430,940 research outputs found

    T-systems with boundaries from network solutions

    Full text link
    In this paper, we use the network solution of the ArA_r TT-system to derive that of the unrestricted A∞A_\infty TT-system, equivalent to the octahedron relation. We then present a method for implementing various boundary conditions on this system, which consists of picking initial data with suitable symmetries. The corresponding restricted TT-systems are solved exactly in terms of networks. This gives a simple explanation for phenomena such as the Zamolodchikov periodicity property for TT-systems (corresponding to the case Aℓ×ArA_\ell\times A_r) and a combinatorial interpretation for the positive Laurent property of the variables of the associated cluster algebra. We also explain the relation between the TT-system wrapped on a torus and the higher pentagram maps of Gekhtman et al.Comment: 63 pages, 67 figure

    Tensor network method for reversible classical computation

    Full text link
    We develop a tensor network technique that can solve universal reversible classical computational problems, formulated as vertex models on a square lattice [Nat. Commun. 8, 15303 (2017)]. By encoding the truth table of each vertex constraint in a tensor, the total number of solutions compatible with partial inputs and outputs at the boundary can be represented as the full contraction of a tensor network. We introduce an iterative compression-decimation (ICD) scheme that performs this contraction efficiently. The ICD algorithm first propagates local constraints to longer ranges via repeated contraction-decomposition sweeps over all lattice bonds, thus achieving compression on a given length scale. It then decimates the lattice via coarse-graining tensor contractions. Repeated iterations of these two steps gradually collapse the tensor network and ultimately yield the exact tensor trace for large systems, without the need for manual control of tensor dimensions. Our protocol allows us to obtain the exact number of solutions for computations where a naive enumeration would take astronomically long times.We thank Justin Reyes, Oskar Pfeffer, and Lei Zhang for many useful discussions. The computations were carried out at Boston University's Shared Computing Cluster. We acknowledge the Condensed Matter Theory Visitors Program at Boston University for support. Z.-C. Y. and C. C. are supported by DOE Grant No. DE-FG02-06ER46316. E.R.M. is supported by NSF Grant No. CCF-1525943. (Condensed Matter Theory Visitors Program at Boston University; DE-FG02-06ER46316 - DOE; CCF-1525943 - NSF)Accepted manuscrip

    Dynamical Properties of a Two-gene Network with Hysteresis

    Get PDF
    A mathematical model for a two-gene regulatory network is derived and several of their properties analyzed. Due to the presence of mixed continuous/discrete dynamics and hysteresis, we employ a hybrid systems model to capture the dynamics of the system. The proposed model incorporates binary hysteresis with different thresholds capturing the interaction between the genes. We analyze properties of the solutions and asymptotic stability of equilibria in the system as a function of its parameters. Our analysis reveals the presence of limit cycles for a certain range of parameters, behavior that is associated with hysteresis. The set of points defining the limit cycle is characterized and its asymptotic stability properties are studied. Furthermore, the stability property of the limit cycle is robust to small perturbations. Numerical simulations are presented to illustrate the results.Comment: 55 pages, 31 figures.Expanded version of paper in Special Issue on Hybrid Systems and Biology, Elsevier Information and Computation, 201

    The Totally Asymmetric Simple Exclusion Process with Langmuir Kinetics

    Full text link
    We discuss a new class of driven lattice gas obtained by coupling the one-dimensional totally asymmetric simple exclusion process to Langmuir kinetics. In the limit where these dynamics are competing, the resulting non-conserved flow of particles on the lattice leads to stationary regimes for large but finite systems. We observe unexpected properties such as localized boundaries (domain walls) that separate coexisting regions of low and high density of particles (phase coexistence). A rich phase diagram, with high an low density phases, two and three phase coexistence regions and a boundary independent ``Meissner'' phase is found. We rationalize the average density and current profiles obtained from simulations within a mean-field approach in the continuum limit. The ensuing analytic solution is expressed in terms of Lambert WW-functions. It allows to fully describe the phase diagram and extract unusual mean-field exponents that characterize critical properties of the domain wall. Based on the same approach, we provide an explanation of the localization phenomenon. Finally, we elucidate phenomena that go beyond mean-field such as the scaling properties of the domain wall.Comment: 22 pages, 23 figures. Accepted for publication on Phys. Rev.
    • …
    corecore