane to delineate between the two hemispheres: tumour and background. 

These first two steps are shown in Figure 19 (Part A). The background volume was 

then flipped and overlaid onto the tumour volume so that a tumour/contralateral 

comparison could be made at the voxel level. Figure 19 (Part B) shows the resultant 

viable tumour volume. Voxels with a tumour/normal ratio of greater than 1.5 were 

considered viable tumour tissue. This ratio has been found to maximise sensitivity 

and specificity for defining viable tumour tissue (Herholz et al. 1998). Two subjects 

whose tumour affected tissue volume crossed the mid-sagittal plane were excluded 

from the study, as background normalisation using the tumour/background 

hemisphere technique was not possible. 
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Figure 19, (Part A): Brain masking the PET images and dividing them into L and R hemispheres to 

allow for calculation of tumour to background uptake, (Part B): The resultant viable tumour mass, 

as seen on the 20 minute CMET scan.  

 

The method used for defining viable tumour volume using the FLT-PET images was 

the same as for CMET, with one exception. Rather than the ratio, absolute difference 

in voxel numbers was used to compare FLT hemispheres. A ratio was not used for 

FLT as very low background uptake meant that the ratio could be significantly 

distorted by small variations in background SUV. The method used to find the 

optimal tumour/normal SUV difference for the FLT-PET images is outlined in 

Section 3.2.3. 

 

A manual threshold was applied to each of the Gd-MRI images at a level that 

appeared to best separate areas of enhancement from background tissue. This 

threshold was not the same for all images as it was established on a case by case 

basis; the optimal threshold varied with inter-subject differences in signal intensity 

throughout the brain. The images were still masked with the MNI template to remove 

uptake that was external to the brain itself. As well as the MNI masking, a VOI mask 

was employed around the tumour region on the MRI images, to minimise inclusion 

of Gd enhancement that was not related to BBB disruption in the tumour region. 
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Figure 20 shows the viable tumour volume that was selected for a subject in the 

study using this technique. 

 

 

Figure 20, (Part A): A Gd enhanced T1-MRI taken from the study group, (Part B): The same 

image highlighting the volume used as a VOI mask drawn around the tumour region, (Part C): The 

green tissue was defined as viable tumour tissue using the manual thresholding technique. 

 

3.2.3 Optimisation of Viable Tumour Volume Identification Threshold 

in FLT-PET 

 

To determine the optimal tumour/background difference threshold to identify viable 

tumour volume for the FLT-PET images, receiver operating characteristic (ROC) 

curve analysis using survival at the median post-surgery survival time was employed. 
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A series of ROC curves were produced for tumour/background SUV difference 

thresholds between 0.1 and 0.7 for the FLT-PET images. Each ROC curve tested the 

effect that variation of the tumour volume cut-off between “small” and “large” had 

on the correlation between tumour size and survival at the median post-surgery 

survival time for the group (78 weeks). Censored subjects were included in the 

calculation of the median; their survival time was calculated as the time between 

their surgery and the present. They all survived longer than the median time, 

ensuring their inclusion would not affect the median value regardless of their actual 

survival time. The area under each ROC curve (AUC) was calculated and used to 

decide which absolute difference normalisation threshold was superior. Figure 21 in 

Section 3.3 is a graphical display of the ROC curves for each tumour/background 

SUV difference threshold. Table 1 in Section 3.3 shows the AUC values calculated 

for each threshold. For all ROC analyses, a true positive was defined as a subject that 

had a viable tumour volume larger than the cut-off, and who died earlier than the 

median survival time for the group.  

 

The immediately aforementioned process was only necessary for FLT-PET. The 

tumour-background uptake ratio of 1.5 used to define viable tumour mass in CMET-

PET was based on another study (Herholz et al. 1998), and the difference between 

enhancement and background volume in Gd-MRI was already clearly delineated 

(Figure 20). 

 

3.2.4 Viable Tumour Volume Optimisation for Each Modality 

 

An optimal cut-off volume for each modality to distinguish between subjects with a 

“large” or “small” viable tumour volume was established. This was achieved by 

ROC curve analysis, this time involving each modality. As in the previous 

comparison of ROC curves for the FLT-PET images, each of these were testing the 

effect that variation of the tumour volume cut-off between “large” and “small” would 

have on the correlation between tumour size and survival at the median post-surgery 

survival time for the group.  The cut-off point was selected based on the point on the 

curve that minimised the Euclidean distance to the point at which both sensitivity 

(Se) and specificity (Sp) = 1. Figure 22 and Figure 23 in Section 3.3 show the 
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median survival ROC curves for CMET-PET and FLT-PET respectively. Figure 24 

in Section 3.3 shows the median survival ROC curve for Gd-MRI; there were two 

points on the Gd-MRI curve that minimised the distance to the point at which both 

Se and Sp = 1. 

 

Once the required thresholds were calculated, Kaplan Meier survival plots (Kaplan 

and Meier 1958) displayed the results graphically, and the Log Rank Test (Peto and 

Peto 1972) was used to quantify differences in survival times between the groups for 

each modality. Kaplan Meier survival plots and log rank tests were completed using 

the R packages GGally and SurvDiff (R Core Team 2015). 

 

3.3 Results 

 

3.3.1 Optimisation of Viable Tumour Volume Identification Threshold 

in FLT-PET 

 

The ROC curves for all tested thresholds of tumour/background difference for the 

FLT-PET images during the optimisation process are presented in Figure 21. Table 1 

lists the AUC values for each threshold. The tumour/background SUV difference 

threshold of 0.2 was used for the survival analysis as it had the highest AUC. 
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Figure 21, ROC curves for all FLT background normalisation thresholds between 0.1 and 0.7. 

Median group survival time was used as the status variable. 

 

Threshold 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

AUC 0.594 0.693 0.685 0.468 0.441 0.454 0.461 
Table 1, The AUC values calculated for each FLT background normalisation threshold ROC curve. 

 

3.3.2  Viable Tumour Volume Optimisation for Each Modality 

 

The ROC curves that illustrate the effect that variation of the tumour volume cut-off 

between “large” and “small” would have on the correlation between tumour size and 

survival at the median post-surgery survival time for the group are reflected in 

Figures 22-24.  Each figure is labelled with the chosen cut-off point. 
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Figure 22, The median survival ROC curve for CMET-PET for tumour-background  SUV ratio > 

1.5, including the point on the curve that is closest to Sp and Se = 1. 

 

 

Figure 23, The median survival ROC curve for FLT-PET for tumour-background  SUV absolute 

difference > 0.2, including the point on the curve that is closest to Sp and Se = 1. 
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Figure 24, The median survival ROC curve for Gd-MRI enhancement, including the points on the 

curve that are closest to Sp and Se = 1. 

 

3.3.3 Kaplan Meier Survival Plots and Results of the Log-Rank Test 

 

Figures 25 and 26 present the Kaplan Meier plots for CMET-PET and FLT-PET, 

respectively. Two plots were produced for Gd-MRI, in accordance with the ROC 

analysis that showed two points on the curve that were equally well correlated with 

survival at the median survival time. 
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Figure 25, A Kaplan Meier survival plot for CMET-PET viable tumour volume, the delineation 

between ‘small’ and ‘large’ tumour mass was set at 25 cm
3
. 

 

Figure 26, A Kaplan Meier survival plot for FLT-PET viable tumour volume, the delineation 

between ‘small’ and ‘large’ tumour mass was set at 41.4 cm
3
. 
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Figure 27, A Kaplan Meier survival plot for Gd-MRI enhancement volume, the delineation between 

‘small’ and ‘large’ tumour mass was set at 14.5 cm
3
. 

 

 

Figure 28, A Kaplan Meier survival plot for Gd-MRI enhancement volume, the delineation between 

‘small’ and ‘large’ tumour mass was set at 20 cm
3
. 
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The Log-Rank test (Peto and Peto 1972) was used to determine statistical 

significance between the groups for each image type. Only CMET-PET produced a 

difference that was significant (p < 0.05). The results are summarised in Table 2. 

 

Image type CMET-PET FLT-PET Gd-MRI (14.5 cm3) Gd-MRI (20 cm3) 

p-value 0.021 0.066 0.227 0.163 

Table 2, A summary of the results of the Log-Rank test performed on the survival data from each 

KM plot. 

 

3.4 Discussion 

 

Despite its widespread use in initial glioma diagnosis and therapy follow-up work, 

radiologic (primarily Gd-MR) imaging has been shown to have little utility in the 

differentiation of post-treatment tumour recurrence from treatment-related trauma 

and necrosis (Brandsma and van den Bent 2009). In order to improve the diagnostic 

accuracy of post-treatment glioma imaging, alternative modalities continue to be 

investigated in clinical research. Previous studies that pursued similar lines of 

investigative enquiry used longitudinal follow-up imaging as a means to assess 

treatment response via intra-subject changes in SUV, and used that as the factor 

which is analysed with regards to survival time (Herholz et al. (2003); Hoeben et al. 

(2013)). CMET PET has given superior outcomes to both FLT and Gd-MRI in 

previous studies attempting to predict survival outcomes in glioma (Singhal et al. 

(2012); Tripathi et al. (2012)). This study found that post-treatment tumour volumes 

on Gd-MRI and FLT-PET were not predictors of survival, in keeping with previous 

research. CMET-PET tumour volumes were found to be a statistically significant 

predictor of survival. 

 

A potential pitfall in the ROC curve method used for threshold optimisation was 

highlighted during the Gd-MRI data analysis, with two points on the curve having 

identical distances to the top left hand corner of the plot (Figure 24). Since neither 

threshold was a significant predictor of survival, the issue was not pursued further. If, 

however, a decision had to be made regarding choice of threshold in such a scenario, 

one way of coming to a conclusion may be to change the way in which sensitivity 

and specificity are weighted. Studies concerned with cervical and breast cancer 
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diagnosis have found that that patients believe that sensitivity is the most important 

factor; that is, patients would rather be falsely diagnosed with cancer than falsely 

given a clean bill of health (Basen-Engquist et al. (2007); Schwartz et al. (2000)).  

 

Achieving a high degree of accuracy when manually thresholding a high contrast 

tumour volume on Gd-MRI is made difficult by the fact there can be significant 

concentrations of Gd immediately outside the brain. Masking the image using the 

MNI brain mask template was performed to overcome this problem, but image co-

registration is never perfect; there were occasions where a high contrast ring or 

crescent was seen at the outer edge of the brain as a result of small errors in the 

registration. As seen in Figure 20, a manual VOI was used to reduce the number of 

erroneous voxels included, but this could not always remove all extraneous high 

contrast voxels. Manual editing was not performed, as this would lead to reliance on 

the operator to decide where the uptake outside the brain ceased and the uptake 

inside the brain began; a proposition which is nearly impossible for tumours near the 

skull. A similar problem was noted for the PET images; a small error in the image 

alignment may result in a similar false inclusion of high relative uptake at the edge of 

the image. The fully automated nature of this analysis method is greatly 

advantageous with regards to its potential clinical applications. It is possible that 

individual tumour volumes may be identified with greater accuracy if each were 

manually edited to remove the previously mentioned artefacts. However, this would 

alter the very nature of the technique itself and greatly diminish its potential clinical 

utility. Manual modification of the tumour volumes may introduce inter-operator 

variability and human error into the method, as well as introducing the requirement 

for tedious and repetitive editing, thus it was not part of the investigation. 

 

There were two subjects whose tumours crossed the mid-sagittal plane forcing their 

exclusion from the PET analysis due to the nature of the hemisphere based 

background normalisation; this was not an issue for the MRI contrast enhancement 

selection method. 
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3.5 Conclusion 

 

Current radiologic imaging techniques continue to fail to adequately distinguish 

treatment-related tissue effects from tumour progression in glioma, leading to the 

requirement for other modalities and analysis methods to provide a solution. A semi-

automated method was used to examine the utility of FLT-PET, CMET-PET and Gd- 

MRI for survival prediction based on viable tumour volume. CMET-PET was the 

only image type found to be a survival predictor.  
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4 Diagnostic Performance of Manual Versus Automated 

Hippocampal Masking in Alzheimer’s Disease 

 

4.1 Introduction and Literature Review 

 

Reliance upon assessment of clinical symptoms alone in early AD diagnosis 

commonly results in diagnostic sensitivities and specificities of around 70%. 

Symptoms from conditions such as other dementias, depression, normal age-related 

neurodegeneration, and alcohol/drug use are frequently mistaken for AD in elderly 

patients (Blennow et al. 2015). It is hoped that the incorporation of imaging and 

biomarkers into clinical AD diagnosis can increase the rate at which a correct early 

diagnosis can be made. 

 

There can be significant variation in the acuteness of AD pathology between 

sufferers; different areas within the cerebrum are also affected with varying severity. 

The medial temporal lobe is an area which is very severely affected by AD. In 

particular, the hippocampus stands out as a substructure that is one of the earliest 

affected brain regions (Nestor et al. 2004). Accurate assessment of hippocampal 

tissue effects can potentially become a useful biomarker for clinical AD assessment. 

 

Large scale atrophy throughout the cerebral cortex can be clearly seen in vivo using 

structural MRI, as well as atrophy of some small structures such as the hippocampus 

(Apostolova et al. 2012). Corresponding reductions in regional glucose metabolism 

(MRglc) in large cortical volumes have been identified by studies using automated 

voxel based analysis (VBA) on FDG-PET images; however, these studies almost 

never find the expected reduction in hippocampal MRglc (Mosconi et al. 2005). This 

inability to detect reduced hippocampal MRglc is possibly due to the small volume 

of the hippocampus and the errors inherent in the spatial registration of 

comparatively low resolution PET images to an anatomical template. Manual ROI 

sampling, guided by coregistered MRI, has proven more effective at detecting 

reduced hippocampal MRglc. This method, though effective, has several drawbacks. 

Marking out manual ROIs of the hippocampus for an individual is laborious, and can 

only be reliably performed by someone with thorough knowledge of neuroanatomy. 
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Furthermore, patients are rarely given a volumetric MRI in a clinical setting. An 

optimised mask created using manually marked hippocampal peripheries on T1 

MRIs has been shown to be accurate in defining the hippocampus on spatially 

normalised FDG-PET images, and for detecting reductions in hippocampal MRglc in 

patients with Mild Cognitive Impairment (MCI) and Alzheimer’s disease (AD) 

(Mosconi et al. 2005).  

 

Some brain image processing programs such as FSL (Smith et al. 2004) feature a 

routine that can automatically segment cortical and subcortical structures within a 

volumetric T1 MR image, potentially circumventing the requirement for manual ROI 

marking in the analysis of brain substructures. The use of a fully automated 

hippocampal masking algorithm increases the ease with which very large data sets 

can be analysed, enabling the diagnostic capability of the method to be evaluated 

with greater statistical power. Furthermore, refinement and improvement of the mask 

as image technology improves can be conducted much more easily if repeated 

manual marking is not required. 

 

The study by Mosconi and colleagues (2005) demonstrated the utility of an 

optimised hippocampal mask, created by expert observers manually marking the 

hippocampus on 48 MRI studies, in identifying changes in hippocampal MRglc 

during the onset and development of AD. This Chapter compares the performance of 

a manually defined hippocampal mask with one that was formulated using an 

automated algorithm. An automated masking method allows for increased numbers 

of subjects to be included in the mask itself, and for easier redevelopment and 

refinement of the mask in the future. The two masks are then compared with regards 

to their capacity to differentiate between groups of AD, MCI and healthy control 

(HC) subjects. 
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4.2 Materials and Methods 

 

4.2.1 Image Cohort 

 

Images for this research were obtained from two different sources. 21 (7 AD, 7 MCI 

and 7 HC) Volumetric T1 brain MRIs from the CSIRO’s Australian Imaging, 

Biomarkers & Lifestyle Flagship Study of Ageing (AIBL, http://aibl.csiro.au/) (Ellis 

et al. 2009) were used for the creation of the manual hippocampal mask. AIBL MR 

images were collected using 1.5 T scanners and acquired in the sagittal plane as 1.2 

mm thick contiguous slices. The pixel size and slice thickness was 1.2 mm and the 

image matrix size was 256 x 240 pixels. These images were used for manual mask 

generation. 

 

A further 190 (51 AD, 66 MCI and 73 HC) subjects were selected from the 

Alzheimer’s Disease Neuroimaging Initiative online database (ADNI, 

http://www.adni-info.org/Home.aspx) (Mueller et al. 2005). These subjects had both 

volumetric T1 MRI and FDG-PET images taken. For inclusion in this analysis, 

images from the ADNI cohort were only considered if their volumetric T1 MRI and 

FDG-PET scans were taken no more than three months apart. ADNI MR images 

were 1.5 T, acquired in the sagittal plane as contiguous slices, pixel size 1.25 x 1.25 

mm, slice thickness 1.2 mm, matrix size 192 x 192 pixels. ADNI PET images were 

acquired in the axial plane, with a dynamic emission scan of six five-minute frames 

beginning 30 minutes post injection; images were reconstructed into a 128 x 128 

matrix with a 2 mm slice thickness and pixel size.  

 

All images were obtained in DICOM format. To enable spatial registration and 

automated hippocampal marking using FSL (Smith et al. 2004), images were 

converted to FSL nifti format using the FreeSurfer (Martinos Centre for Biomedical 

Imaging, http://surfer.nmr.mgh.harvard.edu/) routine mri_convert. 
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4.2.2 Hippocampal Mask Generation 

 

4.2.2.1 Manual Hippocampal Marking 

 

All 21 subjects (7 from each diagnostic category) drawn from the AIBL database 

comprised the manual masking cohort. ImageJ (RSB, National Institute of Mental 

Health) (Schneider et al. 2012) was used to facilitate the digital marking of the MRIs, 

which is depicted in Figure 29. The marking was conducted by a neuroradiology 

registrar at Royal Perth Hospital as follows: 

 

“Coronal MRI T1-MPRAGE 1mm thick slices were obtained for each patient 

perpendicular to the long axis of the hippocampus, which was used to individually 

draw regions of interest of both hippocampi. The neuroimaging specialists who 

performed this were blinded to the clinical status of each patient. Mapping 

commencing at the pes-hippocampus anteriorly was performed on every second slice 

over a twenty-slice volume for a total of 10 hippocampal measurements per mesial 

temporal lobe. The lateral hippocampal border was defined as the temporal horn of 

the lateral ventricle, the medial border as the ambient cistern, and the inferior border 

as the white matter of the parahippocampal gyrus.” (A. Law, Consultant Nuclear 

Medicine Physician, personal communication November 24, 2011). 
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Figure 29, A coronal outline of the hippocampus in the left hemisphere, made using the manual 

marking technique in ImageJ (RSB, National Institute of Mental Health). 

 

Manual marking was performed on every second coronal slice. However, a 

contiguous volume is required to delineate the whole hippocampus. In order to 

construct a contiguous volume from the marked coronal slices, the images were first 

re-sliced and viewed in the sagittal plane. A single iteration of the binary processing 

‘dilate’ and ‘erode’ functions built in to ImageJ was then used to form a contiguous 

volume. The dilate function works by assigning a value of 1 to every 0 value voxel 

that sits adjacent to a ‘1’ voxel. This has the effect of filling in small holes or spaces 

in a volume as well as expanding its outer perimeter. The erode function performs 

the opposite operation. The net effect is that small holes or spaces within a volume 

are filled in with minimal impact on the original outer perimeter. Figure 30 (Part A) 

shows the marked non-contiguous hippocampal slices and the contiguous volume 

formed after the implementation of the dilate and erode functions (Part B). 
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Figure 30, (Part A): Manually marked coronal hippocampal sections, viewed in the sagittal plane, 

(Part B): The continuous hippocampal volume formed by using the ‘dilate’ and ‘erode’ functions 

in ImageJ. 

 

4.2.2.2 Automated Hippocampal Marking 

 

100 subjects (21 AD, 26 MCI and 43 HC) were randomly selected from the ADNI 

cohort to form the automated mask. The FSL (Smith et al. 2004) subroutine FIRST 

(Patenaude et al. 2011) was used to automatically segment out the hippocampus on 

all subject MRIs from the ADNI database. The volume used to define the 

hippocampus on a subject MRI using FIRST can be seen in Figure 31. FIRST 

incorporates data obtained from manually labelled image sets to assist in forming an 

initial estimation of the spatial location of the subcortical structures to be segmented. 

A deformable virtual surface mesh for each structure was then calculated and 

optimised to form the substructure boundaries (Patenaude et al. 2011). 
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Figure 31, A sagittal view of a subject’s hippocampal volume, defined by FIRST. 

 

4.2.2.3 Montreal Neurological Institute Template Coregistration 

 

Nonlinear warping was used to spatially coregister all subject MRIs to the 

McConnell Brain Imaging Centre (Montreal Neurological Institute (MNI), McGill 

University Montreal) 152 nonlinear 6
th

 generation T1 2mm resolution brain template 

via a multi-stage process. The FSL (Smith et al. 2004) routine BET (Smith 2002) was 

used to strip the skull from around the brain volume. An approximate template 

alignment was then achieved using the FSL routine FLIRT (Jenkinson et al. 2002) to 

calculate a 12 degree of freedom affine transformation to the MNI brain template. 

The affine transformation was used to assist in the calculation of nonlinear warps, 

which were used to give a more precise template registration. The FSL routine 

FNIRT (Andersson et al. 2007) was used to calculate the nonlinear subject MRI-MNI 

template warps. Figure 32 illustrates the MRI spatial registration process. 
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Figure 32, (Part A): A native space subject MRI, (Part B): The MRI after skull extraction using 

BET, (Part C): The MRI after affine brain template registration using FLIRT, (Part D): The MRI 

after nonlinear spatial warping to the T1 MNI template using FNIRT, (Part E): The T1 MNI 

template. 

 

FIRST segmentation (Patenaude et al. 2011) marks a subject’s hippocampal volumes 

in the subject’s native image space; this allows for a subject’s MRI-MNI warp to be 

applied to the hippocampal volume to provide an MNI template space 
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transformation. Figure 33 illustrates the location of a subject’s hippocampus after 

transformation to the MNI template.  

 

 

Figure 33, The location of a subject’s FSL (Smith et al. 2004) marked hippocampus in MNI space 

after nonlinear warping to the MNI template. 

 

4.2.2.4 Hippocampal Mask Optimisation 

 

Once the hippocampal volume for each subject had been spatially warped to MNI 

space, a summation volume across all subjects in a cohort was created that showed 

the degree of hippocampal overlap at each voxel. The summation volumes for the 

manual and automated FSL (Smith et al. 2004) masks are shown respectively in 

Figure 34, Parts A and B. The process used to develop and optimise both masks 

draws upon the work of Mosconi and colleagues (2005). 
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Figure 34, (Part A): The summation volumes displaying the MNI space location of all hippocampal 

volumes for the manual markings, (Part B): The automated FSL (Smith et al. 2004) markings. The 

heat map corresponds to the degree of overlap at each voxel. 

 

It was critical to avoid incorrectly sampling non-hippocampal tissue within the mask. 

In other words, the maximisation of true positives (voxels included in the mask that 

are within the hippocampus for a given subject) was more important than the 

minimisation of false negatives (voxels that are not included in the mask but are 

within the hippocampus for a given subject).  

 

If this was the only consideration to be taken into account, then mask optimisation 

would be as simple as only sampling those voxels in MNI space that were shared 

between all subjects’ hippocampal volumes. However, as is discussed in Mosconi 

and colleagues (2005), the inter-subject variability in hippocampal anatomy means 

that increasing the sample size from which a mask is formulated will likely lead to a 

decrease in the number of voxels that are shared between all subjects. The use of 

such a small volume means that when applying the mask to a large set of subjects, 

the average counts sampled in an individual subject is highly susceptible to the 

inclusion of only a very small number of non-hippocampal voxels.  
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Resampling statistics, in particular the bootstrap, can be used to simulate how a mask 

volume might vary if a very large number of subjects were sampled. The Bias-

Corrected and Accelerated Percentile (BCa) method of bootstrapping (Efron and 

Tibshirani 1993) was used to assess mask volumes by degree of overlap, in order to 

assess the theoretical stability of the masks’ volume if they were drawn from very 

large sample sizes. The bootstrapping procedure is outlined in Appendix 3. The 

largest volume stable mask was selected as the optimal mask. 

 

4.2.3 Quantification of Hippocampal MRglc 

 

The FDG-PET images of the 90 ADNI database subjects who were not used for the 

automatic mask generation (30 HC, 30 MCI and 30 AD) were used to compare the 

performance of the manual and automatic masks.  

 

The ADNI imaging protocol for FDG-PET brain images is a “dynamic 3D scan 

consisting of six-5 minute frames” with acquisition commencing 30 minutes post-

injection (ADNI 2006, p 11). The normal FDG-PET acquisition protocol at our 

institution is for a single frame 30 minute acquisition; an equivalent image set was 

generated from the ADNI PET for each subject as follows. 

 

The FSL (Smith et al. 2004) routine mcflirt (Jenkinson et al. 2002) was used to 

perform rigid body intra-subject co-registration of the dynamic image sequence to 

the first frame of the sequence, removing the effect of any patient movement 

between the frames. The 6 co-registered images were then averaged to form a single 

FDG-PET image volume for each subject in the cohort. This average image was used 

for all further processing. 

 

Intrasubject (MRI – PET) image alignment for the ADNI images was performed via 

a six degree of freedom transformation (rigid body) using the FSL (Smith et al. 2004) 

routine FLIRT (Jenkinson et al. 2002). Once a subject’s PET was aligned with their 

MRI, the nonlinear MRI-MNI warps calculated during the automatic hippocampal 

mask development were then applied to transform the PET images to the MNI 

template space. This process is depicted in Figure 35.  
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Figure 35, (Part A): A subject FDG-PET volume in its native space, (Part B): The subject PET and 

MRI volumes after intra-subject MRI co-registration, (Part C): The subject PET and MRI volumes 

after nonlinear spatial registration with the MNI template. 

 

Differences in inter-subject FDG uptake and inter-scanner sensitivity differences 

were accounted for by scaling each PET voxel using the average uptake in the pons, 

as pons metabolism is relatively unaffected in AD (Minoshima et al. 1995). A pons 

VOI was constructed such that its borders sat within the boundaries of the pons on 

the 2mm T1 MRI MNI template, to minimise the chances of erroneously including 

extra-pontine tissue on a PET image due to spatial normalisation errors. Figure 36 

depicts this volume, which was defined by using an ImageJ macro (included in 

Appendix 4) to outline a series of transaxial polygonal ROIs that fell within the pons. 

The volume of the pons VOI was 1.6 cm
3
. This volume was used to select the pons 
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on PET images that had been spatially warped to template space. Pons normalisation 

was achieved by applying a scaling factor to an image volume so that the average 

voxel number inside the pons VOI was 10000. 

 

 

Figure 36, The VOI used to represent the pons for scaling of a subject’s FDG-PET images. 

 

After pons normalisation, an ImageJ macro was used to determine the average 

normalised hippocampal metabolism for each of the remaining 90 subjects from the 

ADNI database (30 HC, 30 MCI and 30 AD) using both hippocampal masks. This 

macro is included in Appendix 5. 

  

4.3 Results 

 

4.3.1 Mask Optimisation and Bootstrapping 

 

If the hippocampal marking and spatial normalisation procedures were both perfect, 

then the degree of overlap at every hippocampal voxel in the summation volumes 

shown in Figure 34 would be 100%. However, only seven voxels (56 mm
3
) from the 

manually marked data and 27 voxels (216 mm
3
) from the FSL (Smith et al. 2004) 

automated data were common to all subjects. 

 

It was found that the smallest (100% overlap voxels only) masks for both the manual 

and automated masks were unstable; that is, they fell outside the 95% BCa 

confidence limit (Efron and Tibshirani 1993) (further details regarding the 

bootstrapping calculations can be found in Appendix 3). Therefore, the automated 

and manual mask volumes included the voxels that were shared between 99 or more 

of 100 (99%) subjects in the FSL (Smith et al. 2004) cohort, and 20 or more of 21 

subjects (95%) in the manually marked cohort as these were the smallest masks that 
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fell within the 95% BCa confidence limit. The size of these masks were 68 voxels 

(544 mm
3
) and 21 voxels (168 mm

3
) for the automated and manual masks 

respectively. 

 

4.3.2 Quantification of Hippocampal MRglc Using the Masks 

 

A comparison of the averaged pons normalised MRglc within each of the masks, 

displaying differences between each diagnostic category, is shown in Figure 37. 

 

 

Figure 37, Boxplots showing the group level differences between diagnostic category for both the 

manually marked and FSL (Smith et al. 2004)  hippocampus masks. 
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p-values 

Groups Manual Mask FSL Mask 

AD-MCI < .005 < .005 

AD-HC < .0005 < .0005 

MCI-HC >.05 >.05 

Table 3, The significance (Tukey’s HSD) of differences in normalised hippocampal MRglc between 

AD, MCI and HC groups for both manual and FSL (Smith et al. 2004) masks. 

 

Group level differences in the pons normalised masks counts were investigated using 

Tukey’s HSD Test, which were calculated using the statistics package R. No 

significant difference between the MCI and HC groups were found for either mask (p 

> 0.05). However, differences between the AD-HC and AD-MCI groups for both 

masks were significant at the 0.0005 and 0.005 levels respectively. Figure 38 

illustrates the correlation in MRglc measured using the two different masks for each 

individual. A high degree of correlation was found (r = 0.96, p < 0.0001 using 

Pearson’s product moment correlation in R). These results show that the performance 

of the masks is equal at both the individual and group level. 

 

 

Figure 38, A graphical representation of the degree of correlation between MRglc levels measured 

in each individual between the automated and manual hippocampus masks. 
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4.4 Discussion 

 

Quantification of neurodegeneration due to AD without the use of imaging involves 

significant confounding factors, which include the potential influence of other 

conditions and difficulties in establishing a baseline for expected cognitive 

performance. Brain imaging allows for better understanding of patterns of 

degeneration that are AD-specific, some of which become evident before the onset of 

clinical symptoms. FDG-PET is a widely available imaging modality that has 

demonstrated utility in research settings in identifying patterns of neurodegeneration 

that can be specifically attributed to AD (McKhann et al. 2011). 

 

A study by Mosconi and colleagues (2005) that used a manually defined  mask of the 

anterior portion of the hippocampus known as the head or “pes” (see Figure 10), 

found significant MRglc differences between groups of AD and HC brains, as well 

as HC and MCI brains, but not between MCI and AD. The results from that study are 

different to this study with regards to the relative MRglc seen in the MCI group. This 

research found there to be no significant difference in MRglc between the MCI and 

HC groups, and a significant difference between the AD and MCI groups.  

 

There can be differences in the manner in which MCI is defined between studies. For 

a subject to be diagnosed with MCI in the Mosconi and colleagues (2005) study, they 

needed to have a Mini Mental State Examination (MMSE) score of > 24, and a 

Global Deterioration Scale (GDS) (Reisberg et al. 1982) score of 3. Likewise, to be 

considered MCI by ADNI, subjects needed an MMSE score of > 24. However, they 

also needed to have a memory complaint, and objective memory loss measured by 

education adjusted scores on the Wechsler Memory Scale Logical Memory II 

(Wechsler 1987), as well as a Clinical Dementia Rating (CDR) (Morris 1993) of 0.5  

(ADNI 2008). To be diagnosed as MCI by the Australian Imaging, Biomarkers and 

Lifestyle (AIBL) study, a participant must have reported memory difficulties (either 

directly or through an informant). If the subject had already been clinically diagnosed 

as MCI before entering the AIBL study, they were required to demonstrate a score 

that was 1.5 or more standard deviations below the age-adjusted mean on at least one 

neuropsychological task to be considered MCI by AIBL. Monthly clinical review 
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panel meetings were held, during which study participants who entered the study as 

HC participants could be re-diagnosed as MCI. In order for this to happen, they had 

to score at least 1.5 standard deviations below the age-adjusted mean in two or more 

cognitive tests (Ellis et al. 2009). The fact that different studies take varying 

approaches to the diagnosis of MCI is indicative of the level of uncertainty 

surrounding the condition itself. The difference in diagnostic criteria identified 

between the Mosconi and colleagues (2005) study and the ADNI study probably had 

an effect on the overall distribution of MCI MRglc rates measured in this research.  

 

The process of manual hippocampal marking can be extremely resource intensive 

and time consuming, and requires expert observers. Establishing a large manually 

marked cohort of brain images would be very difficult for this reason, and the 

manual marking protocol used in this research was adjusted to try and save time for 

the neuroradiology registrar performing the marking. Only every second coronal 

slice was marked starting at the anterior hippocampal boundary, this method was 

considered sufficient due to the regular shape of the hippocampus along the anterior-

posterior direction (Figure 11). Only ten slices were marked in total, which meant 

that the anterior 20 mm portion of each hippocampus was included in the manual 

mask. This marking length is in line with previous studies employing manual 

hippocampal segmentation and spatial warping, which found that superior diagnostic 

accuracy was achieved for the larger anterior portion of the hippocampus, and that 

use of the smaller tail section led to increased registration errors (De Santi et al. 

2001). As can be seen in Figure 34, this made the manually marked mask 

significantly smaller than the FSL (Smith et al. 2004) mask, however it does not 

appear to have had a large effect on the overall significance values noted in Table 3 

and on the MRglc values recorded for each individual in the study (Figure 38). 

 

Spatial warping of brain images to the MNI template was occasionally problematic, 

particularly for the AD brains. Two of the hallmarks of AD progression are greatly 

enlarged ventricles and significant cortical atrophy. These two factors make close 

registration to a template such as the MNI 152 template (which is based on healthy 

young adult brains) significantly more difficult and time consuming, and resulted in 

the exclusion of a large number of brain images that were downloaded from the 

ADNI database due to the inability to produce a good spatial warp. Elderly brain 
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templates are now available to improve the spatial normalisation of heavily atrophied 

brains to a standard space (Evans et al. 2012) The use of such a template may 

improve spatial normalisation results in any future research in this area. 

 

4.5 Conclusion 

 

Both the automated and manual processes of hippocampal masking were capable of 

detecting differences between groups of AD and MCI, and AD and HC brains. They 

were not able to detect differences between groups of MCI and HC brains. The 

automated system of hippocampal marking using FSL (Smith et al. 2004) is far less 

time consuming and can employ batch processing to include very large numbers of 

subjects, as well as increasing the ease with which the mask can be modified and 

updated as imaging technology improves. Furthermore, the automated marking 

method circumvents the need for the anatomical expertise required for manual 

marking. It appears that there is a difference in pons normalised hippocampal MRglc 

between populations of AD and either MCI or HC brains. However, there is large 

variation between individuals of the same diagnostic category. This variation may 

limit the usefulness of the technique as means of AD diagnosis; nonetheless, it may 

find future utility as part of a battery of tests for AD diagnosis and evaluation. 
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5 Clinical Utility of Hippocampal Masking in the 

Diagnosis of Alzheimer’s Disease and Mild Cognitive 

Impairment 

 

5.1 Introduction and Literature Review 

 

Biomarkers that reliably detect the presence of AD pathology and can differentiate 

between HC, MCI, and AD could be used to complement or even supersede clinical 

cognitive assessment, and potentially lead to earlier and more accurate diagnostic 

outcomes. This Chapter examines the clinical utility of the hippocampal mask 

developed in the previous Chapter in the differential diagnosis of AD and MCI. 

 

5.1.1 Diagnostic Threshold Selection for Diseases with Three States 

 

For diseases in which there exist only two states (i.e. no precursor/transitional phase), 

a diagnostic test need only discriminate between healthy and diseased individuals. 

The Receiver Operating Characteristic (ROC) was developed as a means to facilitate 

the selection of a cut-off threshold to delineate between healthy and diseased 

individuals based on the result of a screening test or diagnostic assessment. The 

threshold can be shifted to reflect differences in the relative importance of sensitivity 

and specificity.  

 

A popular method for selecting a diagnostic threshold to discriminate between binary 

disease states is the Youden Index (Youden 1950). The formula to calculate the 

Youden Index ‘J’ at a particular cut-off point ‘t’ is 

 

                                                             𝑱(𝒕) = 𝑺𝒆(𝒕) + 𝑺𝒑(𝒕) − 𝟏                   (3) 

                                                  (Youden 1950)      

 

Where ‘Se’ is sensitivity and ‘Sp’ is specificity. The maximum achievable Youden 

Index result is 1, which is attained if a cut-off point yields both perfect sensitivity 
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and specificity. The minimum is zero, which is the result of a diagnostic test that 

fares no better than random chance.   

 

For diseases such as AD that have an intermediate stage exhibiting some or all of the 

disease symptoms with reduced severity, a single ROC curve is not appropriate. 

Several different approaches have been taken to address the issue of classification in 

the scenario in which there are more than two groups. Diri and Albayrak’s (2008) 

research used a number of different group classification methods on a thyroid 

dysfunction data set. The data included subjects exhibiting hypo, normal, and 

hyperthyroid function. They extended the ROC curve to cater for the three group 

case by using ‘cobweb’ plots that served as a means to visualise the errors across the 

diagnostic categories. Another study aimed to use two novel methods (closest to 

perfection and max volume) (Attwood et al. 2014) for threshold selection in the three 

class setting, and found that they were statistically indistinguishable from a three 

group generalised Youden Index model (Nakas et al. 2010).  

 

The Three Group Youden Index proposed by Luo and Xiong (2013)  can be used to 

find multiple optimal cut-off thresholds to delineate between healthy, transitional, 

and diseased individuals (Luo and Xiong 2013). Under the assumption of a normal 

distribution within each diagnostic category for subject test results, the three group 

method aims to define two thresholds: t-, and t+. The three resultant groups (D
-
, D

0
, 

and D
+
) then describe the subjects that are diagnosed as healthy, intermediate, and 

diseased respectively.  

 

Three different variables are then be used to quantify the suitability of the thresholds 

with regards to each of the three disease states. Sp(t-) is the proportion of diseased 

individuals whose measurement was below t-. Se(t+) is the proportion of healthy 

individuals whose measurement was above t+, and Sm(t-,t+) is the proportion of 

transitional subjects that fell between the thresholds t- and t+.  

 

The optimal Youden Index thresholds are found by maximising the three group 

Youden Index, J(t-,t+), which is defined as 
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                                            𝑱(𝒕−,𝒕+) =
𝟏

𝟐
[𝑺𝒑(𝒕−) + 𝑺𝒎(𝒕−, 𝒕+) + 𝑺𝒆(𝒕+) − 𝟏]    (4) 

                                (Luo and Xiong 2013) 

 

The three group Youden Index is again expressed so that its value can only range 

from 0 to 1. If a test perfectly separates the three diagnostic categories, then the three 

group Youden Index is 1; whereas a three group Youden Index of 0 indicates that the 

test is no better than random chance at separating the groups. In the case of two of 

the three diagnostic groups demonstrating very little separation, the dimensions of 

the problem can be reduced to allow for a more simplistic ROC curve-style 

assessment of a single threshold. 

 

The Youden Index gives equal weighting to both sensitivity and specificity. 

However, the two parameters may be weighted differently depending on the purpose 

of testing. For example, a test that is used to screen for a deadly infectious disease 

may apply a greater weighting to sensitivity than specificity, as the unnecessary 

quarantining of a healthy patient may be preferable to the release of an infected 

patient. However, if a screening test is used for a condition in which the follow-up 

diagnostic testing or treatment is very expensive or carries health risks, specificity 

may be weighted more heavily than sensitivity in order to avoid the expense or 

health risks incurred by unnecessarily performing further testing or treatment on 

healthy patients (Carneiro et al. 2011).  

 

5.1.2 Chapter Summary 

 

The utility of the hippocampal mask was investigated in two different scenarios. The 

first was when a suitable volumetric MRI was available to guide the MNI template 

registration of each PET image. An initial analysis of the three group data set that 

was based on MNI template spatial warping driven by a coregistered volumetric T1 

MRI (Section 4.2) was performed using the three group Youden Index proposed by 

Luo and Xiong (2013). The second scenario accounts for the commonly encountered 

clinical setting, in which a volumetric MRI is not taken alongside a brain PET. An 

analysis of hippocampal MRglc was performed for ADNI PET images that were 

spatially warped to an MNI space PET template without the use of MRI guidance, in 

order to assess the potential utility of the method in the MRI-less case. Upon review 
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of the quantification variables, further analysis was conducted on two group data sets 

(AD vs Non AD), which was formed by combining the MCI and HC groups. 

 

5.2 Materials and Methods 

 

Patient data consisted of volumetric T1 MRI and FDG-PET brain images from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Data from 190 

subjects were used, including 51 AD, 66 MCI, and 73 HC subjects. Images were 

spatially normalised to the FSL (Smith et al. 2004) Montreal Neurological Institute 

(MNI) T1 MRI template through a two-stage process (approximate linear alignment 

followed by precise non-linear warping) that was driven by template registration with 

the subject MRI. A randomly selected cohort of 100 subjects (21 AD, 36 MCI and 43 

HC)  was used to develop an optimised hippocampal mask in MNI space, based on 

subject hippocampal volumes defined on the subject MRIs using the FSL (Smith et 

al. 2004) routine FIRST (Patenaude et al. 2011). Patient imaging details, the method 

used to construct the optimised hippocampal mask, and details of the MRI driven 

spatial normalisation procedures are in Section 4.2. The optimised hippocampal 

mask was used to sample the pons normalised hippocampal MRglc on PET images 

of the 100 subject mask development cohort and to calculate cut-off thresholds to 

best delineate between the diagnostic categories using the Three Group Youden 

Index (Luo and Xiong 2013). The ensuing MRglc cut-off thresholds were then 

applied to the remaining 90 subjects, a test cohort consisting of 30 AD, 30 MCI, and 

30 HC subjects.  

 

The mask development cohort data was then re-structured into two groups, AD and 

Non-AD, by combining the HC and MCI data. Receiver Operator Characteristic 

(ROC) curve analysis was utilized to calculate a threshold to delineate between the 

two newly formed diagnostic classes. The threshold was then applied to the 90 

subject test cohort. 

 

Volumetric MRI is often unavailable in a clinical setting. This scenario was 

simulated through the use of a separate spatial normalisation procedure, in which the 

PET images for each patient were spatially normalised to an MNI space H2O
15 

PET 
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template from the software package Statistical Parametric Mapping (SPM) (Friston 

2007). Subject PET images were spatially normalised to the PET template using a 

similar two-step process to that used for the MRI driven spatial normalisation. 

Firstly, a 12 degree of freedom affine transformation was calculated using the FSL 

routine flirt (Jenkinson et al. 2002) to calculate an approximate alignment with the 

template. Secondly, precise template registration was achieved via calculation of 

nonlinear warps using the FSL routine fnirt (Andersson et al. 2007). The process of 

PET driven template registration is illustrated in Figure 39. 

 

 

Figure 39, (Part A): A native space ADNI PET image, (Part B): The PET image after the 

application of a 12 DOF affine transform, (Part C): The PET image after the application of a series 

of nonlinear warps to co-regiester it with (Part D): The SPM (Friston 2007) PET template.  
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The Statistics software program R (R Core Team 2015) was used for the statistical 

calculations. The package DiagTest3Grp (Luo and Xiong 2012) was used to compute 

the Three Group Youden Indices, and pROC (Robin et al. 2011) and Optimal 

Cutpoints (Lopez-Raton et al. 2014) were used and perform ROC analysis.  

 

5.3 Results 

 

5.3.1 MRI Driven Template Registration Data Set 

 

Figure 40 shows the distribution of pons normalised hippocampal MRglc in the 100 

subject mask development cohort, as measured by the optimised hippocampal mask. 

An outlier (greater than three times the inter-quartile range from the edge of the box) 

is present in the AD group. Inspection of the subject images revealed that a severe 

level of hippocampal atrophy resulted in the mask sampling the ventricle rather than 

the brain tissue. This is further explained in Figure 49, Section 5.4. All further 

analysis of the 100 subject mask development group excluded the outlier, the box 

and whisker plot of the data set with the outlier removed can be seen in Figure 41. 
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Figure 40, A box and whisker plot displaying the pons normalised hippocampal MRglc for the 100 

subject mask development cohort. 

 

 

Figure 41, A box and whisker plot displaying the pons normalised hippocampal MRglc for the 

mask development cohort after the removal of the outlier from the AD group. 
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Figure 42 is a scatter plot and box and whisker plot displaying the spread of the pons 

normalised hippocampal metabolism data for the three diagnostic categories. The 

horizontal dashed lines indicate the t+ and t- cut-off thresholds that maximised the 

Three Group Youden Index. 

 

 

Figure 42, A graphical representation of the three group Youden Index and cut-off threshold 

selection for the mask development cohort. 

 

The value for each of the group classification probabilities were: 

Sp(t-): 0.56 

Sm(t-,t+): 0.31 

Se(t+): 0.69 
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The cut-off thresholds were: 

Lower Threshold (t-): 0.98 

Upper Threshold (t+): 1.06 

 

These classification probability values indicate the rate at which the thresholds are 

able to correctly classify each diagnostic category. Sp(t-), Sm(t-,t+), and Se(t+) relate 

to AD, MCI, and HC respectively. The low value of Sm(t-,t+) indicates that the 

majority of the MCI subjects fell outside of the ‘central’ region that exists between 

the thresholds in Figure 42. The lower and upper cut-off thresholds from the Three 

Group Youden Index analysis (t+ and t- in Figure 42) were applied to the 90 subject 

test group to assess their diagnostic efficacy; the results can be seen in Table 4. 

 

 
AD MCI HC Total 

Correct 26 11 23 60 

Incorrect 4 19 7 30 

Table 4, The results of applying the cut-off thresholds from the MRI driven spatial normalisation 

mask development data set Three Group Youden Index analysis to the 90 subject test data set. 

 

The thresholds correctly categorised AD and HC patients 87% and 77% of the time, 

respectively. The MCI categorisation had poor efficacy, with only 37% of MCI 

subjects being correctly diagnosed. Of the subjects that were misdiagnosed, 12 fell 

above the t+ cut-off threshold, meaning that more MCI subjects were classified as 

HC than were classified as MCI. 

 

The Three Group Youden Index method was unable to produce a cut-off threshold 

that could reliably separate MCI subjects from the other diagnostic classes. Due to 

this, and the fact that the distribution of MCI subjects is similar in appearance to the 

HC subject distribution (as can be seen in the location of the inter-quartile boxes in 

Figure 42), a reduction in dimensionality was performed so that there were only two 

groups involved: AD and non-AD (including 20 and 79 subjects respectively for the 

mask development cohort). Analysis of the two group data set included ROC curve 

computation and the calculation of the Youden Index to determine the best value of 

normalised hippocampal metabolism to discriminate between the two new groups. 

The results of these methods can be seen in Figure 43 and Figure 44. 
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Figure 43 is a boxplot displaying the data set after it had been reduced down to two 

groups. 

 

 

Figure 43, A box and whisker plot illustrating the distribution of the two group pons normalised 

hippocampal metabolism data for the MRI driven mask development cohort. 

 

Figure 44 shows the ROC curve that was calculated based on the dimension reduced 

data set. The area under the curve (AUC) was 0.79. 
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Figure 44, The ROC curve displaying the variation of sensitivity and specificity with cut-off 

threshold selection for the reduced dimension data set (AD vs non-AD), as well as the point on the 

curve that optimises the Youden Index for the MRI driven mask development cohort. 

 

The Youden Index optimal cut-off threshold for pons normalised hippocampal 

metabolism for the two group data set was 1.03. The sensitivity and specificity at this 

threshold were 0.80 (95% CI 0.56-0.89) and 0.76 (95% CI 0.65-0.81) respectively. 

The point at which this threshold sits on the ROC curve can be seen in Figure 44. 

 

The cut-off threshold from the mask development cohort was then applied to the 90 

subject test cohort after re-structuring into AD and Non AD classes (including 30 and 

60 subjects respectively); the results are summarised in Table 5.  

 

 

Optimal Youden 

Index Threshold 
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True Positive 25 

False Negative 5 

True Negative 37 

False Positive 23 

Sensitivity (95% CI) 0.83 (0.65-0.9) 

Specificity (95% CI) 0.62 (0.48-0.68) 
Table 5, The results of applying the cut-off thresholds from the MRI driven mask development data 

set ROC curve Youden Index Analysis to the 90 subject test data set, including 95% confidence 

intervals for sensitivity and specificity. 

 

 

5.3.2  PET Driven Template Registration Data Set 

 

In order to draw comparisons between the MRI driven spatial warping procedures 

and its PET only equivalent, the PET driven data were analysed in the same manner 

as the MRI driven data. Figure 45 is a box and whisker plot displaying the 

distribution of pons normalised hippocampal metabolism for the mask development 

cohort (after removal of the outlier seen in Figure 40).  

 

 

Figure 45, A box and whisker plot displaying the pons normalised hippocampal MRglc for the 

mask development cohort after the removal of the outlier from the AD group, based on the PET 

driven spatial warp. 
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Figure 46 is a scatter plot and box and whisker plot displaying the distribution of the 

pons normalised hippocampal metabolism data for the three diagnostic categories 

from the PET driven spatial warp. The horizontal dashed lines indicate the t+ and t- 

cut-off thresholds that maximised the 3 group Youden Index. 

 

 

Figure 46, A graphical representation of the three group Youden Index and cut-off threshold 

selection for the mask development cohort PET driven spatial warp. 

 

The value for each of the group classification probabilities were: 

Sp(t-): 0.46 

Sm(t-,t+): 0.09 

Se(t+): 0.70 

The cut-off thresholds were: 

Lower Threshold (t-): 1.07 

Upper Threshold (t+): 1.09 
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The optimal Three Group Youden Index thresholds were then applied to the 90 

subject test data set, the results of this can be seen in Table 6.  

 

 
AD MCI HC Total 

Correct 21 1 21 43 

Incorrect 9 29 9 47 

Table 6, The results of applying the cut-off thresholds from the PET driven 100 subject mask 

development data set Three Group Youden Index analysis to the 90 subject test data set. 

 

The thresholds correctly categorised AD and HC patients 70% of the time. The MCI 

categorisation had extremely poor efficacy, with only 3% of MCI subjects being 

correctly diagnosed. As noted with the MRI driven spatial warp data, a majority of 

the misdiagnosed MCI subjects were classified as HC; this was the case for 18 of the 

29 misclassified subjects. 

 

Figure 47 shows the distribution of the PET driven spatial normalisation data after 

the reduction in dimensions to AD vs Non AD. 
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Figure 47, A box and whisker plot illustrating the distribution of the two group pons normalised 

hippocampal metabolism data for the PET driven mask development cohort. 

 

Figure 48 shows the ROC curve that was calculated, based on the data presented in 

Figure 47, including the point that corresponds to the optimal Youden Index cut-off 

threshold. The AUC was 0.62. 
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Figure 48, The ROC curve displaying the variation of sensitivity and specificity with cut-off 

threshold selection for the reduced dimension data set (AD vs non-AD), as well as the point on the 

curve that optimises the Youden Index for the PET driven 100 subject mask development cohort. 

 

The Youden Index optimal cut-off threshold for the data set was 1.13. The sensitivity 

and specificity at this threshold were 0.85 (95% CI 0.62-0.93) and 0.44 (95% CI 

0.33-0.50) respectively. The point at which this threshold sits on the ROC curve can 

be seen in Figure 48. 

 

 

 

 

 

 

Optimal Youden 

Index Threshold 
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The cut-off threshold from the mask development cohort was then applied to the 90 

subject test cohort, the results are summarised in Table 7.  

 

True Positive 25 

False Negative 5 

True Negative 29 

False Positive 31 

Sensitivity (95% CI) 0.83 (0.65-0.9) 

Specificity (95 % CI) 0.48 (0.35-0.55) 

Table 7, The results of applying the cut-off thresholds from the PET driven 100 subject mask 

development data set ROC curve Youden Index Analysis to the 90 subject test data set, including 

95% confidence intervals for sensitivity and specificity. 

 

5.4 Discussion 

 

For a diagnostic test or screening procedure to be used clinically, there must be a 

point at which an individual is considered to be disease positive/potentially disease 

positive. For some procedures, such as identifying potential lesions in mammography 

screening, this is not necessarily achieved through a binary quantification, but rather 

a conclusion reached by an individual upon inspection of the test results. For the 

mammography example, this is a radiologist reviewing a mammogram. For the 

purposes of determining the utility of the pons normalised hippocampal metabolism 

quantification method in diagnosing MCI and AD, a definitive quantification or cut-

off threshold(s) was sought for use in the formation of a diagnosis. The potential 

utility of the method was also investigated for the case in which no volumetric MRI 

is available to drive template spatial registration, as is often the case in a clinical 

setting. 

 

The presence of MCI, considered to be an intermediate “transition” state that can 

present before a subject progresses to AD (Albert et al. 2011), complicates the 

formation of a quantitative diagnostic threshold. Figure 40 presents the distribution 

of pons normalised hippocampal MRglc data for the 100 subject mask development 

cohort. There is an outlier in the AD group that has an MRglc measurement far 

below any others in the data set. Upon investigation of that subject’s images, it 
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became apparent that the optimised mask had erroneously sampled the lateral 

ventricles as well as the hippocampal tissue, a result of spatial registration errors 

caused by severe atrophy within the patient’s medial temporal lobe. This can be seen 

in Figure 49. No other subject brains were so severely affected by errors in spatial 

normalisation, so the outlier was removed and further analysis of the mask 

development cohort was conducted on the remaining subjects.  

 

 

Figure 49, Images of the MNI template spatially normalised subject brain that showed an 

abnormally low measurement of pons normalised hippocampal MRglc in Figure 40. (Part A): A 

trans-axial slice through the subject brain at the level of the hippocampus, (Part B): The same slice 

overlaid with the optimised automated FSL (Smith et al. 2004) hippocampal mask (yellow voxels), 

(Part C): The masked region at a higher magnification, (Part D): The mask voxels that fell within 

the lateral ventricles on the subject brain, rather than the hippocampus (red voxels). 
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5.4.1 MRI Driven Template Registration Data Set 

 

 A classic ROC curve cannot be easily used to identify multiple thresholds to 

delineate between more than two disease states. Although there isn’t a widely used 

ROC curve alternative for the three group case, the Youden Index has been expanded 

to allow for quantitative threshold calculation in this scenario (Luo and Xiong 2012). 

Figure 42 shows the results of the Three Group Youden Index calculation, which 

resulted in the identification of two thresholds (t- and t+) that optimised the Youden 

Index function (Equation 2). 

 

With reference to Figure 42 and the accompanying value for Sm(t-,t+) (0.31), it can 

be seen that it is not possible to reliably delineate between MCI and AD/HC subjects. 

As a result of this, and the fact that the majority of misdiagnosed MCI cases were 

classified as HC, the data were re-structured and the MCI and HC subjects were 

grouped together. 

 

The re-structuring of the data allowed for the creation of a classic ROC curve (Figure 

44), from which an optimal cut-off threshold was derived in order to separate the AD 

and Non AD groups. This threshold was then applied to the 90 subject test data set to 

evaluate its performance, the results of which are presented in Table 5. While the 

true positive rate of 83% is encouraging, the rate of false positives (38%) is too high 

for this method to have much utility on its own as a diagnostic tool. 

 

5.4.2 PET Driven Template Registration Data Set 

 

Figure 46 shows the results of the Three Group Youden Index calculation. The 

optimal Youden thresholds effectively eliminate the presence of the intermediate 

(MCI) diagnostic category. The fact that the highest overall Youden index was 

achieved by minimising the MCI category to a great extent is symptomatic of the 

lack of separation between the MCI and either the AD or HC groups. 

 

The AUC values for the AD vs non AD ROC curve in Figure 44 is higher than for 

Figure 48, indicating that the MRI driven warping procedure is superior to its PET 
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only equivalent for separating the two groups. Both techniques were able to diagnose 

AD in the 90 subject test cohort with the same sensitivity (83%). The MRI driven 

spatial normalisation method showed higher specificity (0.62, 95% CI: 0.48-0.68) 

than the PET driven equivalent (0.48, 95% CI: 0.35-0.55); however, this was not 

significant at the 95% confidence level. 

  

5.4.3 Summary 

 

In order for the MRI driven spatial registration method to be used clinically, a patient 

needs to have had a set of structural and functional images of the brain already 

acquired. The PET only registration method produced an ROC AUC value (0.62) 

that was inferior to that seen on the MRI driven registration (0.79). Neither of the 

data analysis methods produced results that warrant the use of the method as a stand-

alone screening procedure for AD. However, a process in which these images are fed 

through an algorithm that quantifies their pons normalised hippocampal metabolism 

and includes other biomarkers that can be automatically assessed and quantified, may 

increase the sensitivity and specificity seen from the testing. Examples of other 

potential biomarkers include hippocampal volume, amygdala metabolism and 

volume, and ventricle and overall brain volume. 

 

The method is limited in its potential clinical utility in part by the difficulty in 

accurate nonlinear registration of an atrophied elderly brain to a template based on 

healthy adult brains (the McConnell Brain Imaging Centre (Montreal Neurological 

Institute (MNI), McGill University Montreal) 152 nonlinear 6
th

 generation T1 1mm 

resolution brain template).  Only around one in two subjects yielded suitable spatially 

warped brain volumes for further analysis with minor modification of the warping 

process; manual adjustment was often required with regards to brain masking and 

fine tuning of the affine registration. Clinical use of this technique will probably be 

better served by the use of a more appropriate ‘elderly’ template, as the degree of 

spatial normalisation required for the average individual will be lower, likely leading 

to less discarded data and an improvement in the data that is available. 
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5.5 Conclusion 

 

To assess the utility of the pons normalised hippocampal metabolism quantification 

method in a clinical setting, several options for the formation of cut-off thresholds to 

delineate between the three diagnostic categories were investigated. Two different 

data sets were analysed; one that used a subject’s volumetric MRI to guide spatial 

registration, and another which relied solely on the use of their FDG-PET image. The 

Three Group Youden Index was calculated for each approach, and it was found that 

neither spatial registration method was able to separate the MCI subjects from the 

other diagnostic classes. 

 

Due to the inability to separate out the MCI subjects from the other diagnostic 

classes, the data were restructured. The MCI and HC groups were merged into a 

single ‘Non AD’ group which was then re-analysed with respect to the AD group. 

ROC curves were constructed for each method, and the Youden Index was calculated 

in order to determine an optimal cut-off threshold to separate the two groups. The 

MRI driven spatial warp was superior to the PET driven method with regards to 

AUC on the ROC curve and specificity when making a diagnosis using the optimal 

Youden Index threshold. 

 

In its current form, the method serves as a demonstration of the reduction in 

hippocampal metabolism between AD sufferers and healthy elderly people. 

However, the large variation between individuals limits the potential of the method. 

It may likely find greatest utility as part of a suite of automatically acquired 

biomarkers that combine to render an overall impression of cerebral health. 
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6 Conclusions and Future Work 

 

6.1 Summary and Evaluation 

 

Linear and nonlinear spatial registration of brain volumes to a standard template has 

formed the framework on which this research is developed. All images were spatially 

transformed to conform to the common space defined by the Montreal Neurological 

Institute (MNI) using FSL. The ability to conduct automated inter-subject 

comparisons at the voxel level across large groups of subjects is made possible by 

these pre-processing spatial registration steps to ensure they occupy the same 

standard space. 

 

A comparison of post-injection imaging times for two different PET radioisotopes 

(
11

Carbon-Methionine (CMET) and 3’-deoxy-3’-
18

Fluorine-Fluorothymidine (FLT)) 

in a group of post treatment glioma patients was conducted. The PERCIST 

guidelines (Wahl et al. 2009) were used to define a background healthy tissue 

normalised SUVPEAK volume. The highest average uptake within a 1cm
3
 sphere 

inside the tumour affected area was found in each PET image. Background uptake 

was represented by an identical sphere, located in the contralateral hemisphere, 

which was positioned by reflecting the highest uptake tumour sphere about the mid-

sagittal plane. The background normalised SUVPEAK was then defined in the CMET 

images as the ratio of the tumour/background average uptake spheres. In the FLT 

images, the difference in SUV between the spheres was used, due to the extremely 

low uptake of FLT regions in which the blood-brain barrier (BBB) remains intact. 

Tukey’s HSD test was used to compare the four CMET post-injection imaging time 

points (10, 20, 30, and 40 minutes) at the group level. A downwards trend can be 

seen in Figure 16 in Section 2.3; the tumour-background contrast at both 10 and 20 

minutes was found to be higher than at 40 minutes at the 99% confidence level. A 

two-sided paired t-test was used to compare the FLT imaging time points (15 and 75 

minutes post injection). Tumour-background contrast at 15 minutes was found to be 

significantly higher than at 75 minutes (p < 0.005). These results suggest that earlier 

imaging using these isotopes for this application (less than 40 and 75 minutes for 
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CMET and FLT respectively) may be important to maximise tumour-healthy tissue 

contrast.  

 

The same cohort of post treatment glioma patients was used in another investigation 

that sought to assess the utility of CMET-PET, FLT-PET and Gd-MRI to predict 

survival outcomes based on the volume of tissue that demonstrated 

uptake/enhancement that was significantly elevated above background (considered to 

be viable tumour volume for the modality). Each PET brain volume was divided 

along the mid-sagittal plane to create distinct hemispheres for tumour and 

background healthy tissue. CMET-PET background normalisation was performed for 

each voxel in the tumour hemisphere by taking the ratio with the contralateral voxel; 

voxels with a ratio of greater than 1.5 were considered viable tumour volume. The 

same process was used for background normalisation of the FLT-PET images, except 

the difference in SUV between tumour and background voxels was used for 

normalisation. FLT-PET tumour hemisphere voxels with an SUV difference that was 

greater than 0.2 above background were considered viable tumour volume. A manual 

thresholding process on the MR images was used to define the tissue volume that 

showed increased uptake due to Gd-MRI pooling in areas of blood-brain barrier 

disruption. ROC curve analysis was used to identify the optimal tumour volume 

threshold above which a subject’s survival would be less than the median survival 

time (78 weeks) of the cohort for each modality. Survival time differences for 

subjects with volumes below and above the optimal values were examined using a 

log-rank test. CMET-PET was the only modality to produce a significant difference 

between the small and large viable tumour volume groups at the 95% confidence 

level. FLT-PET and Gd-MRI are considered to be primarily agents that highlight the 

areas in which blood-brain barrier disruption has occurred. The results found in this 

investigation support this hypothesis, as high uptake/enhancement with these 

modalities did not have a significant correlation with survival, indicating that they’re 

not necessarily highlighting viable tumour volume. The results also indicate that 

CMET-PET may be an effective means of highlighting viable tumour volume in 

post-treatment glioma brains. 

 

The remainder of the work focussed on the validity and clinical utility of 

hippocampal glucose metabolism in FDG-PET as a diagnostic indicator for AD. 
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Large scale atrophy within the cerebral cortex, as well as smaller scale atrophy in 

structures such as the hippocampus, can be seen in AD patients using structural MRI 

(Apostolova et al. 2012). Research employing automated VBA methods can detect 

large scale MRglc reductions on FDG-PET images, but almost always fails to find 

MRglc reductions in the hippocampus (Mosconi et al. 2005). This discrepancy is 

likely due to the small volume of the hippocampus and the errors inherent in the 

spatial registration of comparatively low resolution PET images to an anatomical 

template. An optimised mask created using manually marked hippocampal 

peripheries on T1 MRIs has been shown to be accurate in defining the hippocampus 

on spatially normalised FDG-PET images, and for detecting reductions in 

hippocampal MRglc in patients with MCI and AD (Mosconi et al. 2005). In this 

research, two optimised hippocampal masks were compared. One was comprised of a 

small number (n = 21) of subjects whose hippocampi were marked manually on the 

subject MRIs, the other from 100 subjects that had been processed using an 

automated subcortical segmentation algorithm. The masks were compared with 

regards to their ability to find group level differences between the average pons 

normalised hippocampal metabolism in AD, MCI, and HC brains. It was 

demonstrated that the masks produced near identical results. Neither mask was able 

to separate the MCI from HC groups, but both found significant differences between 

AD and HC (p < 0.0005) and AD and MCI (p < 0.005) groups using Tukey’s HSD 

test. 

 

The potential clinical utility of hippocampal masking with regards to AD diagnosis 

was then investigated. The automated mask was chosen for this analysis, as it was 

considered more defensible from a reproducibility standpoint. The clinical utility of 

the mask was tested using MRI driven spatial warping of FDG-PET images to MNI 

space and, since volumetric MRI has frequently not been performed as a routine part 

of patient workup in a clinical setting, a comparative data set was created where the 

FDG-PET images were spatially warped directly to an MNI space PET template. An 

extension of the Youden Index for the three group case was used to assess the utility 

of a bi-threshold method for diagnosing an individual as either HC, MCI, or AD for 

the MRI-driven and PET-driven spatial warp data sets. Both spatial warping methods 

demonstrated an inability to separate MCI subjects from either AD or HC subjects.  

As a result, the subjects were spilt into two groups: AD and non-AD, to allow for 
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ROC curve analysis with a view to constructing a threshold that may find utility as 

an AD screening method. There were no differences between the methods in 

sensitivity or specificity with regards to AD diagnosis at the 95% confidence level. 

This method of automated hippocampal metabolism assessment, used as a screening 

process for identifying subjects that are at risk of AD, will likely only find utility as 

part of a suite of tests including other biomarkers such as hippocampal volume, 

overall brain volume, ventricular enlargement, and the presence of other AD 

biomarkers such as amyloid β protein plaques. 

 

6.2 Recommendations for Future Research 

 

Accurate identification of cancerous tissue in post-treatment glioma patients is an 

ongoing imaging problem. Future nuclear medicine imaging work will likely focus 

on radionuclides that can penetrate an intact BBB; imaging agents that cannot are 

unable to detect lesions outside the regions of BBB disruption. Furthermore, such 

agents potentially face difficulties in distinguishing elevated uptake due to tumour 

tissue to that which is due to diffusion alone. Another PET imaging agent that has 

shown utility in both pre- (Jansen et al. 2015) and post-treatment (Popperl et al. 

2004) glioma imaging, and which will continue to be the focus of future studies is O-

(2-18F-fluoroethyl)-L-tyrosine (FET).  

 

The image and survival analysis method used in Chapter 3 has the potential to be 

used in future longitudinal brain imaging studies. The high degree of automation of 

the method lends itself to studies involving large numbers of subjects through the use 

of batch processing. The technique will be utilised in the near future for image 

analysis in a FET-PET glioma imaging study at Sir Charles Gairdner Hospital, 

allowing for further refinement of the technique and assessment of its utility. 

 

Detecting differences in hippocampal metabolism between groups of HC, MCI, and 

AD patients using automated hippocampal masking in FDG-PET may have future 

utility as a clinical screening method. The potential of the method will be increased 

by improvements in image resolution, as well as an improved system of spatial 

registration. The use of an age range appropriate brain template such as the Elderly 
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Brain Template from the University of California Neuroscience Imaging Centre (San 

Francisco, CA) (http://sfnic.ucsf.edu/Brain_Template.html) will likely be beneficial 

for improving the accuracy of spatial registration. Furthermore, research into the 

combined use of other characteristic AD biomarkers such as increased ventricular 

volume, decreased cerebral and hippocampal volume, and Amyloid β protein plaque 

deposition may provide higher accuracy in predicting and diagnosing the disorder. 
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8 Appendices 

 

8.1 Appendix 1: SUV Conversion Factor Script 

 

© 2015 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of 

The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional 

trademarks. Other product or brand names may be trademarks or registered 

trademarks of their respective holders. 

 

This Matlab script was written by Mr Ricki Nezich, Medical Physicist, Medical 

Technology and Physics Sir Charles Gairdner Hospital, Nedlands WA. 

 

% suvFactorTable looks at all of the folders beneath the 'baseFolder' 

% containing PET Dicom series, and creates an Excel file with a table of 
% SUV conversion factors for each series. The Excel file is saved in the 

% 'baseFolder'. 

 
function suvFactorTable(baseFolder) 

    % Preallocate Excel output cell array. 

    PRE_CELL_ROWS = 1000; 
    outputXls = cell(PRE_CELL_ROWS, 2); 

    outIndx = 0; 

     
    % Get all folders below 'baseFolder'. 

    disp('Collecting folders...'); 
    baseFolder = strrep(baseFolder, '\', '/'); 

    fList = FileList(baseFolder); 

    fList.collectSubFolders(); 
    folders = fList.getFileNames(); 

     

    % Process each folder. 
    for i = 1:length(folders) 

        % Get a vector of files contained in the folder. 

        folderName = strrep(folders{i}, '\', '/'); 
        FileStruct = dir(folderName); 

         

        % Calculate the SUV conversion factor from the first valid Dicom 
        % image in the series. 

        for j = 1:length(FileStruct) 

            fileName = FileStruct(j).name; 
            if length(fileName) >= 2 && strcmp(fileName(1:2), 'IM') 

                try 

                    suvFactor = getSuvFactor(fullfile(folderName, fileName)); 
                catch exception 

                    disp(exception.message); 

                    continue; 
                end 

                if suvFactor == 0 

                    break; 
                end 

                 

                outIndx = outIndx + 1; 
                 

                % Get the patient ID 

                patID = sscanf(folderName, strcat(baseFolder, '/%6c/%*s')); 
                fprintf('%s\nSUV factor: %f\n\n', fullfile(folderName, fileName), suvFactor); 

 

                % Write the information to the output cell array. 
                outputXls{outIndx, 1} = patID; 

http://au.mathworks.com/trademarks
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                [~, seriesName, ~] = fileparts(folderName); 
                outputXls{outIndx, 2} = seriesName; 

                outputXls{outIndx, 3} = suvFactor; 

                break; 
            end 

        end 

    end 
     

    % Write data to Excel file. 

    xlswrite(fullfile(baseFolder, 'SuvFactors'), outputXls(1:outIndx, :)); 
end 

 

% Get the names of files in and below a given folder. 
classdef FileList < handle 

    properties (SetAccess = private, GetAccess = public) 

        dirName 
        % fileNames is a cell vector holding file names. 

        fileNames 

        nFiles = 0 
    end 

    properties (Constant, GetAccess = private) 

        % Pre-allocated fileNames length. 
        FILENAMES_LENGTH = 100 

    end 

    methods (Access = public) 
        % Constructor method. 

        function fList = FileList(dirName) 

            if dirName(end) == '\' % Handle the case for a root directory. 
                dirName = dirName(1:end-1); 

            end 

            fList.dirName = dirName; 
            fList.clear(); 

        end 

         
        % Clear the fileNames collected. 

        function clear(fList) 

            fList.nFiles = 0; 
            fList.fileNames = cell(fList.FILENAMES_LENGTH, 1); 

        end 

         
        % Collect file names found in the dirName. 

        function collectDirFiles(fList) 

            fList.clear(); 

            dirStruct = dir(fList.dirName); 

            for i = 1:numel(dirStruct);  

                fileName = dirStruct(i).name; 
                if dirStruct(i).isdir || fileName(1) == '.' 

                    continue; 

                else 
                    % Add file to the guiList. 

                    fullName = strcat(fList.dirName, '\', fileName); 

                    fList.addFile(fullName); 
                end 

            end 
        end 

         

        % Return the collected file names. 
        function files = getFileNames(fList) 

            if fList.nFiles > 0 

                files = fList.fileNames(1:fList.nFiles); 
            else 

                files = {}; 

            end 
        end 

         

        % Collect file names found in and below the dirName folder. 
        function collectSubFiles(fList) 

            fList.clear(); 

            fList.addFilesRecursively(fList.dirName); 
        end 

         

        % Collect folders found in and below the dirName folder. 
        function collectSubFolders(fList) 

            fList.clear(); 

            fList.addFoldersRecursively(fList.dirName); 
        end 
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    end 
     

    methods (Access = private) 

        % Add a file to fileNames. 
        function addFile(fList, fullName) 

            fList.nFiles = fList.nFiles + 1; 

            if fList.nFiles > length(fList.fileNames) 
                fList.fileNames = cat(1, fList.fileNames, cell(fList.FILENAMES_LENGTH, 1)); 

            end 

            fList.fileNames{fList.nFiles} = fullName; 
        end 

         

        % Go through nested folders recursively and store the file names. 
        function addFilesRecursively(fList, subDirName) 

            dirStruct = dir(subDirName); 

            for i = 1:numel(dirStruct) 
                shortName = dirStruct(i).name; 

                fullName = strcat(subDirName, '\', shortName); 

                % If a directory is encountered, then act recursively. 
                if dirStruct(i).isdir 

                    if strcmp(shortName, '.') || strcmp(shortName, '..') 

                        continue; 
                    end 

                    fList.addFilesRecursively(fullName); 

                % If a file is encountered, then add it to fileNames. 
                else 

                    if shortName(1) == '.' 

                        continue; 
                    end 

                    fList.addFile(fullName); 

                end 
            end 

        end 

         
        % Go through nested folders recursively and store their names. 

        function addFoldersRecursively(fList, subDirName) 

            dirStruct = dir(subDirName); 
            for i = 1:numel(dirStruct) 

                shortName = dirStruct(i).name; 

                fullName = strcat(subDirName, '\', shortName); 
                % If a directory is encountered, then act recursively. 

                if dirStruct(i).isdir 

                    if strcmp(shortName, '.') || strcmp(shortName, '..') 

                        continue; 

                    end 

                    fList.addFile(fullName); 
                    fList.addFoldersRecursively(fullName); 

                % If a file is encountered, then add it to fileNames. 

                else 
                    continue; 

                end 

            end 
        end 

    end 
end 

 

% Calculate the SUV factor for a PET image series, represented by the Dicom 
% slice 'dcmFileName'. 

 

function suvFactor = getSuvFactor(dcmFileName) 
    % Get Dicom header structure. 

    try 

        dcmInfo = dicominfo(dcmFileName); 
    catch %#ok<CTCH> 

        suvFactor = 0; 

        return; 
    end 

     

    if ~strcmp(dcmInfo.Modality, 'PT') 
        suvFactor = 0; 

        return; 

    end 
     

    if ~strcmp(dcmInfo.DecayCorrection, 'START') 

        error('Image is not decay corrected to START'); 
    end 
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    % Get relevant header fields. 

    halfLifeSecs = dcmInfo.RadiopharmaceuticalInformationSequence.Item_1.RadionuclideHalfLife; 

    injectionTimeStr = dcmInfo.RadiopharmaceuticalInformationSequence.Item_1.RadiopharmaceuticalStartTime; 
    scanStartTimeStr = dcmInfo.SeriesTime; 

    injectedDoseBq = dcmInfo.RadiopharmaceuticalInformationSequence.Item_1.RadionuclideTotalDose; 

    patientWeight = dcmInfo.PatientWeight; 
     

    % Get time between injection and scan start. 

    injectionTimeVec = datevec(datenum(injectionTimeStr, 'HHMMSS')); 
    scanStartTimeVec = datevec(datenum(scanStartTimeStr, 'HHMMSS')); 

    preScanTimeSecs = (scanStartTimeVec - injectionTimeVec) * [0; 0; 0; 3600; 60; 1]; 

     
    % Calculate SUV. 

    preScanDecayFactor = exp(log(2) / halfLifeSecs * preScanTimeSecs); 

    suvFactor = preScanDecayFactor * patientWeight / injectedDoseBq * 1000; 
end 
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8.2 Appendix 2: SUV PEAK Location Script 

# Python script for sweeping through an assigned volume and finding the highest average voxel number is a cubic mm sphere 

from nifti import * 
from numpy import * 

#import pdb 

#pdb.set_trace() 
#import subprocess 

#import os 

#from decimal import * 
study_participant = "GL33MO" 

CMET_10 = NiftiImage('D:/VM_shared/numpy/GL33MO_CMET_PET_10_SUV_2_MNI_T2_mutualinfo.nii.gz') 

CMET_20 = NiftiImage('D:/VM_shared/numpy/GL33MO_CMET_PET_20_SUV_2_MNI_T2_mutualinfo.nii.gz') 
CMET_30 = NiftiImage('D:/VM_shared/numpy/GL33MO_CMET_PET_30_SUV_2_MNI_T2_mutualinfo.nii.gz') 

CMET_40 = NiftiImage('D:/VM_shared/numpy/GL33MO_CMET_PET_40_SUV_2_MNI_T2_mutualinfo.nii.gz') 

 
FLT_15 = NiftiImage('D:/VM_shared/numpy/GL33MO_FLT_PET_15_SUV_2_MNI_T2_mutualinfo.nii.gz') 

FLT_75 = NiftiImage('D:/VM_shared/numpy/GL33MO_FLT_PET_75_SUV_2_MNI_T2_mutualinfo.nii.gz') 

 
corner_mask = NiftiImage('D:/VM_shared/numpy/bottom_corner_mask.nii.gz') 

 

cmet_images = [CMET_10, CMET_20, CMET_30, CMET_40] 

flt_images = [FLT_15, FLT_75] 

 

 
# bottom_corner.txt is the location of each voxel in a 

# MNI 152 1mm template sized image that would constitute 

# a 6mm sphere sitting in the "origin" corner 
 

# read the input file into a list of lines of text 

input_coords = open("D:/VM_shared/numpy/bottom_corner.txt", "r").readlines() 
# now walk through that list, splitting each line in to 3 coordinates 

# and converting each to an integer 

 
sphere = [ [int(values[0]), int(values[1]), int(values[2])] for values in [aline.split() for aline in input_coords] ] 

# sphere is now a list, each element of which is the (x,y,z) coo-rdinate of a voxel in the sphere. 

 
#output = open("D:/VM_shared/numpy/bottom_corner.txt", "w") 

#for x in range(0,20): 
 #for y in range (0,20): 

 # for z in range (0,20): 

 #  if corner_mask.data[z,y,x] == 1: 

    #print(z,y,x) 

 #   output.write("%s %s %s\n" % (z,y,x)) 

    #print(corner_mask.data[z,y,x]) 
     

    # instead of reading the 1cm sphere values in from a text file 

    # try running the previous bit of code and saving each datapoint as a variable or 
something, then recalling for each iteration. 

  

 
dict = {} 

#-----------------------------------------------------CMET------------------------------------------------------------ 

for cmet_image in cmet_images: 
 # specify a search volume for this individual 

 cmet_x_min = 90; cmet_x_max = 131 

 cmet_y_min = 124; cmet_y_max = 191 
 cmet_z_min = 64; cmet_z_max = 145 

 SUV_PEAK_list = list() 

 SUV_PEAK_list_with_coords = list() 
 

# move the sphere from bottom_corner.txt around all locations inside the search volume to get the average uptake at all points 

 for x in range (cmet_x_min,cmet_x_max): 

  for y in range (cmet_y_min,cmet_y_max): 

   for z in range (cmet_z_min,cmet_z_max): 

    voxel_count=0 
    for voxel in sphere: 

     voxel_count=voxel_count+1 

     x_coord = voxel[0] + z 
     y_coord = voxel[1] + y 

     z_coord = voxel[2] + x 

     dict["current_voxel_number" + str(voxel_count)] = 
cmet_image.data[x_coord, y_coord, z_coord] 
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    voxel_sum = dict["current_voxel_number" + str(voxel_count-0)] + 
dict["current_voxel_number" + str(voxel_count-1)] 

    for i in range(2,925): 

     voxel_sum = dict["current_voxel_number" + str(voxel_count-i)] + 
voxel_sum 

     #print (str(voxel_count-924)) 

    #print(voxel_sum) 
    SUV_PEAK = voxel_sum / 925 

     

    #print (x+6, y+6, z+6, SUV_PEAK) 
    SUV_PEAK_list.append(SUV_PEAK) 

    SUV_PEAK_list_with_coords.append(x+6) 

    SUV_PEAK_list_with_coords.append(y+6) 
    SUV_PEAK_list_with_coords.append(z+6) 

    SUV_PEAK_list_with_coords.append(SUV_PEAK) 

 
 #find out what SUV_PEAK is, print out the value and the location of the sphere centre 

 

 SUV_PEAK_value = max(SUV_PEAK_list) 
 SUV_PEAK_big_list_location = SUV_PEAK_list_with_coords.index(SUV_PEAK_value) 

 

 x_coordinate_list_location = SUV_PEAK_big_list_location-3 
 x_coordinate_value = SUV_PEAK_list_with_coords[x_coordinate_list_location] 

 

 y_coordinate_list_location = SUV_PEAK_big_list_location-2 
 y_coordinate_value = SUV_PEAK_list_with_coords[y_coordinate_list_location] 

 

 z_coordinate_list_location = SUV_PEAK_big_list_location-1 
 z_coordinate_value = SUV_PEAK_list_with_coords[z_coordinate_list_location] 

  

 #CMET_ = pet_image.filename[26:31] 
 #time = pet_image.filename[35:37] 

  

 CMET_ = cmet_image.filename[26:31] 
 cmet_time = cmet_image.filename[35:37] 

  

  
 print(study_participant, "%s%s " %(CMET_,cmet_time), 'SUV Peak Data' ) 

 print("coordinates: ", x_coordinate_value, y_coordinate_value, z_coordinate_value, " SUV_PEAK: ", 

SUV_PEAK_value) 
 print(' ') 

 

 

 # write out text files of both lists 

  

 with open("D:/VM_shared/numpy/%s_%s%s_SUV_PEAK_values_only.txt" 
%(study_participant,CMET_,cmet_time), "w") as file: 

   for item in SUV_PEAK_list: 

     print>>file, item 
 

 with open("D:/VM_shared/numpy/%s_%s%s_SUV_PEAK_values_with_coords.txt" 

%(study_participant,CMET_,cmet_time), "w") as file2: 
   for item2 in SUV_PEAK_list_with_coords: 

     print>>file2, item2 
 

      

#-----------------------------------------------FLT---------------------------------------------------------------- 
for flt_image in flt_images: 

 

 flt_x_min = 90; flt_x_max = 131 
 flt_y_min = 124; flt_y_max = 191 

 flt_z_min = 64; flt_z_max = 145 

 SUV_PEAK_list = list() 
 SUV_PEAK_list_with_coords = list() 

 

 
 for x in range (flt_x_min,flt_x_max): 

  for y in range (flt_y_min,flt_y_max): 

   for z in range (flt_z_min,flt_z_max): 
    voxel_count=0 

    for voxel in sphere: 

     voxel_count=voxel_count+1 
     x_coord = voxel[0] + z 

     y_coord = voxel[1] + y 

     z_coord = voxel[2] + x 
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     dict["current_voxel_number" + str(voxel_count)] = 
flt_image.data[x_coord, y_coord, z_coord] 

     

    voxel_sum = dict["current_voxel_number" + str(voxel_count-0)] + 
dict["current_voxel_number" + str(voxel_count-1)] 

    for i in range(2,925): 

     voxel_sum = dict["current_voxel_number" + str(voxel_count-i)] + 
voxel_sum 

     #print (str(voxel_count-924)) 

    #print(voxel_sum) 
    SUV_PEAK = voxel_sum / 925 

     

    #print (x+6, y+6, z+6, SUV_PEAK) 
    SUV_PEAK_list.append(SUV_PEAK) 

    SUV_PEAK_list_with_coords.append(x+6) 

    SUV_PEAK_list_with_coords.append(y+6) 
    SUV_PEAK_list_with_coords.append(z+6) 

    SUV_PEAK_list_with_coords.append(SUV_PEAK) 

 
 #find out what SUV_PEAK is, print out the value and the location of the sphere centre 

 

 SUV_PEAK_value = max(SUV_PEAK_list) 
 SUV_PEAK_big_list_location = SUV_PEAK_list_with_coords.index(SUV_PEAK_value) 

 

 x_coordinate_list_location = SUV_PEAK_big_list_location-3 
 x_coordinate_value = SUV_PEAK_list_with_coords[x_coordinate_list_location] 

 

 y_coordinate_list_location = SUV_PEAK_big_list_location-2 
 y_coordinate_value = SUV_PEAK_list_with_coords[y_coordinate_list_location] 

 

 z_coordinate_list_location = SUV_PEAK_big_list_location-1 
 z_coordinate_value = SUV_PEAK_list_with_coords[z_coordinate_list_location] 

  

 #CMET_ = pet_image.filename[26:31] 
 #time = pet_image.filename[35:37] 

  

 FLT_ = flt_image.filename[26:30] 
 flt_time = flt_image.filename[34:36] 

  

  
 print(study_participant, "%s%s " %(FLT_,flt_time), 'SUV Peak Data' ) 

 print("coordinates: ", x_coordinate_value, y_coordinate_value, z_coordinate_value, " SUV_PEAK: ", 

SUV_PEAK_value) 

 print(' ') 

 

 
 # write out text files of both lists 

  

 with open("D:/VM_shared/numpy/%s_%s%s_SUV_PEAK_values_only.txt" %(study_participant,FLT_,flt_time), 
"w") as file: 

   for item in SUV_PEAK_list: 

     print>>file, item 
 

 with open("D:/VM_shared/numpy/%s_%s%s_SUV_PEAK_values_with_coords.txt" 
%(study_participant,FLT_,flt_time), "w") as file2: 

   for item2 in SUV_PEAK_list_with_coords: 

     print>>file2, item2      
 

      

# writing out nifti images showing the search area 
 

for x in range (0,182): 

 for y in range (0,218): 
  for z in range (0,182): 

    

   CMET_10.data[z, y, x]=0 
  

for x in range (cmet_x_min,cmet_x_max): 

 for y in range (cmet_y_min,cmet_y_max): 
  for z in range (cmet_z_min,cmet_z_max): 

    

   CMET_10.data[z, y, x]=1 
    

    

 
CMET_ = CMET_10.filename[26:31] 
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CMET_10.save('D:/VM_shared/numpy/%s_%sPERCIST_search_area.nii.gz' %(study_participant,CMET_))  

    
      

for x in range (0,182): 

 for y in range (0,218): 
  for z in range (0,182): 

    

   FLT_15.data[z, y, x]=0 
  

for x in range (flt_x_min,flt_x_max): 

 for y in range (flt_y_min,flt_y_max): 
  for z in range (flt_z_min,flt_z_max): 

    

   FLT_15.data[z, y, x]=1 
 

 

 
FLT_ = FLT_15.filename[26:30] 

 

 
FLT_15.save('D:/VM_shared/numpy/%s_%sPERCIST_search_area.nii.gz' %(study_participant,FLT_))  

    

      
#output.write("%s %s %s\n" % (z,y,x)) 

 

#all_SUV_PEAK_values_with_coords = open("D:/VM_shared/numpy/CMET_10_SUV_PEAK_values_with_coords.txt", "w") 
#all_SUV_PEAK_values_with_coords.write(SUV_PEAK_list_with_coords) 

 

 
  

  

 #output = open("D:/VM_shared/numpy/corner_output.txt", "w") 
  

  

  
  

  

 #subprocess.call(["fslview /usr/local/fsl/data/standard/MNI152_T1_2mm.nii.gz"]) 
  

 

# flirt_command = 'flirt -in /usr/local/fsl/data/standard/MNI152_T1_2mm.nii.gz -out flirted_%s.nii.gz -ref 

/usr/local/fsl/data/standard/MNI152_T1_1mm.nii.gz -dof 6 -v' % count 

 #print(flirt_command) 

#os.system() 
 

 

 #flirt_command_2 = 'flirt -in /usr/local/fsl/data/standard/MNI152_T1_2mm.nii.gz -out flirted_%s.nii.gz -ref 
/usr/local/fsl/data/standard/MNI152_T1_1mm.nii.gz -dof 6 -v -omat flirted_%s.mat' % (count, count2) 

 #print(flirt_command_2) 

 
 #os.system(flirt_command_2) 

 #os.system("sh bash_script") # to run a bash script called bash_script 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 



 

123 

 

8.3 Appendix 3: Bootstrap Resampling Script 

 

The bias corrected percentile method of bootstrap resampling used in this body of 

work was based on the description in (Efron and Tibshirani 1993).   

 

The “Resampling stats in Excel” add in (http://www.resample.com/download-excel/) 

was used to create 1000 columns of numbers that represent bootstrap iterations of the 

data. This array was saved as a text file and then called into Matlab, where the 

following script was used to break it up into 1000 separate files: 

 

for i = 1:1000 

 filename = num2str(i) 

 A = untitled(i,1:40) 
 dlmwrite([‘/mnt/hgfs/VM_shared/’filename’.txt’],A,’delimiter’,’’,’newline’,’pc’) 

end 

 

These text files are then called by a perl script, which creates a mask based on each 

of the iterations by taking individual subject’s hippocampal regions and summing 

them using the FSL routine fslmaths. 

 

#!/usr/bin/perl -w 
use strict; # keep these magical incantations 

$|++;   # they make Perl work better ... 
 

use File::Copy; 

 

 

# get a list of text files in the iterations directory 

my $iterationlisting = `ls iterations/*.txt`; 
 

#print "Iteration listing:\n$iterationlisting"; 

 
 

my @iterationlist = split/\n/,$iterationlisting; 

 
my $iterationNo = 1; 

my $outputDir = "permutations"; 

my $maskDir = "FSL_masks"; 
 

foreach my $iterationFileName (@iterationlist) { 

 print "Permutation $iterationNo\n"; 
 

 my $fh; 

 open $fh, $iterationFileName or die "cannot open $iterationFileName\n"; 
 my $maskNumbers = <$fh>; 

 chomp($maskNumbers); 

  

 my @maskList = split(" ",$maskNumbers); 

  

 my $iterationFileName = $outputDir."/p".$iterationNo.".nii.gz"; 
 my $maskFileName = $maskDir."/".$maskList[0].".nii.gz"; 

 

 copy($maskFileName, $iterationFileName) or die "Could not copy $maskFileName\n"; 
  

 my $nMasks = @maskList; 

 for (my $i=1;$i < $nMasks; $i++) { 
  my $maskFileName = "FSL_masks/".$maskList[$i]; 

   

#  print "*** $iterationFileName -add $maskFileName $iterationFileName \n"; 

http://www.resample.com/download-excel/
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  `fslmaths $iterationFileName -add $maskFileName $iterationFileName`; 

   

 } 
 

  

  
 $iterationNo++; 

} 

 
 

Jackknife iteration masks and differing percentage overlap masks were made using 

bash scripts, the below example is a script used to make jackknife mask iterations: 

 

#!/bin/bash 
 

cd  /mnt/hgfs/VM_shared/GB/jackknife_iterations_new 

 
 

 

 
for i in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 

do 

 
 mkdir $i'_percent_mask' 

 echo '*********************************************************************' 

 echo '**************************'$i' percent ******************************' 
 echo '*********************************************************************' 

 

         for j in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 

  do 
 

     

  fslmaths '/mnt/hgfs/VM_shared/GB/percentage_masks/binary/'$i'_percent_mask.nii.gz' -sub 
'/mnt/hgfs/VM_shared/GB/FSL_masks/'$j'.nii.gz' 

'/mnt/hgfs/VM_shared/GB/jackknife_iterations_new/'$i'_percent_mask/'$i'_percent_jackknife_'$j'.nii.gz' 

                fslmaths '/mnt/hgfs/VM_shared/GB/jackknife_iterations_new/'$i'_percent_mask/'$i'_percent_jackknife_'$j'.nii.gz' -
bin '/mnt/hgfs/VM_shared/GB/jackknife_iterations_new/'$i'_percent_mask/'$i'_percent_jackknife_'$j'_bin.nii.gz' 

  fslstats 

'/mnt/hgfs/VM_shared/GB/jackknife_iterations_new/'$i'_percent_mask/'$i'_percent_jackknife_'$j'_bin.nii.gz' -V | tee -a 
'/mnt/hgfs/VM_shared/GB/jackknife_iterations_new/'$i'_percent_mask/jackknife_summary.txt'        

         done 

done 

 

Finally, an excel spreadsheet is used to perform the actual BCa calculations. A new 

tab is created for each variation in overlap, and a result is shown that determines 

whether or not the mask is within the 95% BCa confidence limit and therefore 

considred “stable”. The macro used to call in each iteration’s data to the sheet is 

below: 

 

Function bootstrap_percentile_calculator() 
 

' open .txt file with all of the ACTUAL (from the initial data, not from a bootstrap interation) 

' values for the voxels contained in each mask 
 

Workbooks.OpenText Filename:="G:\bootstrap_new\percentage_masks\actual_percentage_mask_overlap_values.txt", _ 

Origin:=xlMSDOS, StartRow:=1, DataType:=xlDelimited, TextQualifier:= _ 
xlDoubleQuote, ConsecutiveDelimiter:=True, Tab:=True, Semicolon:=False, _ 

Comma:=False, Space:=False, Other:=False, FieldInfo:=Array(Array(1, 1), _ 
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Array(2, 1)), TrailingMinusNumbers:=True 
 

Dim i As Double 

For i = 5 To 10 Step 2.5 
' NOTE: THIS USUALLY FAILS AT VERY LOW OR VERY HIGH PERCENTAGE VALUES, DUE TO THE ACTUAL 

NUMBER OF 

' VOXELS IN THE PERCENTAGE OVERLAP MASK FALLING OUTSIDE OF THE BOOTSTRAP CONFIDENCE 
INTERVAL 

 ' copy a tab for the new data to be pasted into 

    Windows("BCA_method.xls").Activate 
    Sheets("dummy_worksheet").Select 

    Sheets("dummy_worksheet").Copy Before:=Sheets(1) 

    Sheets("dummy_worksheet (2)").Select 
    Sheets("dummy_worksheet (2)").Name = "" & i & "_percent_mask" 

    Columns("C:C").Select 

    Selection.ClearContents 
    Columns("H:H").Select 

    Selection.ClearContents 

     
' open .txt file with the bootstrap mask data inside for this mask 

    Workbooks.OpenText Filename:="G:\bootstrap_new\stats\" & i & "_percent_mask.txt", _ 

    Origin:=xlMSDOS, StartRow:=1, DataType:=xlDelimited, TextQualifier:= _ 
    xlDoubleQuote, ConsecutiveDelimiter:=True, Tab:=False, Semicolon:=False, _ 

    Comma:=False, Space:=True, Other:=False, FieldInfo:=Array(Array(1, 1), _ 

    Array(2, 1)), TrailingMinusNumbers:=True 
     

' copy bootstrap iteration mask volume values from .txt file into calc worksheet 

 
    Windows("" & i & "_percent_mask.txt").Activate 

    Range("A1:A1000").Select 

    Selection.Copy 
    Windows("BCA_method.xls").Activate 

    Sheets("" & i & "_percent_mask").Select 

    Range("C3:C1002").Select 
    ActiveSheet.Paste 

    Range("H1:H1000").Select 

    ActiveSheet.Paste 
' sort the values in column H from lowest to highest (this is how it picks the .025 and .975 percentile points) 

    Selection.Sort Key1:=Range("H1000"), Order1:=xlAscending, Header:=xlGuess _ 

    , OrderCustom:=1, MatchCase:=False, Orientation:=xlTopToBottom, _ 
    DataOption1:=xlSortNormal 

     

    Windows("" & i & "_percent_mask.txt").Activate 

    ActiveWindow.Close 

     

' take actual number of voxels from the appropriate mask from the .txt file and paste into calc worksheet 
    Windows("actual_percentage_mask_overlap_values.txt").Activate 

    For Each c In Worksheets("actual_percentage_mask_overlap_").Range("A1:A101") 

        If c.Value = i Then 
             c.Select 

             ActiveCell.Offset(0, 1).Select 

             Selection.Copy 
             Windows("BCA_method.xls").Activate 

             Sheets("" & i & "_percent_mask").Select 
             Range("C2").Select 

             ActiveSheet.Paste 

         End If 
    Next c 

         

' open .txt file with the jackknife iteration data inside for this mask for calc of theta(.) 
    Workbooks.OpenText Filename:="G:\bootstrap_new\jackknife_iterations\" & i & "_percent_mask.txt", _ 

    Origin:=xlMSDOS, StartRow:=1, DataType:=xlDelimited, TextQualifier:= _ 

    xlDoubleQuote, ConsecutiveDelimiter:=True, Tab:=False, Semicolon:=False, _ 
    Comma:=False, Space:=True, Other:=False, FieldInfo:=Array(Array(1, 1), _ 

    Array(2, 1)), TrailingMinusNumbers:=True 

     
     

' copy jackknife iteration data into worksheet for calculation of theta(.) 

 
    Windows("" & i & "_percent_mask.txt").Activate 

    Range("A1:A40").Select 

    Selection.Copy 
    Windows("BCA_method.xls").Activate 

    Sheets("" & i & "_percent_mask").Select 

    Range("Q2:Q41").Select 
    ActiveSheet.Paste 
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    Range("Q2:Q41").HorizontalAlignment = xlCenter 
    Windows("" & i & "_percent_mask.txt").Activate 

    ActiveWindow.Close 

 
' copy values from the H column to the cells that show the percentile ends 

  

    Windows("BCA_method.xls").Activate 
    Sheets("" & i & "_percent_mask").Select 

    Dim low As Integer 

    Dim high As Integer 
    low = Cells(34, "L").Value 

    If low >= 1 And low <= 1000 Then 

        Range("H" & low & "").Select 
        Selection.Copy 

        Range("L36").Select 

        ActiveSheet.Paste 
        Range("L36").HorizontalAlignment = xlCenter 

     

        high = Cells(35, "L").Value 
        Range("H" & high & "").Select 

        Selection.Copy 

        Range("L37").Select 
        ActiveSheet.Paste 

        Range("L37").HorizontalAlignment = xlCenter 

         
     Else 

     End If 

      
    If low = 0 Then 

        Range("H1").Select 

        Selection.Copy 
        Range("L36").Select 

        ActiveSheet.Paste 

        Range("L36").HorizontalAlignment = xlCenter 
     

        high = Cells(35, "L").Value 

        Range("H" & high & "").Select 
        Selection.Copy 

        Range("L37").Select 

        ActiveSheet.Paste 
        Range("L37").HorizontalAlignment = xlCenter 

         

     Else 

     End If 

      

Next i 
 

Windows("actual_percentage_mask_overlap_values.txt").Activate 

ActiveWindow.Close 
End Function 
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8.4 Appendix 4: Pons Normalisation Script 

 

//  ImageJ Macro for extracting mean values for each slice in the pons rectangular prism in MNI space 
// The pons runs from slice 7 to 12, the makePolygon function describes the area in each slice 

// creates a text file with a 6 by 2 matrix 

// that contains the following 
// Slice number (Z coord) :  mean voxel number 

// // Slice number (Z coord) :  mean voxel number etc for each of the 6 slices 

// this can then be read into matlab to get the mean voxel number for the pons in an image 
dir1 =getDirectory("Choose Source Directory for ROI_filled ");  

list1 = getFileList(dir1); 

for (i=0 ; i<list1.length; i++) {                                      // this is to make sure that it only gets the folders that contain the images 
files 

 //open(dir1+list1[i]); 

 //if (endsWith(list1[i],"_func_2_FSL_T1_MNI.nii.gz")) { 
 open(dir1+list1[i]+'func_2_MNI.nii.gz'); 

 gb = getInfo("image.filename"); 

 gb1 = substring(list1[i],0,4); 
 print(list1[i]+"_"+gb); 

 // now set rectangles on the correct slices and do the maths to do the scaling 

 setSlice(18); 

 makeRectangle(40, 49, 11, 6); 

 getStatistics(area, mean18, min, max, std, histogram); 

 print("mean18" + " " + mean18); 
 setSlice(19); 

 makeRectangle(40, 49, 11, 6); 

 getStatistics(area, mean19, min, max, std, histogram); 
 print("mean19" + " " + mean19); 

 setSlice(20); 

 makeRectangle(40, 49, 11, 6); 
 getStatistics(area, mean20, min, max, std, histogram); 

 print("mean20" + " " + mean20); 

 setSlice(21); 
 makeRectangle(40, 49, 11, 6); 

 getStatistics(area, mean21, min, max, std, histogram); 

 print("mean21" + " " + mean21); 
 setSlice(22); 

 makeRectangle(40, 49, 11, 6); 
 getStatistics(area, mean22, min, max, std, histogram); 

 print("mean22" + " " + mean22); 

 setSlice(23); 

 makeRectangle(40, 49, 11, 6); 

 getStatistics(area, mean23, min, max, std, histogram); 

 print("mean23" + " " + mean23); 
 meansum = mean18 + mean19 + mean20 + mean21 + mean22 + mean23; 

 print(meansum); 

 mean = meansum / 6; 
 print("pons mean =  " + mean); 

 calfactor = 10000/mean; 

 print("calfactor =  " + calfactor); 
 print("scaled pons mean =  " + calfactor*mean); 

 print(" "); 

 makeRectangle(0, 0, 91, 109); 
 run("Multiply...", "value=calfactor stack"); 

 run("Flip Horizontally", "stack");                       //these two lines get it back in the correct orientation before resaving 

 run("Rotate... ", "angle=180 grid=1 interpolation=Bicubic stack"); 
 run("Analyze 7.5...", "save="+dir1+list1[i]+"func_2_MNIscaled"); 

// selectWindow(gb); 

 close(); 
// gb1 = substring(gb,0,4);   

// selectWindow("Log"); 

// saveAs("Text", "D:\\Analyze\\32_bit\\pons\\"+gb1+".txt"); 

// selectWindow("Log"); 

// run("Close"); 

 
 //}else{  

 //} 

} 
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8.5 Appendix 5: Hippocampal Mask Volume Sampling 

 

// ImageJ macro for sampling a masked region in a PET image, return a list of voxel number from within the volume in a text 
file.  

//PONS NORMALISATION 

// 
// Imports each warped PET, records the average counts within the pons (approximate area outlined) on the 2mm  

// res T1 FSL template, then scales the image so that the average pons counts = 10 000. Saves the scaled image. 

// Only works when the directory tree looks like this:    
//                   some dir/ 

// 
//  AD/                                             HC/ 

// 

//                         patient1/              patient2/  etc              patient1/                 patient2/  etc 
// 

//             image_title.nii.gz               image_title.nii.gz                  image_title.nii.gz                           image_title .nii.gz 

// 
//AND when the images have been warped to the FSL T1 2mm res template. warping to another template will 

//require different slices and areas to be used for the pons and a different rectangle to use to identify the whole slice for  

//rescaling. 

//EDIT: it also works for the SPM PET template as this is in very good alignment with the FSL T1 2mm MNI template and 

//has the same voxel size. 

// It also requires all the images of the same modality to have the same name 
 

dir1 =getDirectory("Choose Source Directory for AD images");  

list1 = getFileList(dir1); 
dir2 =getDirectory("Choose Source Directory for HC images");  

list2 = getFileList(dir2); 

dir3 =getDirectory("Choose Source Directory for MCI images");  
list3 = getFileList(dir3); 

 

//image_title=File.openDialog("pick a warped PET image"); 
image_title_1="func_2_MNI";                                   //image_title_1=substring(image_title,32,51); 

 

for (i=0 ; i<list1.length; i++) {                
 open(dir1+list1[i]+image_title_1+".nii.gz");                        

 setSlice(22); 

 makePolygon(40,49,40,52,42,54,49,54,51,52,51,49); 
 getStatistics(area, mean22, min, max, std, histogram); 

 setSlice(21); 

 makePolygon(40,49,40,52,42,54,49,54,51,52,51,49); 
 getStatistics(area, mean21, min, max, std, histogram); 

 setSlice(20); 

 makePolygon(40,49,40,51,42,53,49,53,51,51,51,49); 
 getStatistics(area, mean20, min, max, std, histogram); 

 setSlice(19); 

 makePolygon(40,49,43,52,48,52,51,49); 
 getStatistics(area, mean19, min, max, std, histogram); 

 setSlice(18);  

 makePolygon(41,49,43,52,48,52,50,49); 
 getStatistics(area, mean18, min, max, std, histogram); 

 setSlice(17); 

 makePolygon(41,49,43,51,47,51,49,49); 
 getStatistics(area, mean17, min, max, std, histogram); 

 meansum = mean22 + mean21 + mean20 + mean19 + mean18 + mean17 ; 

 mean = meansum / 6; 
 calfactor = 10000/mean; 

 makeRectangle(0, 0, 91, 109); 

 //the next line gets it back in the correct orientation before resaving 
 run("Multiply...", "value=calfactor stack");                       

 run("Flip Vertically", "stack"); 

 run("Analyze 7.5...", "save="+dir1+list1[i]+image_title_1+"_scaled"); 
 close(); 

} 
 

for (i=0 ; i<list2.length; i++) {                

 open(dir2+list2[i]+image_title_1+".nii.gz");       
 setSlice(22); 

 makePolygon(40,49,40,52,42,54,49,54,51,52,51,49); 

 getStatistics(area, mean22, min, max, std, histogram); 
 setSlice(21); 

 makePolygon(40,49,40,52,42,54,49,54,51,52,51,49); 
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 getStatistics(area, mean21, min, max, std, histogram); 
 setSlice(20); 

 makePolygon(40,49,40,51,42,53,49,53,51,51,51,49); 

 getStatistics(area, mean20, min, max, std, histogram); 
 setSlice(19); 

 makePolygon(40,49,43,52,48,52,51,49); 

 getStatistics(area, mean19, min, max, std, histogram); 
 setSlice(18);  

 makePolygon(41,49,43,52,48,52,50,49); 

 getStatistics(area, mean18, min, max, std, histogram); 
 setSlice(17); 

 makePolygon(41,49,43,51,47,51,49,49); 

 getStatistics(area, mean17, min, max, std, histogram); 
 meansum = mean22 + mean21 + mean20 + mean19 + mean18 + mean17 ; 

 mean = meansum / 6; 

 calfactor = 10000/mean; 
 makeRectangle(0, 0, 91, 109); 

 run("Multiply...", "value=calfactor stack"); 

//the next line gets the image back in the correct orientation for FSL before resaving                       
 run("Flip Vertically", "stack"); 

 run("Analyze 7.5...", "save="+dir2+list2[i]+image_title_1+"_scaled"); 

 close(); 
} 

 

for (i=0 ; i<list3.length; i++) {                
 open(dir3+list3[i]+image_title_1+".nii.gz");       

 setSlice(22); 

 makePolygon(40,49,40,52,42,54,49,54,51,52,51,49); 
 getStatistics(area, mean22, min, max, std, histogram); 

 setSlice(21); 

 makePolygon(40,49,40,52,42,54,49,54,51,52,51,49); 
 getStatistics(area, mean21, min, max, std, histogram); 

 setSlice(20); 

 makePolygon(40,49,40,51,42,53,49,53,51,51,51,49); 
 getStatistics(area, mean20, min, max, std, histogram); 

 setSlice(19); 

 makePolygon(40,49,43,52,48,52,51,49); 
 getStatistics(area, mean19, min, max, std, histogram); 

 setSlice(18);  

 makePolygon(41,49,43,52,48,52,50,49); 
 getStatistics(area, mean18, min, max, std, histogram); 

 setSlice(17); 

 makePolygon(41,49,43,51,47,51,49,49); 

 getStatistics(area, mean17, min, max, std, histogram); 

 meansum = mean22 + mean21 + mean20 + mean19 + mean18 + mean17 ; 

 mean = meansum / 6; 
 calfactor = 10000/mean; 

 makeRectangle(0, 0, 91, 109); 

 run("Multiply...", "value=calfactor stack"); 
//the next line gets the image back in the correct orientation for FSL before resaving                       

 run("Flip Vertically", "stack"); 

 run("Analyze 7.5...", "save="+dir3+list3[i]+image_title_1+"_scaled"); 
 close(); 

} 
//CONVERTING PONS SCALED IMAGES TO NIFTI 

// 

//FSL only works with nifti but ImageJ only wants to save as analyze... 
 

// convert analyze files to nifti 

for (i=0 ; i<list1.length; i++) {  
 exec("mri_convert", dir1+list1[i]+image_title_1+"_scaled"+".img", dir1+list1[i]+image_title_1+"_scaled"+".nii.gz" 

); 

 } 
for (i=0 ; i<list2.length; i++) {  

 exec("mri_convert", dir2+list2[i]+image_title_1+"_scaled"+".img", dir2+list2[i]+image_title_1+"_scaled"+".nii.gz" 

); 
 } 

for (i=0 ; i<list3.length; i++) {  

 exec("mri_convert", dir3+list3[i]+image_title_1+"_scaled"+".img", dir3+list3[i]+image_title_1+"_scaled"+".nii.gz" 
); 

 } 

 
// delete analyze files 

for (i=0 ; i<list1.length; i++) {  

 exec("rm", dir1+list1[i]+image_title_1+"_scaled"+".img", dir1+list1[i]+image_title_1+"_scaled"+".hdr" ); 
 } 
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for (i=0 ; i<list2.length; i++) {  
 exec("rm", dir2+list2[i]+image_title_1+"_scaled"+".img", dir2+list2[i]+image_title_1+"_scaled"+".hdr" ); 

 } 

for (i=0 ; i<list3.length; i++) {  
 exec("rm", dir3+list3[i]+image_title_1+"_scaled"+".img", dir3+list3[i]+image_title_1+"_scaled"+".hdr" ); 

 } 

 
//MASKING THE SCALED PET IMAGES 

 

mask_title=File.openDialog("pick the mask image"); 
Dialog.create("Mask name input"); 

Dialog.addString("text to add to masked pet image to identify which mask was used:", ""); 

Dialog.show(); 
mask_suffix = Dialog.getString(); 

for (i=0 ; i<list1.length; i++) {  

 exec("fslmaths", mask_title, "-mul", dir1+list1[i]+image_title_1+"_scaled"+".nii.gz", 
dir1+list1[i]+image_title_1+"_scaled_"+mask_suffix+".nii.gz"  ); 

 } 

for (i=0 ; i<list2.length; i++) {  
 exec("fslmaths", mask_title, "-mul", dir2+list2[i]+image_title_1+"_scaled"+".nii.gz", 

dir2+list2[i]+image_title_1+"_scaled_"+mask_suffix+".nii.gz" ); 

 } 
for (i=0 ; i<list3.length; i++) {  

 exec("fslmaths", mask_title, "-mul", dir3+list3[i]+image_title_1+"_scaled"+".nii.gz", 

dir3+list3[i]+image_title_1+"_scaled_"+mask_suffix+".nii.gz" ); 
 } 

 

selectWindow("Log"); 
run("Close"); 

 

//EXTRACT AND RECORD HIPPOCAMPAL VOXELS FROM  THE MASKED SCALED PET IMAGES 
 

dir4 =getDirectory("Choose output directory for voxel count .txt files");  

File.makeDirectory(dir4+"AD"); 
dir5=dir4+"AD/"; 

File.makeDirectory(dir4+"HC"); 

dir6=dir4+"HC/"; 
File.makeDirectory(dir4+"MCI"); 

dir7=dir4+"MCI/"; 

for (i=0; i<list1.length; i++) { 
 open(dir1+list1[i]+image_title_1+"_scaled_"+mask_suffix+".nii.gz"); 

 gb = list1[i]; 

    w = getWidth(); 

     h = getHeight(); 

 s = nSlices(); 

 for (z=1; z<=s; z++){ 
  setSlice(z); 

       for (x=0; x<=w; x++) { 

            for (y=0; y<h; y++) {   
                v = getPixel(x, y); 

    if (v > 0){ 

      print("" +  v); 
    } else{ 

    } 
              } 

        } 

 } 
 selectWindow("Log"); 

 gb1 = substring(gb,0,4); 

 saveAs("Text", ""+dir5+gb1); 
 run("Close"); 

 close(); 

} 
 

for (i=0; i<list2.length; i++) { 

 open(dir2+list2[i]+image_title_1+"_scaled_"+mask_suffix+".nii.gz"); 
 gb = list2[i]; 

    w = getWidth(); 

     h = getHeight(); 
 s = nSlices(); 

 for (z=1; z<=s; z++){ 

  setSlice(z); 
       for (x=0; x<=w; x++) { 

            for (y=0; y<h; y++) {   

                v = getPixel(x, y); 
    if (v > 0){ 
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      print("" +  v); 
    } else{ 

    } 

              } 
        } 

 } 

 selectWindow("Log"); 
 gb1 = substring(gb,0,4); 

 saveAs("Text", ""+dir6+gb1); 

 run("Close"); 
 close(); 

} 

 
for (i=0; i<list3.length; i++) { 

 open(dir3+list3[i]+image_title_1+"_scaled_"+mask_suffix+".nii.gz"); 

 gb = list3[i]; 
    w = getWidth(); 

     h = getHeight(); 

 s = nSlices(); 
 for (z=1; z<=s; z++){ 

  setSlice(z); 

       for (x=0; x<=w; x++) { 
            for (y=0; y<h; y++) {   

                v = getPixel(x, y); 

    if (v > 0){ 
      print("" +  v); 

    } else{ 

    } 
              } 

        } 

 } 
 selectWindow("Log"); 

 gb1 = substring(gb,0,4); 

 saveAs("Text", ""+dir7+gb1); 
 run("Close"); 

 close(); 

} 
 

 

 


