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Abstract

Due to its critical role in NK cell differentiation and CD8+ T cell homeostasis, the importance of IL-15 is more firmly
established for cytolytic effectors of the immune system than for CD4+ T cells. The increased levels of IL-15 found in several
CD4+ T cell-driven (auto-) immune diseases prompted us to examine how IL-15 influences murine CD4+ T cell responses to
low dose TCR-stimulation in vitro. We show that IL-15 exerts growth factor activity on both CD4+ and CD8+ T cells in a TCR-
dependent and Cyclosporin A-sensitive manner. In CD4+ T cells, IL-15 augmented initial IL-2-dependent expansion and once
IL-15Ra was upregulated, IL-15 sustained the TCR-induced expression of IL-2/15Rb, supporting proliferation independently
of secreted IL-2. Moreover, IL-15 counteracts CD4+ T cell suppression by a gradually expanding CD25HighCD4+ T cell subset
that expresses Foxp3 and originates from CD4+CD25+ Tregs. These in vitro data suggest that IL-15 may dramatically
strengthen the T cell response to suboptimal TCR-triggering by overcoming an activation threshold set by Treg that might
create a risk for autoimmune pathology.
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Introduction

The pro-inflammatory cytokine IL-15 is produced predomi-

nantly by activated monocytes/macrophages [1], but can also be

produced by T cells [2] and in mucosal tissues by epithelial cells

[3–5]. Expressed by dendritic cells in response to type I IFN,

double-stranded RNA, or lipopolysaccharide [6], IL- is involved in

several types of infections [7]. Bacterial infection with Salmonella or

Mycobacterium [8,9], or viral infection with Influenza has been shown

to induce the expression of IL-15 [10,11]. IL-15 is also implicated

in several inflammatory disorders and autoimmune diseases [1,12–

14]. IL-15 is present at high concentrations in rheumatoid arthritis

synovial fluid [15,16] and elevated in the serum of patients with

systemic lupus erythematosus [17] or type 1 diabetes [18].

Additionally, IL-15 is heightened in the affected tissues in

autoimmune thyroid disease [19] and celiac disease [20].

IL-15 given exogenously can enhance immune responses and

these properties are exploited in tumor therapy [21,22] and in

vaccination strategies [23–27]. IL-15 helps the development and

activity of NK cells [28], CD4+ T cells [29,30] and CD8+ T cells

[31–33]. For instance, IL-15 prolongs the survival of effector T

cells against Listeria monocytogenes and Mycobacterium bovis [10] and

augments the response by respiratory CD8+ T cells in Influenza

infections [11]. IL-15 also augments the generation of tetanus

toxoid-specific effector CD4+ T cells in rhesus macaques [34]. Our

previous studies have shown that IL-15 enhances the proliferative

response of TCR-stimulated CD4+ T cells in vitro [29,35]. IL-15

treatment is known to promote a persistent immune response

through its actions on memory CD8+ T cells [32,36,37] and the

proliferation of human memory CD4+ T cells in vitro and mouse

Ag-specific CD4+ memory T cells in vivo [38,39]. Initial studies

suggested that IL-15 is mainly critical for CD8+ T cell homeostasis

[40–42], and less for homeostasis of naive or memory CD4+ T

cells [5,43–45], especially because normal numbers of memory-

phenotype CD4+ T cells are present in IL-15–deficient mice [46].

Similarly, IL-15 is reported to have only a minimal role in the

homeostasis of Ag-specific CD4+ memory T cells [47]. However,

recent studies have revealed that IL-15 is important for the

homeostatic proliferation of both types of memory cells [48–50].

For instance, in normal nonlymphopenic hosts where IL-7 levels

are low, virus Ag-specific CD4+ memory cells are dependent on

IL-15 for their basal homeostatic proliferation and long-term

survival [49]. Also, the IFN-c-producing memory CD4+ T cells

induced by transient bacterial infection with Listeria monocyto-

genes express IL-15Rb and are responsive to IL-15 [50].
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Deficient development or function of CD25+CD4+regulatory T

(Treg) cells causes organ-specific autoimmune diseases in animal

models, demonstrating their crucial role in maintaining self-

tolerance [51–54]. In human peripheral blood, approximately

1.5–3.0% of total CD4+ T cells express high levels of CD25 [55]

and have similar regulatory properties as murine CD25+CD4+ T

cells [55–57]. Potent TCR stimulation [58,59], but also cytokines,

e.g. high dose IL-2 [60–62] or IL-6 [63] render effector T cells

resistant to the suppression by Treg cells. The role of IL-15 in the

homeostasis and function of Treg cells is not clear, but IL-15 can

partially support Treg cell development in the absence of IL-2 [64]

and protect human effector T cells against Treg cell action [65].

In this study we examined how low doses of IL-15 influence a

primary CD4+ T cell response to low doses of TCR/CD3-

triggering. The growth factor activity of IL-15 on CD4+ T cells

depends on TCR-induced IL-2 production in the first phase of

activation, and only later supports CD4+ T cell expansion

independent of IL-2. IL-15 also promotes CD4+ T cell expansion

in a more indirect way, namely by lifting the suppressive activity

Foxp3 expressing CD25High CD4+ T cells that originate from

natural CD25+CD4+ Treg cells after TCR-stimulation.

Results

IL-15 not only Exerts Growth Factor Activity on CD8+ T
Cells, but also on CD4+ T Cells

Anti-CD3 stimulation caused a dose dependent proliferative

response of C57Bl/6 splenocytes and supplementation with IL-15,

even at doses as low as 1 ng/ml, markedly increased both the

amplitude and the duration of the proliferative response

(Figure 1A). This growth enhancing effect of IL-15 was not mouse

strain dependent or restricted to cells from a specific secondary

lymphoid compartment, as bulk lymph node cells and splenocytes

from Balb/c responded similarly (data not shown).

To assess the effect of IL-15 on CD4+ and CD8+ T cells, we

stimulated CFSE-labeled splenocytes with anti-CD3. Dye dilution

analysis showed that both CD8+ and CD4+ T cells proliferate, but

that CD8+ T cells proliferated faster than CD4+ T cells, as

evidenced by the higher number of generations distinguished 2

days and especially 3 days after stimulation (Figure 1B). CD8+ T

cells were also more sensitive to stimulation, as they proliferated in

response to lower anti-CD3 concentrations (data not shown).

Consequently, the CD8+ T cell subset dominated the splenocyte

cultures after 3 days of activation (Figure 1B). Nonetheless,

absolute CD4+ T cell numbers did increase in time, albeit less

dramatically than CD8+ T cells. Addition of IL-15 increased both

CD4+ and CD8+ T cells number (Figure 1B), suggesting IL-15

growth enhancing effect can target both T cell subsets.

Given the predominant outgrowth of the CD8+ subset, we next

analyzed the effect of IL-15 on anti-CD3 stimulation of isolated

CD4+ and CD8+ T cells. Exogenous IL-15 boosted and prolonged

the proliferative response of both CD8+ T cells (Figure 1C,D) and

CD4+ T cells (Fig. 1E,F), an effect dependent on TCR-triggering

(Figure 1C,E). We used irradiated T cell-depleted accessory cells

(TdAC) to crosslink the anti-CD3 mAb, but IL-15 also increased

proliferation and cell numbers during stimulation with plate-

bound anti-CD3 and soluble anti-CD28, suggesting IL-15 acted

directly on the T cells (data not shown). The doses of IL-15 used

did not cause proliferation during stimulation with soluble anti-

CD3 in the absence of TdAC or in the absence of stimulation (data

not shown). Similar results were obtained using either recombinant

human or murine IL-15 (data not shown). CFSE proliferation

studies showed that CD4 T cells had a higher proliferation index

in IL-15-supplemented cultures (Figure 1G, H), although this

parameter is unlikely to explain by itself the augmented cell

numbers. It is possible that better cell survival in each generation

also contributes to the higher total cell counts. Together, the

similarity in magnitude and time course of the responses of the

CD4+ and CD8+ T cell subsets indicates that IL-15 is not a

selective growth factor for CD8+ T cells, but can also exert this

function on CD4+ T cells to prolong expansion of TCR-stimulated

CD4+ T cells.

IL-15 has an IL-2-dependent Mode of Action on CD4+ T
Cells, but not on CD8+ T cells

We next determined whether the IL-15 growth factor activity

reflects a redundant activity with IL-2 because of shared receptor

subunits or a dependence on TCR-induced endogenous IL-2. We

found that depletion of IL-2 using neutralizing mAb (clone JES6-

5H4: Figure 2A,B; clone S4B6: not shown) blocked the

proliferative response by CD8+ T cells (Figure 2A) and CD4+

(Figure 2B) T cells to low concentrations of anti-CD3. When IL-2

was depleted, IL-15 could support growth of CD8+ T cells

(Figure 2A), but not of CD4+ T cells (Figure 2B). To further

corroborate the antibody-mediated depletion of IL-2, we stimu-

lated purified CD4+ T cells from IL-22/2 or IL-2+/+ mice with

anti-CD3 in the presence of IL-22/2 or IL-2+/+ APC, respectively.

As expected from our data above, both IL-2 and IL-15 increased

the dose-dependent response of IL-2+/+ CD4+ T cells to anti-CD3

stimulation (Figure 2C). In contrast, IL-22/2 CD4+ T cells were

deficient in proliferation in response to anti-CD3. Addition of low

doses IL-2 increased their proliferative response, albeit to a limited

extend. The lack of a full restoration may be because the added

amount of IL-2 was lower than what is naturally produced [66] or

because IL-22/2 T cells contain a larger number of effector/

memory T cells [67], which respond differently to IL-2. IL-15 did

not increase the anti-CD3-stimulated proliferation of IL-22/2

CD4+ T cells at all.

Since sensitivity of CD4+ T cells to the growth factor activity of

IL-15 depends on TCR-signals, we tested whether also the IL-2

dependence of the IL-15 growth factor activity changes as CD4+ T

cells become activated. To address this, we simultaneously added

IL-15 and depleted IL-2 after 1, 2, or 3 days of TCR-stimulation.

This showed that the addition of IL-15 increases CD4+ T cell

proliferation irrespective of the time of addition, but addition of

IL-15 at the start of activation allows IL-15 to deploy its full

growth factor potential (Figure 2D). Importantly, IL-2 depletion

progressively lost its capacity to dampen IL-15 growth factor

activity. As a result, IL-15 exerted its growth promoting effect

independently of IL-2 by day 3 of stimulation.

Collectively, these data indicate that IL-15 growth factor

activity on CD4+ T cells depends on endogenous IL-2 at the start

of activation, but not at later time points. On CD8+ T cells

however, IL-2 and IL-15 exert redundant growth factor activities.

IL-15-expanded CD4+ T cells Remain Dependent on IL-15
A previous report indicated that IL-15Ra is a negative regulator

of TCR-stimulated proliferation of CD4+ T cells [68]. If so,

blocking IL-15 should enhance proliferation of TCR-stimulated

CD4+ T cells. To test this, we added a soluble form of the IL-15Ra
protein (sIL-15Ra; T1) to scavenge IL-15 [69] on day 3 of

stimulation. Viable CD4+ T cell counts (Figure 3A) and 3H-

thymidine incorporation (Figure 3B) showed that administration of

sIL-15Ra completely abrogated the IL-15-induced increase in

CD4+ T cell numbers. Addition of the control protein M4, lacking

the critical IL-15 binding disulfide bonds in the Sushi domain [70],

did not affect the CD4+ cell response to IL-15. So, IL-15 does not

reprogram CD4+ T cells for self-sustained growth. Rather, after

T Cell Growth Factor Activity of IL 15
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Figure 1. IL-15 enhances the strength and duration of TCR/CD3-triggered proliferation by CD8+ and CD4+ T cells. (A) Bulk splenocytes
were stimulated with soluble anti-CD3 mAb and 3H-thymidine incorporation was measured (white circles: none; crosses: 1 ng/ml IL-15; black squares:
3 ng/ml IL-15). (B) CFSE-labeled splenocytes were stimulated using 0.1 mg/ml anti-CD3 mAb and supplemented or not with 3 ng/ml rhIL-15. Cells
were stained for CD8 or CD4 after 2–3 days. Shown are representative density plots with inset values reflecting percentage and absolute numbers of
CD4+ or CD8+ T cells in the viable cell gate and summarizing bar graphs. (C–F) CD8+ T cells (C,D) or CD4+ T cells (E,F) were stimulated with soluble
anti-CD3 mAb and irradiated TdACs in the absence or presence of 3 ng/ml rhIL-15. 3H-thymidine incorporation (C,E; white circles: none, black
squares: 3 ng/ml IL-15) or cell numbers (D,F; 0.1 mg/ml anti-CD3; white bars: none, black bars: 3 ng/ml IL-15) were measured. (G) CFSE-labeled CD4+ T
cells were stimulated as in F. Shown are CFSE histogram overlays, gated on viable CD4+ T cells, of cultures without (grey) or with (black) exogenous
rhIL-15. The heights of the profiles were normalized to the absolute viable CD4+ T cell numbers present in the culture, as determined by flow
cytometry using fluorescent micro-beads as a reference. (H) Proliferation index of CD4+ T cells in cultures without (white squares) or with (black
squares) supplemented IL-15 (3 ng/ml). For all panels, data are from triplicate wells in one representative of four repeat experiments. A, C: Symbols in
line graphs reflect mean 6 SD. D, F, H: Bar graphs represent the mean6SEM. In all relevant panels, statistical significance between IL-15-
supplemented and non-supplemented cultures was calculated per anti-CD3 concentration using student t-test: ns = not significant, * P,0.05,
** P,0.01, *** P,0.001. All experiments were performed at least 3 times with similar results.
doi:10.1371/journal.pone.0045299.g001
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activation CD4+ T cells depend on IL-15 to maintain increased

cell numbers and proliferation.

IL-15 Supports Prolonged Cycling of CD25IntermediateCD4+

T cells in the Presence of CD25HighCD4+ T Cells
We next assessed the gene expression of the IL-15 receptor

subunits after anti-CD3 stimulation of CD4+ T cells. The mRNA

levels of IL-15Ra and IL-2/15Rb (CD122) peaked after two days

by two- and four-fold, respectively (Figure 4A). Exogenous IL-15

did not affect the activation-induced expression of IL-15Ra.

However, IL-15 attenuated the initial upregulation of IL-2/15Rb

(approximately two-fold) and maintained this expression level

throughout the culture period. As a result, IL-15Rb is expressed

two-fold higher on day 5 when compared with unstimulated CD4+

T cells or day 5 control-stimulated CD4+ T cell cultures

(Figure 4A). Flow cytometry showed that expression of CD122

was increased in the entire CD4+ T cell population, rather than

reflecting the outgrowth of a specific subset (data not shown).

On the other hand, IL-15 supplementation limited the anti-

CD3-induced upregulation of IL-2Ra (CD25)(Figure 4A), an

activation marker known to confer sensitivity to AICD, but also a

Treg marker [51,54]. This could reflect a decrease in surface

expression of CD25 on all activated T cells or a reduction in the

fraction of CD25+ Treg cells. To test this, we stimulated CFSE-

labeled CD4+ T cells to monitor CD25 expression. In line with its

transcript expression, CD25 membrane expression was strongly

upregulated upon TCR stimulation in both control and IL-15

supplemented cultures (Figure 4B).Interestingly, low-dose anti-

CD3 stimulation generated two CD25-positive populations,

expressing either high or intermediate (Int) levels of CD25. On

day two, the effect of IL-15 supplementation on CD25 at the

mRNA level had not yet translated to the level of surface protein

(Figure 4B). CFSE-dilution experiments showed that both CD25Int

and CD25High subsets actively proliferated (Figure 4C, left panels).

The CD25High subset constituted approximately 15% and 22% of

the viable CD4+ T cell population after four and five days,

respectively. Supplementation with human IL-15 reduced the

relative proportion of CD25High cells to approximately 7% and

11% (Figure 4C, right panels), seemingly sustaining mainly the

expansion of the CD25Int subset. A similar trend was also observed

using murine IL-15 (data not shown). Exogenous IL-15 did

increase the absolute numbers of CD4+ T cells expressing no or

intermediate levels of CD25, but not those with high levels of

CD25, both on day four and five (Figure 4D). This indicates that

the drop in the CD25High CD4+ T cells is relative and results from

a greater expansion of cells expressing no or intermediate levels of

CD25. The cells that had undergone most divisions upon

stimulation with anti-CD3 in the absence of IL-15 expressed

mostly high levels of CD25 (Figure 4E). In contrast, in the

presence of exogenous IL-15, the cells that had undergone most

divisions mostly expressed intermediate levels of CD25. Thus, low

levels of TCR stimulation gradually expanded a CD4+ T cell

Figure 2. IL-15 growth factor activity depends on TCR-signals,
but is IL-2-dependent only in CD4+ T cells. (A) CD8+ or (B) CD4+ T
cells were stimulated with anti-CD3 mAb and irradiated TdACs in the
absence or presence of 3 ng/ml rhIL-15, or 10 mg/ml anti-IL-2 mAb
(JES6-5H4) or isotype control, as indicated. On day 4, 3H-thymidine
incorporation was measured. Results are from one of five experiments.
(C) IL-2+/+ or IL-22/2 CD4+ cells were stimulated with anti-CD3 mAb and
irradiated IL-2+/+ and IL-22/2 splenocytes, respectively, in the absence
(white circles) or presence of 1 ng/ml IL-2 (crosses) or 3 ng/ml IL-15
(black circles). (D) CD4+ cells were stimulated for 5 days with 0.1 mg/ml
anti-CD3 and irradiated TdACs. On day 0, 1, 2, or 3, IL-15 alone or IL-15
plus anti-IL-2 mAb was added. On day 4, proliferation was measured by
3H-thymidine incorporation and represented as bar graphs (with left Y-
axis) as ratio of cpmIL-15/cpmnone (black bars) or cpmIL-15 plus anti-IL-2/
cpmnone (white bars). The line represents the percentage of reduction of
the IL-15 effect by IL-2 depletion as calculated using the following
formula: [(cpmIL-15– cpmIL-15 plus anti-IL-2)/cpmIL-15]6100. Results are from
one representative out of three experiments.
doi:10.1371/journal.pone.0045299.g002

Figure 3. TCR-triggered IL-15-expanded CD4+ T cells remain
dependent on IL-15 for expansion and survival. CD4+ T cells were
stimulated with 0.1 mg/ml anti-CD3 and irradiated TdACs without or
with 3 ng/ml IL-15. After 3 days, 50 ng/ml soluble IL-15Ra (sIL-15Ra, T1,
50 ng/ml) or control mutated sIL-15Ra (M4), lacking IL-15 binding
capacity, were added. (A) Proliferation of CD4+ T cells, as determined by
3H-thymidine incorporation of triplicate cultures on day 5. (B) Viable
CD4+ cell recovery on day 5, determined by flow cytometry. Bar graphs
represent the mean6SEM. Statistical significance was calculated using
student t-test: ns = not significant, ** P,0.01, *** P,0.001. Data are
representative of three independent experiments.
doi:10.1371/journal.pone.0045299.g003
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subset expressing high levels of CD25. Exogenous IL-15 on the

other hand, extended the proliferative response by supporting the

expansion of the CD25Int cell subset in the presence of

CD25HighCD4+ T cells.

CD25HighCD4+ T cells Originate from Naturally Occurring
CD25+CD4+ Regulatory T cells and Inhibit Proliferation of
CD252/low CD4+ T cells

We hypothesized that the CD25HighCD4+ T cell subset

originates from naturally occurring CD25+CD4+ T cells that

persist during TCR stimulation as a distinct CD25High population

capable of controlling the proliferative response of conventional

CD252CD4+ T cells. To verify this, we first did a criss-cross

experiment in which we co-cultured CFSE-labeled CD25 negative

CD4 cells with unlabeled CD25+ CD4+ T cells, and vice versa, at

the normal CD25+:CD252 ratio. In both instances, a CD25Int and

CD25High population was generated. The CD25Int population

only contained CFSE when the CD252CD4+ T cells were CFSE-

labeled at the start of culture (Figure 5A). Conversely, the

CD25High population only contained CFSE when the CD25+

CD4+ T cell subset was CFSE-labeled. Both the CD25Int and the

CD25High populations were cycling, thus confirming their

proliferative capacity (Figure 5A). Second, we compared CD25

expression levels in anti-CD3-stimulated cultures of total CD4+ T

cells versus CD25-depleted CD4+ T cells and found that initial

depletion of CD25+ cells reduced the generation of a CD25High

subset by 2–3-fold (Figure 5B). Third, the CD25High subset of

TCR-stimulated CD4+ T cells expresses Foxp3, while the CD25Int

subset is predominantly Foxp32 (Figure 5C). Finally, CFSE dye

dilution showed augmented cell division of CD25+-depleted CD4+

T cell cultures as compared with total CD4+ T cells (Figure 5D).
3H-thymidine incorporation experiments confirmed this stronger

proliferation of cultures of CD25+-depleted CD4+ T cells versus

total CD4+ T cells (Figure 5E). Combined, these observations

indicate that during activation of CD4+ T cells, a CD25High CD4+

T cell subset develops from the CD25+ Treg population.

Figure 4. Exogenous IL-15 decreases the fraction but not the absolute number of CD25High CD4+ T cells. (A) IL-15 alters TCR-induced
gene expression of IL-2 and IL-15 receptor subunits. Purified CD4+ T cells were stimulated with 0.1 mg/ml anti-CD3 mAb and irradiated TdACs in the
absence (white circles) or presence (black circles) of 3 ng/ml IL-15. At the indicated time points, CD4+ T cells were purified for PCR analysis of
indicated gene transcripts and expressed as 22DCt where DCt = Cttarget gene - mean Ctnormalization genes. Statistical significance was calculated using
student t-test: ns = not significant, ** P,0.01, *** P,0.001. (B) Spleen CD4+ T cells were left unstimulated or stimulated with anti-CD3 in the presence
or absence of IL-15 for two days, as indicated. Shown are histogram overlays of CD25 expression, gated on viable CD4+ T cells (d: day). (C) CFSE-
labeled CD4+ T cells were stimulated with 0.1 mg/ml anti-CD3 and irradiated TdAC, without or with 3 ng/ml IL-15 for four or five days. Shown are flow
cytometry dot plots of CFSE dye dilution versus CD25 expression in the viable CD4+ gate (left, shown percentages were calculated on viable CD4+ T
cells) and summarizing bar graph of the CD25 high fraction (left). Statistical significance was calculated using student t-test: * P,0.05, ** P,0.01. (D)
Absolute numbers of viable CD25High, CD25Int, CD25Negative and total CD4+ T cells, as determined by flow cytometry using micro-beads as reference.
White and black bars represent stimulation with anti-CD3 in the absence or presence of 3 ng/ml rhIL-15, respectively. Statistical analysis was
calculated using 2-way ANOVA and Bonferroni posttest: ns = not significant, *** P,0.001. Data shown are representative of three independent
experiments. (E) CFSE-labeled CD4+ T cells were stimulated as in B. Shown are histogram overlays (top) of CD25 expression of the last generation of
viable CD4+ T cells (by CFSE dilution) on day 5 after stimulation in the absence (dashed line) or presence (shaded) of 3 ng/ml rmIL-15. Bar graph
(bottom) represents the mean fluorescenceIntensity of CD25 expression in the last generation, as shown in the overlays. Statistical significance was
calculated using student t-test: * P,0.05, ** P,0.01.
doi:10.1371/journal.pone.0045299.g004
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Figure 5. CD25High CD4+ T cells originate from natural CD25+ CD4+ T cells. (A) Histogram showing CD25 expression pattern of unstimulated
CD4+ T cells (day 0; top). Isolated CD252 and CD25+ CD4+ T cells were co-cultured in a cross-over setup with only one of the subsets carrying CFSE
label. Three days after stimulation with 0.1 mg/ml anti-CD3 mAb and irradiated TdAC, CD25 expression and CFSE dye dilution were measured using
flow cytometry and displayed as density plots (bottom). (B) CFSE-labeled total CD4+ T cells (top) or CD25+-depleted CD4+ T cells (bottom) were
stimulated as in (A). Shown are flow cytometry density plots of CFSE dye dilution versus CD25 expression gated on viable CD4+ T cells. Percentages
indicate the percentage of CD25High or CD25Int cells within all CD25+ positive CD4+ T cells. (C) Contour plots showing CD25 versus Foxp3 expression
of unstimulated and day 4-stimulated CD4+ T cells. Numbers on the right reflect the percentages within the gates 1–5, gated on viable CD4+ T cells.
(D) CFSE-labeled total CD4+ T cells (shaded) or CD25+-depleted CD4+ T cells (solid line) were stimulated with anti-CD3 (0.1 mg/ml) and irradiated
TdACs for 3 days. Shown are histogram overlays gated on viable CD4+ T cells and bar graph of proliferation index mean6SEM. (E) Total CD4+ T cells
or CD25-depleted CD4+ T cells were stimulated with anti-CD3 (0.1 mg/ml) and irradiated TdACs for indicated time and proliferation was measured via

T Cell Growth Factor Activity of IL 15
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IL-15 reduces the Suppressive Capacity of CD25High CD4+

T cells
Because CD25High CD4+ T cells originated from CD25+ CD4+

Treg and maintained Foxp3 expression upon activation, we tested

whether CD25High CD4+ T cells also maintained suppressive

function in the presence or absence of exogenous IL-15. We

addressed this by testing whether IL-15 still exerted growth factor

activity on CD25-depleted CD4+ T cells, i.e. a conventional CD4+

T cell population no longer under control of natural Treg. CD25

depletion indeed dramatically enhanced CD4+ T cells prolifera-

tion (see Figure 5D,E). Strikingly, IL-15 addition to Treg-depleted

cultures could no longer increase the absolute cell numbers

(Figure 6A) and cell proliferation (Figure 6B). It is possible that IL-

15 has no additional effect because IL-2 is less limiting in the

absence of Treg, or alternatively, that IL-15 enhances CD4+ T cell

responses by inhibiting the suppressive capacity of CD25HighCD4+

T cells. We examined the latter using a conventional suppression

assay. Conventional CD252 CD4+ T cells as responder T cells

(Tresp) were co-cultured at different ratios with CD25High or

CD25Int CD4+ T cells that were isolated after three days of low-

dose anti-CD3 stimulation. In line with the differential Foxp3

expression (Figure 5C), CD25High CD4+ T cells strongly inhibited

Tresp proliferation but CD25Int CD4+ T cells did not (Figure 6C,

left versus right panel). Similar to IL-2, low-dose IL-15 allowed

proliferation of Tresp in the presence of the CD25High Treg

fraction at co-culture ratios of 1:8 to 1:4. Thus, IL-15 supplemen-

tation overcomes Teff suppression by a Foxp3-expressing

CD25High CD4+ T cell subset that originates from natural Treg

after activation.

Discussion

Because of the common usage of IL-2/15Rb and cC receptor

components, IL-2 and IL-15 share several biological activities

among which the capacity to elicit T cell expansion [1,71]. In this

study, we examined how low doses of exogenous IL-15 enhance

proliferative responses to low-level TCR stimulation of T cells. We

first found that the growth factor activity of low-dose IL-15

depends on concomitant TCR stimulation, in which case it

augments both the strength and the duration of CD4+ T cell

responses. This is in line with several reports showing that IL-15

does not support bystander proliferation of CD4+ T cells [72–74].

Conceivably, innate immune danger signals, such IL-15, serve to

boost the protective responses to pathogens that are otherwise

faintly stimulatory to CD4+ T cells, while preventing unwanted

systemic stimulation of unrelated CD4+ T cells and thus

autoimmunity. Yet, high concentrations of IL-15 can increase

proliferation of CD4+ T cells independently of polyclonal or Ag-

specific activation [75]. Such high doses of IL-15 might in fact

reflect severe pathological conditions, such as in the case of the

highly inflammatory synovium of patients with rheumatoid

arthritis [15,76], inducing T cell proliferation in the absence of

concomitant TCR signals [75].

Our experiments using neutralizing anti-IL-2 mAbs, and IL-22/

2 mice further showed that the growth activity of IL-15 on TCR-

stimulated CD8+ T cells was independent of IL-2. But, for CD4+

T cells, IL-15 depended completely on IL-2 during the initial

phase of T cell activation. Later, three to five days after TCR

stimulation, IL-15 enhanced the proliferative response of CD4+ T

cells to TCR stimulation independently of the presence of IL-2.

This differential dependency on IL-2 could reflect a physiological

situation in which innate immune cell-derived IL-15 only supports

T cell expansion when IL-2 is produced by TCR-stimulated T

cells or by antigen-presenting cells, such as DCs [77]. Later, IL-15

produced by activated monocytes/macrophages within inflamed

tissue might support T cell expansion without a strict requirement

for TCR signals and IL-2. Mechanistically, this switch from an

early, IL-2 dependent growth activity to a late, IL-2 independent

growth modus may result from the gradual acquisition by the

TCR-stimulated CD4+ T cells of the high-affinity IL-15 receptor.

Gene expression analysis indeed showed that activation of CD4+ T

cells upregulated the high-affinity receptor subunit IL-15Ra. IL-

15Ra can, in cis or in trans [78], combine with IL-2/15Rb and

the cc chain to form the heterotrimeric IL-15 receptor, promoting

signaling in response to low doses of IL-15.

Interestingly, low-dose anti-CD3 stimulation of murine CD4+

T cells yielded CD252 and CD25Int, but also CD25High CD4+

T cells. These CD25High CD4+ T cells persisted as a distinct

population in the T cell culture and represent functional,

activated descendants of naturally occurring CD25+ CD4+ Treg,

as determined by depletion experiments, cross-over labeling and

suppressor assays. Supplementation of IL-2 or IL-15 allowed

conventional CD4+ T cells to proliferate in the presence of

CD25High Treg. IL-2 is a known growth/survival factor for

Treg [79] that can enhance Treg functionality in vivo

[61,62,74]. Also, Tregs can scavenge IL-2 thereby depriving

Teff of growth factor and causing cell death [80]. Supplemen-

tation with IL-2, and as shown here also IL-15, can compensate

for this lack of growth factor and explain the reduced

suppression and/or increased proliferation in cytokine-supple-

mented Treg:Teff cocultures. Additionally, cultures that were

depleted of nTreg in advance contain ample endogenous IL-2,

possibly explaining the lack of effect of IL-15 supplementation

in these cultures. As such, our data are in line with a recent

report suggesting that IL-15 renders human Teff resistant to

suppression by Treg [65].

This explicit growth promoting effect of IL-15 might be

restricted to specific conditions as used in our T cell culture

assays, namely low-dose IL-15 and suboptimal TCR occupancy.

In the organism, such conditions may occur under certain

circumstances, such as low level reactivity to self-antigens or

chronic infection. In autoimmunity, IL 15 is detectable at

heightened concentrations in the synovial fluid of rheumatoid

arthritis patients [15,16], the serum of patients with systemic

lupus erythematosus [17] or type 1 diabetes [18], and the

affected tissues in autoimmune thyroid disease [19] and celiac

disease [20]. In infectious settings, IL-15 derived from innate

immune cells can overcome the activation threshold formed by

Treg, thereby linking the innate and the adaptive immune

system to promote stronger T cell responses to foreign antigens.

However, chronic infection can result in prolonged and/or

heightened IL-15 expression which in turn, at unusual conver-

gence of events, might link infection to development of

autoimmune diseases.

Exploitation of the growth promoting activities of IL-15

supplementation is currently, after encouraging results in

preclinical models [21–27], validated in clinical trials for tumor

therapy and HIV vaccines. Nevertheless, our data showing that

IL-15 can help Teff escape the suppression by Treg indicate it is

3H-thymidine incorporation. (B, D, E) Bar graphs represent the mean6SEM. Statistical significance was calculated by student t-test, ns: not significant,
* P,0.05, ** P,0.01, *** P,0.001. Experiments performed at least 3 times with similar results.
doi:10.1371/journal.pone.0045299.g005
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advisable to monitor for autoimmune disease development when

using IL-15.

Materials and Methods

Ethics Statement
The study and experimental protocols were performed accord-

ing to the guidelines of and approved by the Ethical Committee on

Laboratory Animal Experimentation of Ghent University.

Mice
Female C57Bl/6N (H-2b) and BALB/c (H-2d) mice were

purchased from Charles River (Iffa Credo, Italy). IL-22/2 C57Bl/

6 mice were kindly provided by A. Schimpl (University Würzburg,

Germany). All mice were housed under specific pathogen-free

conditions in temperature-controlled, air-conditioned facilities

with 14/10 h light/dark cycles and food and water ad libitum.

Spleens were harvested at 7–9 weeks of age.

Figure 6. IL-15 blocks suppression by CD25High CD4+ T cells. (A) CD4+ T cell numbers and (B) proliferation of total CD4+ T cells (white bars) or
CD25-depleted CD4+ T cells (grey bars) stimulated with anti-CD3 mAb, irradiated TdACs and supplemented or not with IL-15. Data are expressed as
absolute values (left panels) or fold increase of IL-15-supplemented versus non-supplemented cultures (right panels; 1 reflects no effect of IL-15
addition). Bar graphs represent the mean 6 SEM. Statistical significance was calculated by student t-test, ns: not significant, * P,0.05, ** P,0.01, ***
P,0.001. (C) CD252 CD4+ responder T cells (Tresp) were co-cultured with CD25High (left) or CD25Int (right) CD4+ T cells, FACS-purified from activated
CD4+ T cell cultures as described in Materials and Methods, as putative suppressors at indicated ratios, prior to stimulation with 0.1 mg/ml anti-CD3,
irradiated TdACs, and indicated cytokines for 3 days. Proliferation was measured via 3H-thymidine incorporation and the percent suppression was
calculated as follows: % suppression = 1006(cpmResponder – cpmCoculture)/cpmResponder. Statistical significance between IL-15-supplemented and non-
supplemented cultures was calculated using two-way ANOVA with Bonferroni posttest: ns: not significant, * P,0.05, ** P,0.01, *** P,0.001
(statistical analysis versus IL-2-supplemented cultures not shown). All experiments were performed at least 3 times with similar results.
doi:10.1371/journal.pone.0045299.g006
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Reagents
Culture medium consisted of RPMI 1640 buffered with

12.5 mM HEPES (Life Technologies, Paisley, Scotland) and

supplemented with 10% fetal bovine serum (FBS), 2 mM

GlutaMAX-1 (Life Technologies), 100 U/ml penicillin, 100 mg/

ml streptomycin, 1 mM sodium pyruvate, and 5610–5 M b-

mercaptoethanol. Human IL-15 was purchased from Peprotech

(London, UK) and dissolved in PBS. Recombinant murine IL-2

and anti-mouse CD3 mAb (clone 145-2C11) were produced in-

house. Soluble IL-15Ra T1 was used as IL-15 blocking agent, M4

as control protein [70]. FITC-conjugated anti-mouse CD4 (RM4-

5), PE-conjugated anti-mouse CD25 (PC61), CyChrome-conju-

gated anti-mouse CD4 (RM4-5) or CD8 (53-6.7), biotinylated

anti-mouse CD4 (RM4-5) or CD25 (PC61), anti-mouse IL2

blocking mAb (JES6-5H4 and S4B6), Fc-block (anti-mouse

CD16/CD32, 2.4G2) were all from BD Biosciences (Erembode-

gem, Belgium). 5-(and-6)-carboxyfluorescein diacetate, succinimi-

dyl ester (CFSE; Invitrogen) was dissolved at 1 mM in DMSO.

Flow-Count fluorospheres for quantification of cell numbers were

from Beckman Coulter (Paris, France). Protein transport inhibitor

Brefeldin A and calcineurin inhibitor cyclosporin A (CsA) were

from Sigma.

Purification of T cell Subsets
Bulk splenocytes were processed in PBS, RBC were lysed using

ammonium chloride buffer (3 min at room temperature), and cells

were passed through a 40-mm cell strainer (BD Biosciences). T cell-

depleted accessory cells (TdACs) were prepared from splenocytes

by depletion of CD90+ (Thy1.2) cells using magnetic microbeads

(Miltenyi, Bergisch Glabach, Germany). The column flow-through

contained the T cell-depleted accessory cells (TdACs) and

routinely showed less than 4% T cell contamination. TdACs

were gamma-irradiated (50 Gy) before use.

CD25high and CD25Int CD4+ T cells were purified from

activated CD4+ T cell cultures: First, CD4+ T cells were positively

selected using biotinylated anti-CD4 mAb and streptavidin-

conjugated microbeads according to the manufacturer’s instruc-

tions, typically yielding .95% CD4+ T cells. Next, cells were

stimulated with 0.1 mg/ml anti-CD3 in the presence of irradiated

TdACs (1:5). After 3 days, cells were harvested, CD4 cells were

enriched using CD4 microbeads (Miltenyi) and simultaneously

stained with CyChrome-anti-CD4 and PE-anti-CD25 (2 mg/ml

each) prior to flowcytometric sorting (FACSVantage, BD Biosci-

ences). The CD25high and CD25intermediate fractions were sorted to

.97% purity.

Negative selection of total CD4+ T cells was done using the

Mouse CD4+ T Lymphocyte Enrichment Set - DM (BD

Biosciences) according to the manufacturer’s instructions. Simi-

larly, this kit was used for the isolation of CD252CD4+ responder

T cells, but with supplementation with a biotinylated anti-CD25

mAb (4 mg/ml).

Cellular Activation and Proliferation Assays
26105 total spleen cells, or alternatively, 36104 CD4+ or CD8+

T cells together with 1.76105 irradiated TdACs, were seeded in

flat bottom microwells with soluble anti-mouse CD3 mAb in the

presence or absence of 3 ng/ml human IL-15, 400 nM CsA or

10 mg/ml blocking anti-mouse IL-2 mAb (clone JES6-5H4, data

not shown for clone S4B6), as indicated. For the last 12 hours, 0.5

mCi 3H-thymidine was added to the cultures and cells were

harvested on glass fiber filters to measure incorporated 3H-

thymidine using a TopCount scintillation counter (Packard

Instrument).

Cell Staining and Absolute Cell Counting
Cells were washed twice with PBS, resuspended at 16107 cells/

ml, and incubated with 1mM CFSE for 12 min at 37uC. The

labeling reaction was stopped by addition of an equal volume of

FCS, and cells were washed twice in medium. For cell counting,

CFSE-labeled cells were recovered from micro-well cultures at the

indicated time points. Cells were resuspended in FACS buffer

(PBS, 0.5% FCS, 2 mM EDTA), stained for mouse CD4 and

washed. Next, PI and a known quantity of beads were added, and

the cells were acquired by flow cytometry. Absolute cell numbers

were calculated using the following formula: Absolute number of

CD4+ T cells = (number of beads added/number of beads

counted) x number viable CD4+ T cells counted. Flowcytometric

data collection from all stained samples was performed on a

FACSCalibur using CellQuest software.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism (La

Jolla, CA). Statistical significance was calculated by student t-test.

Data were considered significantly different at p,0.05. ns = not

significant, * P,0.05; ** P,0.01; *** P,0.001.
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