30,954 research outputs found
In medium T matrix for neutron matter
We calculate the equation of state of pure neutron matter, comparing the
G-matrix calculation with the in-medium T-matrix result. At low densities, we
obtain similar energies per nucleon, however some differences appear at higher
densities. We use the self-consistent spectral functions from the T-matrix
approach to calculate the 1S0 superfluid gap including self-energy effects. We
find a reduction of the superfluid gap by 30%
Variational solution of the T-matrix integral equation
We present a variational solution of the T-matrix integral equation within a
local approximation. This solution provides a simple form for the T matrix
similar to Hubbard models but with the local interaction depending on momentum
and frequency. By examining the ladder diagrams for irreducible polarizability,
a connection between this interaction and the local-field factor is
established. Based on the obtained solution, a form for the T-matrix
contribution to the electron self-energy in addition to the GW term is
proposed. In the case of the electron-hole multiple scattering, this form
allows one to avoid double counting.Comment: 7 pages, 7 figure
VCSEL intrinsic response extraction using T-Matrix formalism
We present a new method to remove the parasitics contribution to the VCSEL chip response, in order to obtain the intrinsic S21 behavior. The on-chip VCSEL is defined as two cascaded two-port subsystems representing the electrical access and the VCSEL optical cavity respectively. S11 and S21 parameters measurements are carried-out using a probe station to characterize the chip response. An electrical equivalent circuit defining the behavior of the electrical access is combined with T-Matrix formalism to remove the parasitics contribution from the measured S21 response. Results allow us to determine the intrinsic 3-dB bandwidth of the VCSEL
Energy Dependence of the NN t-matrix in the Optical Potential for Elastic Nucleon-Nucleus Scattering
The influence of the energy dependence of the free NN t-matrix on the optical
potential of nucleon-nucleus elastic scattering is investigated within the
context of a full-folding model based on the impulse approximation. The
treatment of the pole structure of the NN t-matrix, which has to be taken into
account when integrating to negative energies is described in detail. We
calculate proton-nucleus elastic scattering observables for O,
Ca, and Pb between 65 and 200 MeV laboratory energy and study
the effect of the energy dependence of the NN t-matrix. We compare this result
with experiment and with calculations where the center-of-mass energy of the NN
t-matrix is fixed at half the projectile energy. It is found that around 200
MeV the fixed energy approximation is a very good representation of the full
calculation, however deviations occur when going to lower energies (65 MeV).Comment: 11 pages (revtex), 6 postscript figure
In medium T-matrix for superfluid nuclear matter
We study a generalized ladder resummation in the superfluid phase of the
nuclear matter. The approach is based on a conserving generalization of the
usual T-matrix approximation including also anomalous self-energies and
propagators. The approximation here discussed is a generalization of the usual
mean-field BCS approach and of the in medium T-matrix approximation in the
normal phase. The numerical results in this work are obtained in the
quasi-particle approximation. Properties of the resulting self-energy,
superfluid gap and spectral functions are studied.Comment: 38 pages, 19 figures, Introduction rewritten, Refs. adde
Multiple electron-hole scattering effect on quasiparticle properties in a homogeneous electron gas
We present a detailed study of a contribution of the T matrix accounting for
multiple scattering between an electron and a hole to the quasiparticle
self-energy. This contribution is considered as an additional term to the GW
self-energy. The study is based on a variational solution of the T-matrix
integral equation within a local approximation. A key quantity of such a
solution, the local electron-hole interaction, is obtained at the small
four-momentum transfer limit. Performed by making use of this limit form,
extensive calculations of quasiparticle properties in the homogeneous electron
gas over a broad range of electron densities are reported. We carry out an
analysis of how the T-matrix contribution affects the quasiparticle damping
rate, the quasiparticle energy, the renormalization constant, and the effective
mass enhancement. We find that in comparison with the GW approximation the
inclusion of the T matrix leads to an essential increase of the damping rate, a
slight reduction of the GW band narrowing, a decrease of the renormalization
constant at the Fermi wave vector, and some "weighting" of quasiparticles at
the Fermi surface.Comment: 12 pages, 11 figures, 1 tabl
- …
