687,612 research outputs found

    Ability of γδ T cells to modulate the Foxp3 T cell response is dependent on adenosine.

    Get PDF
    Whether γδ T cells inhibit or enhance the Foxp3 T cell response depends upon their activation status. The critical enhancing effector in the supernatant is adenosine. Activated γδ T cells express adenosine receptors at high levels, which enables them to deprive Foxp3+ T cells of adenosine, and to inhibit their expansion. Meanwhile, cell-free supernatants of γδ T cell cultures enhance Foxp3 T cell expansion. Thus, inhibition and enhancement by γδ T cells of Foxp3 T cell response are a reflection of the balance between adenosine production and absorption by γδ T cells. Non-activated γδ T cells produce adenosine but bind little, and thus enhance the Foxp3 T cell response. Activated γδ T cells express high density of adenosine receptors and have a greatly increased ability to bind adenosine. Extracellular adenosine metabolism and expression of adenosine receptor A2ARs by γδ T cells played a major role in the outcome of γδ and Foxp3 T cell interactions. A better understanding of the functional conversion of γδ T cells could lead to γδ T cell-targeted immunotherapies for related diseases

    T Cell Migration from Inflamed Skin to Draining Lymph Nodes Requires Intralymphatic Crawling Supported by ICAM-1/LFA-1 Interactions.

    Get PDF
    T cells are the most abundant cell type found in afferent lymph, but their migration through lymphatic vessels (LVs) remains poorly understood. Performing intravital microscopy in the murine skin, we imaged T cell migration through afferent LVs in vivo. T cells entered into and actively migrated within lymphatic capillaries but were passively transported in contractile collecting vessels. Intralymphatic T cell number and motility were increased during contact-hypersensitivity-induced inflammation and dependent on ICAM-1/LFA-1 interactions. In vitro, blockade of endothelial cell-expressed ICAM-1 reduced T cell adhesion, crawling, and transmigration across lymphatic endothelium and decreased T cell advancement from capillaries into lymphatic collectors in skin explants. In vivo, T cell migration to draining lymph nodes was significantly reduced upon ICAM-1 or LFA-1 blockade. Our findings indicate that T cell migration through LVs occurs in distinct steps and reveal a key role for ICAM-1/LFA-1 interactions in this process

    Controversies concerning thymus-derived regulatory T cells: fundamental issues and a new perspective

    Get PDF
    Thymus-derived regulatory T cells (Tregs) are considered to be a distinct T-cell lineage that is genetically programmed and specialised for immunosuppression. This perspective is based on the key evidence that CD25(+) Tregs emigrate to neonatal spleen a few days later than other T cells and that thymectomy of 3-day-old mice depletes Tregs only, causing autoimmune diseases. Although widely believed, the evidence has never been reproduced as originally reported, and some studies indicate that Tregs exist in neonates. Thus we examine the consequences of the controversial evidence, revisit the fundamental issues of Tregs and thereby reveal the overlooked relationship of T-cell activation and Foxp3-mediated control of the T-cell system. Here we provide a new model of Tregs and Foxp3, a feedback control perspective, which views Tregs as a component of the system that controls T-cell activation, rather than as a distinct genetically programmed lineage. This perspective provides new insights into the roles of self-reactivity, T cell–antigen-presenting cell interaction and T-cell activation in Foxp3-mediated immune regulation

    Avidity of influenza-specific memory CD8+ T-cell populations decays over time compromising antiviral immunity

    Get PDF
    Decline of cell-mediated immunity is often attributed to decaying T-cell numbers and their distribution in peripheral organs. This study examined the hypothesis that qualitative as well as quantitative changes contribute to the declining efficacy of CD8+ T-cell memory. Using a model of influenza virus infection, where loss of protective CD8+ T-cell immunity was observed 6 months postinfection, we found no decline in antigen-specific T-cell numbers or migration to the site of secondary infection. There was, however, a large reduction in antigen-specific CD8+ T-cell degranulation, cytokine secretion, and polyfunctionality. A profound loss of high-avidity T cells over time indicated that failure to confer protective immunity resulted from the inferior functional capacity of remaining low avidity cells. These data imply that high-avidity central memory T cells wane with declining antigen levels, leaving lower avidity T cells with reduced functional capabilities

    IL-15 augments TCR-induced CD4⁺ T cell expansion in vitro by inhibiting the suppressive function of CD25High CD4⁺ T cells

    Get PDF
    Due to its critical role in NK cell differentiation and CD8(+) T cell homeostasis, the importance of IL-15 is more firmly established for cytolytic effectors of the immune system than for CD4(+) T cells. The increased levels of IL-15 found in several CD4(+) T cell-driven (auto-) immune diseases prompted us to examine how IL-15 influences murine CD4(+) T cell responses to low dose TCR-stimulation in vitro. We show that IL-15 exerts growth factor activity on both CD4(+) and CD8+ T cells in a TCR-dependent and Cyclosporin A-sensitive manner. In CD4(+) T cells, IL-15 augmented initial IL-2-dependent expansion and once IL-15R alpha was upregulated, IL-15 sustained the TCR-induced expression of IL-2/15R beta, supporting proliferation independently of secreted IL-2. Moreover, IL-15 counteracts CD4(+) T cell suppression by a gradually expanding CD25(High)CD4(+) T cell subset that expresses Foxp3 and originates from CD4(+)CD25(+) Tregs. These in vitro data suggest that IL-15 may dramatically strengthen the T cell response to suboptimal TCR-triggering by overcoming an activation threshold set by Treg that might create a risk for autoimmune pathology

    Human naive CD8 T cells down-regulate expression of the WNT pathway transcription factors lymphoid enhancer binding factor 1 and transcription factor 7 (T cell factor-1) following antigen encounter in vitro and in vivo

    Get PDF
    Abstract The transcription factors lymphoid enhancer binding factor 1 (LEF1) and transcription factor 7 (TCF7) (T cell factor-1 (TCF-1)) are downstream effectors of the WNT signaling pathway, which is a critical regulator of T cell development in the thymus. In this study, we show that LEF1 and TCF7 (TCF-1) are not only expressed in thymocytes, but also in mature T cells. Our data demonstrate that Ag encounter in vivo and engagement of the TCR or IL-15 receptor in vitro leads to the down-regulation of LEF1 and TCF7 (TCF-1) expression in human naive CD8 T cells. We further show that resting T cells preferentially express inhibitory LEF1 and TCF7 (TCF-1) isoforms and that T cell activation changes the isoform balance in favor of stimulatory TCF7 (TCF-1) isoforms. Altogether, our study suggests that proteins involved in the WNT signaling pathway not only regulate T cell development, but also peripheral T cell differentiation.</jats:p

    Monocytes regulate the mechanism of T-cell death by inducing Fas-mediated apoptosis during bacterial infection.

    Get PDF
    Monocytes and T-cells are critical to the host response to acute bacterial infection but monocytes are primarily viewed as amplifying the inflammatory signal. The mechanisms of cell death regulating T-cell numbers at sites of infection are incompletely characterized. T-cell death in cultures of peripheral blood mononuclear cells (PBMC) showed 'classic' features of apoptosis following exposure to pneumococci. Conversely, purified CD3(+) T-cells cultured with pneumococci demonstrated necrosis with membrane permeabilization. The death of purified CD3(+) T-cells was not inhibited by necrostatin, but required the bacterial toxin pneumolysin. Apoptosis of CD3(+) T-cells in PBMC cultures required 'classical' CD14(+) monocytes, which enhanced T-cell activation. CD3(+) T-cell death was enhanced in HIV-seropositive individuals. Monocyte-mediated CD3(+) T-cell apoptotic death was Fas-dependent both in vitro and in vivo. In the early stages of the T-cell dependent host response to pneumococci reduced Fas ligand mediated T-cell apoptosis was associated with decreased bacterial clearance in the lung and increased bacteremia. In summary monocytes converted pathogen-associated necrosis into Fas-dependent apoptosis and regulated levels of activated T-cells at sites of acute bacterial infection. These changes were associated with enhanced bacterial clearance in the lung and reduced levels of invasive pneumococcal disease
    corecore