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VCSEL Intrinsic Response Extraction Using
T-Matrix Formalism

Alexandre Bacou,Member, IEEE, Ahmad Hayat,Student Member, IEEE,
Vladimir Iakovlev, Alexei Syrbu,Senior Member, IEEE, Angélique Rissons,

Jean-Claude Mollier,Member, IEEE, and Elie Kapon,Fellow, IEEE

Abstract—We present a new method to remove the parasitics
contribution to the VCSEL chip response, in order to obtain
the intrinsic S21 behavior. The on-chip VCSEL is defined as
two cascaded two-port subsystems representing the electrical
access and the VCSEL optical cavity respectively.S11 and S21

parameters measurements are carried-out using a probe station
to characterize the chip response. An electrical equivalent circuit
defining the behavior of the electrical access is combined with
T-Matrix formalism to remove the parasitics contribution from
the measuredS21 response. Results allow us to determine the
intrinsic 3-dB bandwidth of the VCSEL.

Index Terms—Long Wavelength VCSEL, electrical equivalent
circuit, S-parameters, transfer function matrix

I. I NTRODUCTION

V CSEL dynamic response characterization is often limited
by parasitics attributed to package, bonding and trans-

mission line used to carry the electrical signal to the laser
cavity. Efforts have been made to minimize the parasitics
contribution that limits the 3-dB bandwidth and has led to
the fabrication of direct coplanar access VCSELs [1]. Despite
this development and the fact that a probe station is used for
characterization, the measured dynamic response corresponds
to a third-order system implying that the electrical access
affects the overall transmission.

Several techniques have been used to eliminate the parasitics
contribution to dynamic response, such as RIN measurements
[2], frequency response subtraction [3] or by fitting the
response with a three-pole transfer function [4]. All these
methods are efficient to extract the intrinsic properties ofthe
laser but results obtained correspond to a fitting curve.

We propose a new method to remove parasitics to the
measured dynamic response of a 1.3µm VCSEL chip. Our
method defines the VCSEL chip as a cascaded two-port
subsystem presented in Fig.1, that allows the separation of
the VCSEL optical cavity response measurement from the
total chip response. The electrical access is modeled usingan
electrical equivalent circuit that gives the parasitics response
in terms of S-parameters. This contribution is removed from
the measuredS21 of the chip by applying the transfer ma-
trices formalism and the corresponding result shows the well-
established second-order system defined by the rate equations.

A. Bacou, A. Hayat, A. Rissons and J-C. Mollier are with DEOS,Institut
Suṕerieur de l’Áeronautique et de l’Espace (ISAE), Université de Toulouse,
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Fig. 1. Schematic representation of the VCSEL chip. The electrical access
and the laser cavity are represented as two separate cascaded two-ports with
distinct transfer functions.

II. EXPERIMENT

A. VCSEL Structure

The device used in our experiment is a double intracavity
contact 1.3µm VCSEL [5]. It consists of an InGaAlAs quan-
tum wells active region, a tunnel junction and AlGaAs-GaAs
DBRs bonded by wafer-fusion. The threshold current is around
2.2mA at room temperature and the device operates in single-
mode emission. Considering that the VCSEL is on-chip, we
used a lensed fiber to couple the output optical power. The
double intracavity contacts are very useful because they give
a direct access to the optical cavity without current passage
through Bragg mirrors.

B. Experimental Setup

Measurements of theS11 and S21 responses have been
performed using an HP8510-C vector network analyzer (VNA)
with an integrated optical rack. This rack permits the cal-
ibration of the optical detector and avoids its contribution
to measurements. A probe station with RF probes was used
for VNA calibration, giving a direct access to the chip. In
this way, all parasitics not associated to the device under
test are removed for stable and accurate measurements. The
optical beam is then collected by a ball-lensed multimode fiber
with AR-coating tilted to avoid optical feedback. Finally,no
temperature control was applied so all measurements were
carried-out at room temperature (≈ 23◦C). The measuredS21

response of the chip is presented in Fig.2, showing the third-
order system verified by the -18 dB/octave slope.

III. M ETHOD FOR PARASITICS REMOVAL

A. The Electrical Equivalent Circuit

The concept of our method is based on the electrical
modeling of the VCSEL chip. Even if the electrical model of
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Fig. 2. S21 response of the chip (solid line) showing the third order system
by the -60dB/Decade slope and theS21 simulation of extracted parasitics
(dashed line).
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Fig. 3. Electrical Equivalent Circuit of the electrical access:Le=49.6pH,
Re = 14Ω, Ce = 0.84pF,Rp = 64.6Ω, Cp = 0.58pF andRs = 57.7Ω for a
bias current ofI/Ith=4.09.

the active region is known to exist [6], that of the entire chip
is more complex to determine because of parasitics related to
the transmission line. An electrical equivalent circuit isused
to model the electrical access of the chip and is presented in
Fig.3.

ImpedancesZA and ZB correspond to the transmission
line and intracavity contacts whereasRs represents the series
resistance between intracavity contacts and the active region
[7]. The equivalent circuit parameters of the electrical access
are gathered into theZ−Matrix as follows:

ZEA =

(

ZA + ZB ZB

ZB ZRS + ZB

)

(1)

The matrix S11EA of this reciprocal two-port system can
be calculated using the well-known relationship:

S11EA = (ZEA + Z0)
−1

· (ZEA − Z0) (2)

where Z0 is the characteristic impedance of the VNA,
so Z0=ZV NA=50Ω. Parameters of the electrical circuit are
fitted to S11 measurements using non-linear regression.
Comparison between measuredS11 and simulated parasitics
S11 are presented in Fig.4 for the given bias current and good
agreement between both curves is observed. This result shows
that the chipS11 and the parasiticsS11 are essentially the
same. Therefore we can define the optical cavity and the
electrical access separately using T-Matrix formalism.
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Fig. 4. The measuredS11 response of the VCSEL chip is compared to
the simulatedS11 response of the electrical access subsystem. The equivalent
electrical circuit parameters presented in Fig.3 are used for simulation.

B. The Transfer Matrix Technique

The intrinsic response of the VCSEL could be extracted
from the chip response using transfer function matrices, orT -
Matrices, sinceS-Matrices are not commutative. The general
formula for the transformation of anS-Matrix to a T -Matrix
is given by [8]:

(

T11 T12

T21 T22

)

=

(

S12S21−S11S22

S21

S11

S21

−
S22

S21

1

S21

)

(3)

The T -Matrix corresponding to the VCSEL optical cavity
can be calculated as follows:

TV OC = TEA
−1

· Ttot (4)

whereTEA, TV OC and Ttot are T -Matrices of the electrical
access, the VCSEL optical cavity and the complete chip
respectively (See Fig.1).

Ttot is calculated with the entireS-Matrix of the system
Stot. Out of the four matrix elements ofStot, only the S11

and S21 are known as these two parameters were measured
using the VNA. We found that theS12 andS22 entries obey
the following two rules:

1) The VCSEL is an active unilateral device so theS12=0
(optical feedback is avoided using AR coated fibers).

2) The VCSEL is a transducer that converts electrical
current into optical power hence it is not bidirectional
and does not respond to an electrical input at the optical
output ports. The electricalS22 parameter, therefore, is
taken equal to 1.

So, Stot can then be written as follows:

Stot =

(

Sm
11

0

Sm
21

1

)

(5)

Where Sm
11

and Sm
21

refer to measured VCSEL responses.
ThereforeTtot andTEA are employed to calculateTV OC with
relations (3), (4) and (5). Then, the intrinsicS21 of the VCSEL
is expressed using theTV OC matrix. Results of the extraction
are presented in Fig.5.
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Fig. 5. Measured and extractedS21 responses for a 1.3µm VCSEL at a
fixed bias current. The measurement takes into account the response of the
electrical access as well as the cavity while the extracted curve shows the
VCSEL cavity response only.

IV. RESULTS AND DISCUSSION

As is evident from Fig.2, the measuredS21 response of the
VCSEL has a -60 dB/decade slope. This slope represents the
response of the totality of the VCSEL chip which includes
the electrical access and the VCSEL optical cavity, showinga
system having an order greater than two. Furthermore, this
could be observed by the dip in theS21 curve below the
resonance frequency and demonstrates that the transmission
line and intracavity contacts influence the overall VCSEL
response.

With the method investigated, chip parasitics are removed
from measurements and the intrinsic response of the VCSEL
cavity is found. The response follows the -40 dB/decade slope,
which is characteristic of second-order systems, and is the
same as if the measurements were carried out directly at the
cavity terminals.

This method also demonstrates that theS11 response of the
VCSEL chip and the electrical access are essentially the same,
implying that the VCSEL optical cavity parameters do not
influence the incoming electrical signal. Moreover, this method
has been applied to the entire current range and shows that the
resistanceRS is the only bias current dependent element. This
resistance decreases as the bias current increases becausethe
current flow into the active region through the tunnel junction
aperture becomes more intense.

The extrinsic and intrinsic 3-dB modulation bandwidths
are also presented in Fig.6. Results show that the extrinsic
bandwidth is lower than the intrinsic bandwidth and tends
to saturate toward a limit defined by the electrical access
of the chip. The intrinsic response is also compared with
curve generated by the relation in [2] and good agreement
is found. Finally, this method can be applied to any device if
the electrical access could be properly modelled.

V. CONCLUSION

We have presented a new method to separate the VCSEL
optical cavity S21 response from the overall VCSEL chip
response by removing the electrical access contribution. This

1.5 2 2.5 3 3.5 4 4.5
4

5

6

7

8

9

10

I/I
th

3d
B

 B
an

dw
id

th
 (

G
H

z)

Measured
(Extrinsic)

With Extraction
(Intrinsic)

Simulation

Fig. 6. 3-dB modulation bandwidth of extrinsic (measured) andintrinsic
(T-Matrix extraction) responses as a function of bias current for the 1.3µm
VCSEL. The dashed line correspond to the simulation of the 3-dB bandwith
by the relation taken from [2].

electrical access influences the transmission response and
modifies the order of the system. These parasitics are modeled
using an electrical equivalent circuit and have shown that
the chip S11 represents in fact the electrical accessS11.
Therefore the chip could be considered as a cascaded two-port
system allowing us to use the T-Matrix formalism to extract
the intrinsic VCSEL optical cavity response. This extraction
represents a classical second-order system that is characteristic
of laser cavities defined by the rate equations. Finally, The
approach employed uses simple measurement and calculation
methodology.
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