Poultry Science

BIBLIOTHEK Abr Tierarzilictien Fakultat Koniginstrade 10 8000 Munchen 22

July 1994 Volume 73, Number 7

Poscal 73 (7) 921-1168 (1994)

Official Journal of the Poultry Science Association, Inc.

ABBREVIATIONS

The following abbreviations may be used without definition in *Poultry Science*. Plural abbreviations do not require "s". Chemical symbols and three-letter abbreviations for amino acids do not need definition. Units of measure, except those shown below, should be abbreviated as listed in the *CRC Handbook for Chemistry and Physics* (CRC Press, 2000 Corporate Blvd., Boca Raton, FL 33431) and do not need to be defined.

AME apparent metabolizable energy MHC major histocompatability complex AMEn nitrogen-corrected apparent mRNA messenger ribonucleic acid MNOVA analysis of variance mo month B cell bursal-derived, bursal-equivalent MS mean square derived cell N normal normal bp base pairs n number of observations BSA bovine serum albumin NRC National Research Council BW body weight NS not significant C cytosine PAGE polyacrylamide gel electrophoresis cDNA complementary DNA PBS phosphate-buffered saline cfu colony-forming units ppm parts per million CP crude protein pfu plaque-forming units cpm coefficient of variation r² coefficient of determination, simple dd day R² coefficient of determination, multiple df degrees of freedom RIA ratoiomunoassay DM dryme-linked immunosorbent s.c. subutance acid g grant SDS socium dodecyl sulfate g gravity SE standard error	A	adenine	MEn	nitrogen-corrected metabolizable energy
AME _n nitrogen-corrected apparent mRNA messenger ribonucleic acid MNOVA analysis of variance mo month B cell bursal-derived, bursal-equivalent MS mean square MOVA analysis of variance mo month B cell bursal-derived, bursal-equivalent MS mean square bp base pairs n number of observations BXA body weight NS not significant C cytosine PAGE polyacrylamide gel electrophoresis cDNA complementary DNA PBS phosphate-buffered saline cfu colony-forming units ppm parts per million CP crude protein pfu plaque-forming units comficient of variation r² coefficient of determination, multiple df degrees of freedom RIA rabonucleic acid DNA defoxytibonucleic acid rpm revolutions per minute g gram SDS standard deviation g grambonucleic acid rpm revolutions per minute g	AME	apparent metabolizable energy	MHĊ	major histocompatability complex
metabolizable energy min minute ANOVA analysis of variance mo month B cell bursal-derived, bursal-equivalent MS mean square derived cell N normal p base pairs n number of observations D BSA bovine serum albumin NRC National Research Council BW body weight NS not significant C cytosine PAGE polyacrylamide gel electrophoresis cDNA complementary DNA PBS phosphate-buffred saline cfu colony-forming units pp parts per million CP crude protein pfu plaque-forming units coefficient of variation r² coefficient of determination, multiple df degrees of freedom RIA rabiouncleic acid DNA deoxyribonucleic acid pm revolutions per minute ELISA entylenediaminetetraacatate s second g gravity SE standard error<	AMEn	nitrogen-corrected apparent	mRNA	messenger ribonucleic acid
ANOVA analysis of variance mo month B cell bursal-derived, bursal-equivalent MS mean square derived cell N normal bp base pairs n number of observations BSA bovine serum albumin NRC National Research Council BW body weight NS not significant C cytosine PAGE polyacrylamide gel electrophoresis cDNA complementary DNA PBS phosphate-buffered saline cfu colony-forming units ppm parts per million CP crude protein p1u plaque-forming units cpm counts per minute r coafficient of determination, simple dd day R ² coefficient of determination, multiple df degrees of freedom RIA radioimmunoassay DNA deoxyribonucleic acid rpm revolutions per minute ELISA enzyme-linked immunosorbent s.c. subcutaneous g gram SDS sodium dodecyl sulfate g gram <td< td=""><td></td><td>metabolizable energy</td><td>min</td><td>minute</td></td<>		metabolizable energy	min	minute
B cell bursal-derived, bursal-equivalent derived cell MS mean square normal bp base pairs n number of observations BSA bovine serum albumin NRC National Research Council BW body weight NS not significant C cytosine PAGE polyacrylamide gel electrophoresis cDNA complementary DNA PBS phosphate-buffered saline cfu colony-forming units ppm parts per million CP crude protein pfu plaque-forming units cpm counts per minute r correlation coefficient CV coefficient of variation r² coefficient of determination, simple d day R² coefficient of determination, multiple ff degrees of freedom RIA ratioinmunoassay DM drymediaminetetracetate s second ELISA enzyme-linked immunosorbent s.c. subcutaneous g gram SEM standard error of the mean g grawity SE standard error of the mean GAT glutamic acid-alanine-tyrosine SRBC sheep red blood cells h hour T thymic-de	ANOVA	analysis of variance	mo	month
derived cell N normal bp base pairs n number of observations BSA bovine serum albumin NRC National Research Council BW body weight NS not significant C cytosine PAGE polyacrylamide gel electrophoresis cDNA complementary DNA PBS phosphate-buffered saline cu colony-forming units ppm parts per million cpm counts per minute r correlation coefficient of determination, simple cd day R2 coefficient of determination, multiple df degrees of freedom RIA radioimmunoassay DM dry matter RNA ribonucleic acid pm DNA deoxyribonucleic acid pm revolutions per minute ELISA enzyme-linked immunosorbent s.c. subcutaneous g gram SDS sodium dodecyl sulfate g gram SEM standard error of the mean GAT glutamic acid-alanine-tyrosine <td>B cell</td> <td>bursal-derived, bursal-equivalent</td> <td>MS</td> <td>mean square</td>	B cell	bursal-derived, bursal-equivalent	MS	mean square
bp base pairs n number of observations BSA bovine serum albumin NRC National Research Council BW body weight NS not significant C cytosine PAGE polyacrylamide gel electrophoresis cDNA complementary DNA PBS phosphate-buffered saline cfu colony-forming units pp parts per million CP crude protein pfu plaque-forming units cpm counts per minute r correlation coefficient of CV coefficient of variation r² coefficient of determination, simple d day R1A radioimmunoassay DM dry matter RNA ribonucleic acid DNA deoxyribonucleic acid rpm revolutions per minute ELISA enzyme-linked immunosorbent s.c. subcutaneous g gram SDS sodium deviation g gravity SE standard error of the mean GAT glutamic acid-alanine-tyrosine SRBC sheep red blood cells h hour T thymic-derived ceil h hour T thymic-derived ceil liquid chromatography		derived cell	Ν	normal
BSA bovine serum albumin NRC National Research Council BW body weight NS not significant C cytosine PAGE polyacrylamide gel electrophoresis cDNA complementary DNA PBS phosphate-buffered saline cfu colony-forming units ppm parts per million cP crude protein pfu plaque-forming units cpm counts per minute r correlation coefficient CV coefficient of variation r² coefficient of determination, simple d day R² coefficient of determination, multiple df deogrees of freedom RIA ratioimmunoassay DM dry matter RNA ribonucleic acid DNA deoxythonucleic acid rpm revolutions per minute ELISA enzyme-linked immunosorbent s.c. subcutaneous antibody assay SD standard error of the mean g gram SDS sodium dodecyl sulfate g gramine SEM standard error of the mean GAT glutamic acid-alanine-tyrosine SRBC sheep red blood cells h hour T thymine HPLC <td>bp</td> <td>base pairs</td> <td>n</td> <td>number of observations</td>	bp	base pairs	n	number of observations
BW body weight NS not significant C cytosine PAGE polyacrylamide gel electrophoresis cDNA complementary DNA PBS phosphate-buffered saline cfu colony-forming units pm parts per million CP crude protein pfu plaque-forming units cpm counts per minute r correlation coefficient of CV coefficient of variation r² coefficient of determination, simple d day R1A radioimmunoassay df degrees of freedom R1A radioimmunoassay DM dry matter RNA ribonucleic acid DNA deoxyribonucleic acid rpm revolutions per minute ELISA enzyme-linked immunosorbent s.c. subcutaneous g gram SDS sodium dodecyl sulfate g gram SEM standard error GAT glutamic acid-alanine-tyrosine SRBC sheep red blood cells h hour <td< td=""><td>BSA</td><td>bovine serum albumin</td><td>NRC</td><td>National Research Council</td></td<>	BSA	bovine serum albumin	NRC	National Research Council
C cytosine PAGE polyacrylamide gel electrophoresis cDNA complementary DNA PBS phosphate-buffered saline cfu colony-forming units ppm parts per million CP crude protein pfu plaque-forming units cpm counts per minute r corefficient of determination, simple d day R2 coefficient of determination, multiple df degrees of freedom RIA radioimmunoassay DM devayribonucleic acid rpm revolutions per minute EDTA ethylenediaminetetraacetate s second ELISA enzyme-linked immunosorbent s.c. subcutaneous g gram SDS sodiand deviation g gravity SE standard error GA guarine SRBC sheep red blood cells h hour T thydrine-derived cell ICU international chick units TME true metabolizable energy i.p. intraperitoneal Tris tris(hydroxymethyl)aminomethane I.U international units TSAA U urited states Department of Agriculture kb kilodaton vol/vol vol/vol </td <td>BW</td> <td>body weight</td> <td>NS</td> <td>not significant</td>	BW	body weight	NS	not significant
cDNA complementary DNA PBS phosphate-buffered saline cfu colony-forming units ppm parts per million CP crude protein pfu plaque-forming units cpm counts per minute r correlation coefficient CV coefficient of variation r² coefficient of determination, simple d day R² coefficient of determination, multiple df degrees of freedom RIA radioimmunoassay DM dry matter RNA ribonucleic acid DNA deoxyribonucleic acid rpm revolutions per minute EDTA ethylenediaminetetraacetate s second g gram SDS solutaneous antibody assay SD standard deviation g grawity SE standard error of GAT glutamic acid-alanine-tyrosine SRBC sheep red blood cells h hour T thymic-derived call ICU international chick units TME nitrogen-corrected true metabolizable i.p. intradional	С	cytosine	PAGE	polyacrylamide gel electrophoresis
cfu colony-forming units ppm parts per million CP crude protein pfu plaque-forming units cpm counts per minute r correlation coefficient CV coefficient of variation r2 coefficient of determination, simple d day R2 coefficient of determination, multiple df degrees of freedom RIA radioimmunoassay DM deoxyribonucleic acid rpm revolutions per minute EDTA ethylenediaminetetraacetate s second ELISA enzyme-linked immunosorbent s.c. subcutaneous attibody assay SD standard deviation g gram SDS sodium dodecyl sulfate g gramine SEM standard error of the mean GAT glutamic acid-alanine-tyrosine SRBC sheep red blood cells h hour T thiobarbituric acid Ilquid chromatography T cell thiobarbituric acid Ilquid chromatography T cell true metabolizable energy lg immunoglobulin <t< td=""><td>cDNA</td><td>complementary DNA</td><td>PBS</td><td>phosphate-buffered saline</td></t<>	cDNA	complementary DNA	PBS	phosphate-buffered saline
CP crude protein pfu plaque-forming units cpm counts per minute r coefficient of coefficient CV coefficient of variation r² coefficient of determination, simple d day R² coefficient of determination, simple d day R² coefficient of determination, multiple df degrees of freedom RIA radioimmunoassay DM dry matter RNA ribonucleic acid DNA deoxytibonucleic acid rpm revolutions per minute EDTA ethylenediaminetetraacetate s second ELISA enzyme-linked immunosorbent s.c. subcutaneous antibody assay SD standard deviation g gram SDS sodium dodecyl sulfate g gravity SE standard error of the mean GAT glutamic acid-alanine-tyrosine SRBC sheep red blood cells h hour T thymine thymic-derived cell ICU international chick units TME true metabolizable energy	cfu	colony-forming units	ppm	parts per million
counts per minute r correlation coefficient CV coefficient of variation r² coefficient of determination, simple d day R² coefficient of determination, multiple df degrees of freedom RIA radioimmunoassay DM dry matter RNA ribonucleic acid DNA deoxyribonucleic acid rpm revolutions per minute EDTA ethylenediaminetetraacetate s second ELISA enzyme-linked immunosorbent s.c. subcutaneous antibody assay SD standard deviation g gram SDS solium dodecyl sulfate g gravity SE standard error of GG guanine SEM standard error of the mean GAT glutamic acid-alanine-tyrosine SRBC sheep red blood cells h hour T thymine HPLC HPLC high-performance (high-pressure) TA thiobarbituric acid energy ILU international units TME true metabolizable energy it/sc.	CP	crude protein	pfu	plaque-forming units
CV coefficient of variation r2 coefficient of determination, simple d day R2 coefficient of determination, multiple df degrees of freedom RIA radioimmunoassay DM dry matter RIA ribonucleic acid DNA deoxyribonucleic acid rpm revolutions per minute EDTA ethylenediaminetetraacetate s second ELISA enzyme-linked immunosorbent s.c. subcutaneous antibody assay SD standard deviation g gram SDS sodium dodecyl sulfate g gravity SE standard error G guanine SEM standard error GAT glutamic acid-alanine-tyrosine SRBC sheep red blood cells h hour T thymine thymine HPLC high-performance (high-pressure) TBA thiobarbituric acid energy ICU international chick units TME true metabolizable energy energy i.p. intraperitoneal Tris tris(hydroxymethyl)aminomethane	cpm	counts per minute	r	correlation coefficient
d day R ² coefficient of determination, multiple df degrees of freedom RIA radioimmunoassay DM dry matter RNA ribonucleic acid DNA deoxyribonucleic acid rpm revolutions per minute EDTA ethylenediaminetetraacetate s second ELISA enzyme-linked immunosorbent s.c. subcutaneous antibody assay SD standard deviation g gram SDS sodium dodecyl sulfate g gravity SE standard error GA gluanine SRBC sheep red blood cells h hour T thymine HPLC high-performance (high-pressure) TBA thiobarbituric acid liquid chromatography T cell thymine-derived cell ICU international chick units TME _n nitrogen-corrected true metabolizable i.m. intravenous U uridine liQuid intraperitoneal Tris tris(hydroxymethyl)aminomethane IU interational units TSAA total sulfur amino acids i.v. intravenous U uridine kb kilodalton vol/vol volu	ĊV	coefficient of variation	r ²	coefficient of determination, simple
df degrees of freedom RIA radioimmunoassay DM dry matter RNA ribonucleic acid DNA deoxyribonucleic acid rpm revolutions per minute EDTA ethylenediaminetetraacetate s second ELISA enzyme-linked immunosorbent s.c. subcutaneous antibody assay SD standard deviation g gram SDS sodium dodecyl sulfate g gravity SE standard error G guanine SEM standard error of the mean GAT glutamic acid-alanine-tyrosine SRBC sheep red blood cells h hour T thymine HPLC high-performance (high-pressure) TBA thiobarbituric acid Ilquid chromatography T cell thymic-derived cell ICU international chick units TME true metabolizable energy i.p. intraperitoneal Tris tris(hydroxymethyl)aminomethane IU international units TSAA total sulfur amino acids i.v. intravenous U uridine kba kilodatton vol/vol volume kba kilodatton vol/vol wei	d	day	R ²	coefficient of determination, multiple
DM dry matter RNA ribonucleic acid DNA deoxyribonucleic acid rpm revolutions per minute EDTA ethylenediaminetetraacetate s second ELISA enzyme-linked immunosorbent s.c. subcutaneous g gram SDS sodium dodecyl sulfate g gram SEM standard error G guanine SEM standard error of the mean GAT glutamic acid-alanine-tyrosine SRBC sheep red blood cells h hour T thymine HPLC high-performance (high-pressure) TBA thiobabiluric acid IQU international chick units TME true metabolizable energy IQ immunoglobulin TMEn nitrogen-corrected true metabolizable i.m. intraperitoneal Tris tris (hydroxymethyl)aminomethane IU international units TSAA total sulfur amino acids i.v. intravenous U uridine kba<	df	degrees of freedom	RIA	radioimmunoassay
DNA deoxyribonucleic acid rpm revolutions per minute EDTA ethylenediaminetetraacetate s second ELISA enzyme-linked immunosorbent s.c. subcutaneous antibody assay SD standard deviation g gram SDS sodium dodecyl sulfate g gravity SE standard error G guanine SEM standard error GAT glutamic acid-alanine-tyrosine SRBC sheep red blood cells h hour T thymine HPLC high-performance (high-pressure) TBA thiobarbituric acid ICU international chick units TME true metabolizable energy IQ immunoglobulin TMEn nitrogen-corrected true metabolizable i.m. intraperitoneal Tris tris(hydroxymethyl)aminomethane IU international units TSAA total sulfur amino acids i.v. intravenous U uridine kba<	DM	dry matter	RNA	ribonucleic acid
EDTA ethylenediaminetetraacetate s second ELISA enzyme-linked immunosorbent s.c. subcutaneous antibody assay SD standard deviation g gram SDS sodium dodecyl sulfate g gravity SE standard error G guanine SEM standard error of the mean GAT glutamic acid-alanine-tyrosine SRBC sheep red blood cells h hour T thymine HPLC high-performance (high-pressure) TBA thiobarbituric acid ilquid chromatography T cell thymic-derived cell ICU international chick units TME true metabolizable energy Ig immunoglobulin TME _n nitrogen-corrected true metabolizable i.m. intramuscular i.p. intraperitoneal Tris tris(hydroxymethyl)aminomethane IU international units TSAA total sulfur amino acids i.v. intravenous U uridine kb kilobase pairs USDA United States Department of Agriculture kDa kilobase pairs wt/vol weight to volume L liter* vs versus m meter wt/vol weight to volume M molar wk week ME metabolizable energy \bar{x} mean vr year	DNA	deoxyribonucleic acid	rpm	revolutions per minute
ELISA enzyme-linked immunosorbent antibody assay s.c. subcutaneous standard deviation g gram SDS sodium dodecyl sulfate g gravity SE standard error G guanine SEM standard error of the mean GAT glutamic acid-alanine-tyrosine SRBC sheep red blood cells h hour T thymine HPLC high-performance (high-pressure) TBA thiobarbituric acid ilquid chromatography T cell thymic-derived cell ICU international chick units TMEn nitrogen-corrected true metabolizable energy ig immunoglobulin TMEn nitrogen-corrected true metabolizable i.m. intramuscular energy energy i.p. intraperitoneal Tris tris(hydroxymethyl)aminomethane IU international units TSAA total sulfur amino acids i.v. intravenous U uridine kb kilobase pairs USDA United States Department of Agriculture kDa kilodalton vol/vol volume	EDTA	ethylenediaminetetraacetate	S	second
antibody assaySDstandard deviationggramSDSsodium dodecyl sulfateggravitySEstandard errorGguanineSEMstandard error of the meanGATglutamic acid-alanine-tyrosineSRBCsheep red blood cellshhourTthymineHPLChigh-performance (high-pressure)TBAthiobarbituric acidIlquid chromatographyT cellthymic-derived cellICUinternational chick unitsTMEtrue metabolizable energylgimmunoglobulinTMEnnitrogen-corrected true metabolizablei.m.intramuscularenergyi.p.international unitsTSAAIUinternational unitsTSAAkbkilobase pairsUSDAkbkilobase pairsUSDAkloaltonvol/volvolume to volumeLliter*vsversusmmeterwt/volweight to volumeMmolarwkweekMEmetabolizable energyxmetabolizable energyvsversus	ELISA	enzyme-linked immunosorbent	S.C.	subcutaneous
g gram SDS sodium dodecyl sulfate g gravity SE standard error G guanine SEM standard error of the mean GAT glutamic acid-alanine-tyrosine SRBC sheep red blood cells h hour T thymine HPLC high-performance (high-pressure) TBA thiobarbituric acid Iquid chromatography T cell thymine-derived cell ICU international chick units TME true metabolizable energy lg immunoglobulin TME_n nitrogen-corrected true metabolizable i.m. intramuscular energy i.p. intraperitoneal Tris tris(hydroxymethyl)aminomethane IU international units TSAA total sulfur amino acids i.v. intravenous U uridine kb kilobase pairs USDA United States Department of Agriculture kDa kilodation vol/vol volume to volume μ micro wt/vol weight to volume M molar wk week ME metabolizable energy x mean		antibody assay	SD	standard deviation
ggravitySEstandard errorGguanineSEMstandard errorGATglutamic acid-alanine-tyrosineSRBCsheep red blood cellshhourTthymineHPLChigh-performance (high-pressure)TBAthiobarbituric acidIquid chromatographyT cellthymic-derived cellICUinternational chick unitsTMEtrue metabolizable energyIgimmunoglobulinTMEnnitrogen-corrected true metabolizablei.m.intramuscularenergyi.p.intraperitonealTristris(hydroxymethyl)aminomethaneIUinternational unitsTSAAtotal sulfur amino acidsi.v.intravenousUuridinekbkilobase pairsUSDAUnited States Department of AgriculturekDakilodaltonvol/volvolume to volumeLliter*vsversusmmeterwt/volweight to volumeMmolarwkweekMEmetabolizable energyixMEmetabolizable energyixVryear	g	gram	SDS	sodium dodecyl sulfate
G guanine SEM standard error of the mean GAT glutamic acid-alanine-tyrosine SRBC sheep red blood cells h hour T thymine HPLC high-performance (high-pressure) TBA thiobarbituric acid IQUI international chick units TME true metabolizable energy Ig immunoglobulin TME nitrogen-corrected true metabolizable i.m. intraperitoneal Tris tris(hydroxymethyl)aminomethane IU international units TSAA total sulfur amino acids i.v. intravenous U uridine kb kilobase pairs USDA United States Department of Agriculture kDa kilodalton vol/vol volume to volume L liter* vs versus m meter wt/vol weight to volume M molar wk week ME metabolizable energy x mean	g	gravity	SE	standard error
GAT glutamic acid-alanine-tyrosine SRBC sheep red blood cells h hour T thymine HPLC high-performance (high-pressure) TBA thiobarbituric acid Ilquid chromatography T cell thymic-derived cell ICU international chick units TME true metabolizable energy Ig immunoglobulin TME nitrogen-corrected true metabolizable i.m. intraperitoneal Tris tris(hydroxymethyl)aminomethane IU international units TSAA total sulfur amino acids i.v. intravenous U uridine kb kilobase pairs USDA United States Department of Agriculture kDa kilodalton vol/vol volume to volume μ micro wt/wt weight to volume M molar wk week ME metabolizable energy X mean	Ğ	guanine	SEM	standard error of the mean
hhourTthymineHPLChigh-performance (high-pressure)TBAthiobarbituric acidIquid chromatographyT cellthymic-derived cellICUinternational chick unitsTMEtrue metabolizable energyIgimmunoglobulinTMEnnitrogen-corrected true metabolizablei.m.intramuscularenergyi.p.intraperitonealTrisIUinternational unitsTSAAi.v.intravenousUkbkilobase pairsUSDAkilodaltonvol/volvolume to volumeLliter*vsversusmmeterwt/volweight to volumeμmicrowt/wtweight to volumeMmolarwkweekMEmetabolizable energyXmeanvryearVryear	GAT	glutamic acid-alanine-tyrosine	SRBC	sheep red blood cells
HPLChigh-performance (high-pressure) liquid chromatographyTBAthiobarbituric acid thymic-derived cellICUinternational chick unitsTMEtrue metabolizable energyIgimmunoglobulinTMEtrue metabolizable energyIgimmunoglobulinTMEnitrogen-corrected true metabolizable energyi.m.intramuscularenergyi.p.intraperitonealTristris(hydroxymethyl)aminomethaneIUinternational unitsTSAAtotal sulfur amino acidsi.v.intravenousUuridinekbkilobase pairsUSDAUnited States Department of AgriculturekDakilodaltonvol/volvolume to volumeLliter*vsversusmmeterwt/volweight to volumeμmicrowt/wtweight to weightMmolarwkweekMEmetabolizable energyxmeanvryearversusmean	h	hour	Т	thymine
liquid chromatography T cell thymic-derived cell ICU international chick units TME true metabolizable energy Ig immunoglobulin TME true metabolizable energy i.m. intramuscular energy i.p. intraperitoneal Tris tris(hydroxymethyl)aminomethane IU international units TSAA total sulfur amino acids i.v. intravenous U uridine kb kilobase pairs USDA United States Department of Agriculture kDa kilodalton vol/vol volume to volume L liter* vs versus m meter wt/vol weight to volume M molar wk week ME metabolizable energy X mean vr year X mean	HPLC	high-performance (high-pressure)	TBA	thiobarbituric acid
ICU international chick units TME true metabolizable energy Ig immunoglobulin TME _n nitrogen-corrected true metabolizable i.m. intramuscular energy i.p. intraperitoneal Tris tris(hydroxymethyl)aminomethane IU international units TSAA total sulfur amino acids i.v. intravenous U uridine kb kilobase pairs USDA United States Department of Agriculture kDa kilodalton vol/vol volume to volume L liter* vs versus m meter wt/vol weight to volume M molar wk week ME metabolizable energy x mean vr year year year		liquid chromatography	T cell	thymic-derived cell
IgimmunoglobulinTMEnnitrogen-corrected true metabolizable energyi.m.intramuscularTristris(hydroxymethyl)aminomethanei.p.intraperitonealTristris(hydroxymethyl)aminomethaneIUinternational unitsTSAAtotal sulfur amino acidsi.v.intravenousUuridinekbkilobase pairsUSDAUnited States Department of AgriculturekDakilodaltonvol/volvolume to volumeLliter*vsversusmmeterwt/volweight to volumeμmicrowt/wtweight to weightMmolarwkweekMEmetabolizable energyXmeanvryearyear	ICU	international chick units	TME	true metabolizable energy
i.m. intramuscular energy i.p. intraperitoneal Tris tris(hydroxymethyl)aminomethane IU international units TSAA total sulfur amino acids i.v. intravenous U uridine kb kilobase pairs USDA United States Department of Agriculture kDa kilodalton vol/vol volume to volume L liter* vs versus m meter wt/vol weight to volume μ micro wt/wt weight to volume M molar wk week ME metabolizable energy \overline{x} mean yr year	lg	immunoglobulin	TMEn	nitrogen-corrected true metabolizable
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	i.m.	intramuscular		energy
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	i.p.	intraperitoneal	Tris	tris(hydroxymethyl)aminomethane
i.v. intravenous U uridine kb kilobase pairs USDA United States Department of Agriculture kDa kilodalton vol/vol volume to volume L liter* vs versus m meter wt/vol weight to volume μ micro wt/wt weight to weight M molar wk week ME metabolizable energy X mean vr year year	1Ú	international units	TSAA	total sulfur amino acids
kb kilobase pairs USDA United States Department of Agriculture kDa kilodalton vol/vol volume to volume L liter* vs versus m meter wt/vol weight to volume μ micro wt/wt weight to weight M molar wk week ME metabolizable energy X mean vr year year	i.v.	intravenous	U	uridine
kDa kilodalton vol/vol volume to volume L liter* vs versus m meter wt/vol weight to volume μ micro wt/wt weight to weight M molar wk week ME metabolizable energy X mean vr year year	kb	kilobase pairs	USDA	United States Department of Agriculture
L liter* vs versus m meter wt/vol weight to volume μ micro wt/wt weight to weight M molar wk week ME metabolizable energy x mean yr year	kDa	kilodalton	vol/vol	volume to volume
m meter wt/vol weight to volume μ micro wt/wt weight to weight M molar wk week ME metabolizable energy x mean yr year	L	liter*	vs	versus
μ micro wt/wt weight to weight M molar wk week ME metabolizable energy x mean γr year	m	meter	wt/vol	weight to volume
M molar wk week ME metabolizable energy x mean yr year	μ	micro	wt/wt	weight to weight
ME metabolizable energy x mean yr year	М	molar	wk	week
vr year	ME	metabolizable energy	x	mean
			yr	year

*Also capitalized with any combination, e.g., mL.

BIBLIOTHEK

der Herärztlichen Fakultät der Universität München Könleinstr. 10

EDITOR-IN-CHIEF Josef A. Renden (1995)

TECHNICAL EDITOR Ann M. Mester

SECTION EDITORS Breeding and Genetics J. R. Smyth, Jr. (1995) Education and Production W. B. Roush (1996) Environment and Health William E. Huff (1995) Immunology L. D. Bacon (1995) Metabolism and Nutrition Carl M. Parsons (1994) Jerry L. Sell (1995) Molecular Biology D. N. Foster (1995) Physiology and Reproduction J. P. McMurtry (1995) Processing and Products A. R. Sams (1996)

SUBJECT INDEX EDITOR Philip E. Plumart

NEWSLETTER EDITOR Louis C. Arrington (1994)

OFFICERS

President J. A. Cherry

First Vice President H. L. Marks

Second Vice President M. A. Ottinger

Secretary-Treasurer P. Y. Hester

Past President B. C. Wentworth

Directors H. M. Engster (1994) W. Guenter (1994) K. K. Krueger (1995) E. T. Moran, Jr. (1995)

POULTRY SCIENCE ASSOCIATION, INC. Organized 1908 309 W. Clark St. Champaign, IL 61820

POULTRY SCIENCE

ASSOCIATE EDITORS

 P. Aho (1994) N. B. Anthony (1995) P. C. Augustine (1995) K. W. Bafundo (1996) C. A. Bailey (1996) M. M. Beck (1996) A. J. Bermudez (1994) S. F. Bilgili (1995) M. L. Boyle, III (1995) M. L. Boyle, III (1995) J. T. Brake (1994) W. M. Britton (1996) R. J. Burnside (1994) R. V. Carsia (1995) H. L. Classen (1995) M. E. Cook (1994) N. A. Cox (1995) V. L. Christensen (1996) L. B. Crittenden (1995) D. L. Cunningham (1995) P. L. Dawson (1996) E. A. Dunnington (1996) R. G. Elkin (1996) 	 J. M. Harter-Dennis (1994) J. L. Heath (1995) P. S. Holt (1996) H. H. Hunt (1995) D. J. Jackwood (1995) A. L. Johnson (1995) P. A. Johnson (1996) F. T. Jones (1995) K. Keshavarz (1994) J. D. Kirby (1996) K. C. Klasing (1995) P. M. Klingensmith (1996) K. W. Koelkebeck (1996) L. F. Kubena (1995) M. P. Lacy (1994) S. J. Lamont (1995) J. D. Latshaw (1995) R. M. Leach, Jr. (1994) S. Liebonn (1994) A. T. Leighton, Jr. (1994) M. S. Lillehoj (1994) P. L. Long (1994) H. L. Marks (1996) A. I. Maurer (1994) 	S. L. Noll (1996) N. P. O'Sullivan (1996) M. A. Ottinger (1995) P. H. Patterson (1995) D. Polin (1995) J. A. Proudman (1994) M. A. Qureshi (1996) D. L. Reynolds (1995) R. B. Rimler (1994) K. R. Robbins (1996) D. L. Reynolds (1996) F. E. Robinson (1996) D. W. Salter (1995) D. G. Satterlee (1994) T. F. Savage (1996) C. G. Scanes (1994) S. E. Scheideler (1994) T. R. Scott (1996) B. W. Sheldon (1996) R. M. Shuman (1994) H. S. Siegel (1995) R. F. Silva (1994) D. M. Smith (1994) E. I. Smith (1994)
V. L. Christensen (1996) L. B. Crittenden (1995)	 A. T. Leighton, Jr. (1996) M. S. Lilburn (1995) 	B. W. Sheldon (1996) R. M. Shuman (1994)
D. L. Cunningham (1995)	H. S. Lillehoj (1994)	H. S. Siegel (1995)
P. L. Dawson (1996)	P. L. Long (1994)	R. F. Silva (1994)
E. A. Dunnington (1996)	H. L. Marks (1996)	D. M. Smith (1994)
R. G. Elkin (1996)	A. J. Maurer (1994)	E. J. Smith (1994)
R. A. Ernst (1994)	F. M. McCorkle (1994)	L. L. Southern (1995)
J. D. Firman (1995)	R. Miles (1996)	T. W. Sullivan (1996)
D. L. Fletcher (1996)	E. T. Moran, Jr. (1995)	R. L. Taylor, Jr. (1995)
T. L. Frederickson (1994)	D. W. Murphy (1995)	A. L. Waldroup (1994)
D. P. Froman (1996)	T. S. Nelson (1995)	P. W. Waldroup (1994)
J. S. Gavora (1994) A. A. Grunder (1994)		K. Washburn (1995) C. L. Wyatt (1996)

Poultry Science (ISSN 0032-5791) is the official publication of the Poultry Science Association, Inc., 309 West Clark Street, Champaign, IL 61820, a monthly journal (except semimonthly in July) published for the purpose of advancing the scientific study of poultry. Second class postage paid at Champaign, IL, and at additional mailing offices. POSTMASTER: Send address changes to the Poultry Science Association, Inc., 309 West Clark Street, Champaign, IL 61820.

Manuscripts for publication should be sent to the editorial office, Poultry Science Association, Inc., 309 West Clark Street, Champaign, IL 61820, along with a processing fee of \$25 (money order, certified check, or purchasing order). Editorial requirements for the submission of manuscripts appear on the inside back cover of this journal. Complete instructions appear in Poultry Science 73:202-211. Authors will be charged \$60 (members) or \$75 (nonmembers) per printed page or fraction thereof to cover partially the costs of publication of Poultry Science. In cases where only the authors' personal funds are available for payment, and where such payments would be a hardship, authors may request a waiver of page charges. Such requests must be made prior to publication of the paper and should be accompanied by a statement from a financial officer or other official of the institution with which the author is affiliated indicating the reason that the charges cannot be paid. Requests should be made in writing to Josef A. Renden, Editor-in-Chief, Poultry Science, Poultry Annex, Woodfield Drive, Auburn University, AL 36849-5429.

Subscription rate \$125.00 annually in advance; single copies are \$11.00. The journal is sent to all members of the Poultry Science Association, Inc. who are in good standing. The membership fee for individuals is \$55.00. All inquiries about membership and subscriptions should be sent to the Poultry Science Association, Inc., 309 West Clark Street, Champaign, IL 61820 (217/356-3182).

Claims for copies lost in the mail or defective copies received must be received within 30 days (90 days foreign) of the date of issue to ensure free replacement. Claims are to be made to the Poultry Science Association, Inc., 309 West Clark Street, Champaign, IL 61820.

Advertising \$200 per page. All advertising contracts and copy should be sent to the Poultry Science Association, Inc., 309 West Clark Street, Champaign, IL 61820. Telephone: 217/356-3182. FAX: 217/398-4119.

©Copyright 1994 by the Poultry Science Association, Inc.

POULTRY SCIENCE

Volume 73

July 1994

Number 7

CONTENTS

REVIEWS	
Review: Welfare Perspectives on Hens Kept for Egg Production. J. V. Craig and J. C. Swanson	921
BREEDING AND GENETICS	
Determination of the Zygosity of <i>ev</i> 21-K in Late-Feathering Male White Leghorns Using the Polymerase Chain Reaction. F. Iraqi and E. J. Smith.	939
Changes in the Frequency and Size of Smooth Muscle Tumors in Japanese Quail Lines Differing in Body Weight. K. E. Nestor and W. L. Bacon	947
Influence of Amylase Genotypes on Growth Rate and Feed Conversion of Chickens. B. L. Hughes, R. G. Suniga, and D. G. Yardley.	953
Effects of Floor Versus Cage Rearing and Feeder Space on Growth, Long Bone Development, and Duration of Tonic Immobility in Single Comb White Leghorn Pullets	
K. E. Anderson and A W. Adams	958
IMMUNOLOGY	
Use of Avian Cytokines in Mammalian Embryonic Stem Cell Culture. Z. Yang and J. N. Petitte	965
Symposium: Current Advances in Avian Immunology	
Avian Immunology: From Fundamental Immune Mechanisms to the Integrative	
R. R. Dietert and S. J. Lamont.	975
The Bursa of Fabricius: The Evolution of a Discovery.	0.70
B. Glick	979
Avian Models of Autoimmune Disease: Lessons from the Birds. N. R. Rose.	984
Survivors of Bursal B Cell Production and Emigration. E. Paramithiotis and M.J.H. Ratcliffe	991
B Cell Development in the Chicken. E. L. Masteller and C. B. Thompson	998
T Cell Development in the Chicken. C. H. Chen, T.W.F. Göbel, T. Kubota, and M. D. Cooper	1012

Central Role of CD4+ T Cells in Avian Immune Response. T. P. Arstila, O. Vainio, and O. Lassila	1019
 Profiles of Chicken Macrophage Effector Functions. M. A. Qureshi, J. A. Marsh, R. R. Dietert, YJ. Sung, C. Nicholas-Bolnet, and J. N. Petitte 	1027
Avian Leukocytic Cytokines. K. C. Klasing	1035
Poultry Immunogenetics: Which Way Do We Go? S. J. Lamont	1044
Neuroendocrine-Immune Interactions. J. A. Marsh and C. G. Scanes	1049
Environment-Immune Interactions. R. R. Dietert, K. A. Golemboski, and R. E. Austic	1062
Cell-Mediated Immune Effector Functions in Chickens. K. A. Schat	1077
Virus-Induced Immunosuppression in Chickens. J. M. Sharma, K. Karaca, and T. Pertile	1082
Poultry Vaccines of the Future. R. L. Witter and H. D. Hunt	1087
 METABOLISM AND NUTRITION A Modified Bioassay for Energy Utilization in Newly Hatched Chicks. 1. Determination of Optimum Durations for Feed Withdrawal and Excreta Collection. H. Murakami, Y. Akiba, and M. Horiguchi. 	1094
 Feeding Value of Poultry By-Products Extruded with Cassava, Barley, and Wheat Middlings for Broiler Chicks: The Effect of Ensiling Poultry By-Products as a Preservation Method Prior to Extrusion. P. H. Patterson, N. Acar, and W. C. Coleman. 	110 7
Response of Broiler Strains Differing in Body Fat to Inadequate Methionine: Live Performance and Processing Yields. E. T. Moran, Jr	1116
 PHYSIOLOGY AND REPRODUCTION Visualization of the Chicken Oocyte Lipoprotein Receptor by Ligand Blotting with Biotinylated Plasma and Yolk Very Low Density Lipoproteins. R. G. Elkin and W. J. Schneider 	1127
PROCESSING AND PRODUCTS α-Tocopherol, β-Carotene, and Retinol Enrichment of Chicken Eggs. Y. H. Jiang, R. B. McGeachin, and C. A Bailey	1137
The Effect of Incubation Temperature on Recovery of Mesophilic Bacteria from Broiler Chicken Carcasses Subjected to Temperature Abuse.S. M. Russell, D. L. Fletcher, and N. A. Cox.	1144

RESEARCH NOTES	
Effects of Rigor State and Addition of Polyphosphate on the Color of Cooked Turkey Meat.	1140
L. L. Young and C. E. Lyon	1149
Hatchery-Acquired Salmonellae in Broiler Chicks. J. S. Bailey, N. A. Cox, and M. E. Berrang	1153
Simple Method to Purify Chicken Immunoglobulin G. J. K. Bhanushali, J. M. Gilbert, and L. R. McDougald	1158
Manganese Utilization in the Chick: Effects of Excess Phosphorus on Chicks Fed Manganese-Deficient Diets. D. H. Baker and G. W. Oduho	1162
ASSOCIATION NOTES	
Book Reviews Nunc Dimittis Positions Available	1166 1167 1168

•

T Cell Development in the Chicken¹

C. H. CHEN, T.W.F. GÖBEL, T. KUBOTA, and M. D. COOPER

Division of Developmental and Clinical Immunology, Departments of Medicine, Pediatrics, and Microbiology, and the Howard Hughes Medical Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294

ABSTRACT This review summarizes our current view of $\gamma\delta$ and $\alpha\beta$ T cell development in the chicken. In it we emphasize the functional interplay between the $\gamma\delta$ and $\alpha\beta$ T cell subpopulations.

(*Key words*: T cell receptors $\gamma \delta$ and $\alpha \beta$, V β usage, T cell subpopulations, accessory molecules, monoclonal antibodies)

1994 Poultry Science 73:1012-1018

INTRODUCTION

Many features of T cell development in birds and mammals are very similar. The T cell receptors (TCR) and accessory molecules defined for mammalian T cells are well conserved in birds. The analysis of avian T cell development using monoclonal antibodies against these cell surface molecules also reveals that the central features of T cell development in mammals are also conserved in the chicken. On the other hand, the avian T cell repertoire is much less complex, and the avian embryo more assessible for experimental manipulation. These and other unique features make the avian model system an informative one for study of T cell development and function.

T CELL RECEPTORS AND ACCESSORY MOLECULES

Monoclonal antibodies (mAb) have been produced against a variety of functionally important molecules expressed on the surface of chicken T cells (Chen et al., 1991), and most of these have well-defined mammalian counterparts. The chicken T cell receptors can be divided into three subgroups, each of which can be identified by a specific mAb. All of the $\gamma\delta$ T cells are recognized by the TCR1 mAb (Sowder et al., 1988), whereas two discrete subsets of $\alpha\beta$ T cells can be identified by the TCR2 and TCR3 mAb (Chen et al., 1988; Cihak et al., 1988; Char et al., 1990). All three receptor molecules are disulfide-linked heterodimers that are noncovalently associated with a CD3 protein complex to form a signal transduction unit. The avian CD3 complex contains chains similar to the mammalian CD3 γ , δ , ϵ , and ζ chains (Chen et al., 1986; Göbel et al., unpublished data), but only the CD3 gene that encodes a 19-kDa chain has been cloned so far (Bernot and Auffray, 1991; Lahti et al., St. Jude Children's Research Hospital, Memphis, TN 38101-0318, personal communication). The sequence of this chicken CD3 protein has homology with both the mammalian CD3 γ and δ chains.

The CD4 and CD8 coreceptors have also been identified in the chicken (Chan *et al.*, 1988). The CD4 molecule is a single peptide and CD8 is a disulfide-linked dimer. Each molecule is associated with a cellular tyrosine protein kinase that is homologous to the mammalian p56^{lck} (Veillette and Ratcliffe, 1991). As in mammals, both CD8 α and β chains are expressed in the chicken to form CD8 $\alpha\alpha$ homodimers and CD8 $\alpha\beta$ heterodimers

Received for publication July 25, 1993.

Accepted for publication February 3, 1994.

¹Studies described here were supported in part by National Institutes of Allergy and Infectious Diseases/ National Institutes of Health grants AI30879 and CA13148. Thomas W. F. Gobel is supported by Deutsche Forschungsgemeinschaft. Takayuki Kubota is supported by the Ministry of Agriculture, Forestry and Fisheries, Japan. Max D. Cooper is a Howard Hughes Medical Institute investigator.

(Kong et al., 1994; Young et al., Institute for Animal Health, Newsbury, Berkshire RG16 ONM, U.K., personal communication). The molecular weights, tissue distribution, and function of the TCR/CD3, CD4, and CD8 molecules are all very similar to their mammalian counterparts (Chen et al., 1990; Cooper et al., 1991).

THREE SUBPOPULATIONS OF T CELLS

The avian thymus is colonized with thymocyte precursors in waves during embryogenesis, and the thymocyte progeny of each sequential wave overlap each other (Coltey et al., 1987). During T cell ontogeny, the three subpopulations of T cells appear in the order TCR1, TCR2, and TCR3 (Char et al., 1990). Analyses of chicken thymocyte development in chickquail chimeras reveal that all three subsets of T cells are derived from each wave of thymocyte precursors (Coltey et al., 1989). Migration of the three T cell subsets to the periphery also follows the same TCR1, TCR2, an TCR3 order (Char et al., 1990), but the TCR2 cells become the predominant population in mature chickens.

UNIQUE FEATURES OF TCR1 ($\gamma\delta$) CELLS

Unlike human and mouse, in which $\gamma\delta$ cells comprise a minor subset of T lymphocytes in the circulation (Haas *et al.*, 1993), the chicken has a relatively large subset of $\gamma\delta$ T cells (Sowder *et al.*, 1988). The frequency of TCR1 cells is usually 20 to 25% of the total blood T cells, but can reach approximately 50% in chickens of 6 mo of age (Cihak *et al.*, 1993). The high frequency of avian $\gamma\delta$ T cells and the availability of the anti- $\gamma\delta$ mAb has allowed extensive characterization of the properties of $\gamma\delta$ T cells in the chicken (Table 1).

The $\gamma\delta$ thymocytes are unlike the $\alpha\beta$ T cells in that they express high levels of their TCR complex from the earliest time in appearance in the thymic cortex, and these $\gamma\delta$ receptors are relatively difficult to modulate by receptor cross-linkage (George and Cooper, 1990). Whereas $\alpha\beta$ thymocytes take several days to migrate

TABLE	1.	Special	f	eatures	8 0	f avia	n
Тce	ll r	eceptor	1	(TCR	1)	cells	

1.	Large subpopulation of T cells
2.	Characteristic intrathymic developmental pattern
	Short cortical transit time
	High level of TCR1/CD3 expression
	Not easily aborted via TCR1-mediated signals
3.	Preferential homing to intestinal epithelium and splenic red pulp
1	Acquire CD8 in the periphery

- Acquire CD8 in the periphery
 Cytotoxic capability, but lack graft-vs-host potential
- 6. Require exogenous growth factors

from cortex to medulla, during which they undergo extensive proliferation and selection, $\gamma\delta$ cells rapidly traverse this compartment and soon exit from the thymus (Bucy *et al.*, 1990). These results suggest that $\gamma\delta$ T cells may not undergo the same selection pressures as $\alpha\beta$ thymocytes.

The distribution patterns differ for $\alpha\beta$ and $\gamma\delta$ cells in peripheral lymphoid tissues (Bucy *et al.*, 1988). In the spleen, the $\gamma\delta$ cells are located predominantly in the sinusoidal areas. In the intestine, they are preferentially localized in the epithelium. In contrast, both TCR2 and TCR3 cells home to the periarteriolar lymphatic sheaths in spleen, and TCR2 cells are located mainly in the lamina propria of the intestine. Interestingly, TCR3 cells are rarely found in the intestine.

The majority of the $\gamma\delta$ cells in thymus and blood are CD4-CD8- (Sowder *et al.*, 1988), although a small subset of them may express CD8 or CD4 coreceptors (unpublished data; Davidson *et al.*, 1992). However, when the $\gamma\delta$ cells migrate into the spleen and intestine, most of them begin to express CD8.

The biological function of $\gamma\delta$ T cells is still unclear, but they are clearly capable of cytotoxic activity *in vitro*. Using a redirected cytotoxicity assay, $\gamma\delta$ T cells were shown to specifically lyse anti-CD3 hybridoma cells (Chan *et al.*, Rutgers University, Piscataway, NJ 08855-6268, personal communication). The CD8+ $\gamma\delta$ T cells may also be involved in downregulation of immune responses (Quere *et al.*, 1990). However, they are incapable of inducing graft-vs-host (GVH) reactions, whereas both the TCR2 and TCR3 subpopulations of CD4+ $\alpha\beta$ T cells are capable of GVH activity (Char *et al.*, Baylor College of Medicine, Division of Neurosciences, Houston, TX 77030-3498, personal communication).

DEPENDENCE OF $\gamma \delta$ T CELL GROWTH ON $\alpha \beta$ T CELLS

During studies on the developmental origin of $\gamma\delta$ T cells, we examined the longterm effects of thymectomy on the development of T cells. Neonatal thymectomy resulted in a dramatic and persistent decrease of TCR1 cells to a frequency of 5% or less of blood T cells, whereas the frequencies of TCR2 and TCR3 cells were not altered significantly (Chen et al., 1989; Cihak et al., 1993). This observation suggests that expansion of the $\gamma\delta$ population in the periphery requires continual seeding of thymic $\gamma\delta$ T cells. Moreover, unlike the $\alpha\beta$ cells that exhibit follicular growth, $\gamma\delta$ cells do not. Instead they are randomly distributed in the peripheral tissues predominantly as single cells (Bucy et al., 1990). These results imply that the $\gamma\delta$ T cells differ strikingly from $\alpha\beta$ T cells in their proliferative characteristics.

Because of their high frequency in the chicken, it is relatively easy to analyze the growth requirements of normal $\gamma\delta$ T cells. When TCR1, TCR2, and TCR3 cells are purified by negative selection and their proliferative responses compared, the TCR1 cells cannot respond well to mitogens or TCR ligation, except in the

presence of $\alpha\beta$ T cells. In contrast, the $\alpha\beta$ T cells can grow very well alone (Kasahara et al., 1993). The TCR1 cells fail to produce adequate amount of interleukin (IL)-2 and they proliferate in response to receptor ligation only in the presence of exogenous cytokines, including IL-2. Furthermore, only the CD8+ subpopulation of $\gamma\delta$ T cells responds to the dual stimulation of receptor ligation and exogenous growth factors. The CD8+ $\gamma\delta$ T cells are relatively large and express MHC Class II on their surface, indicating a state of activation. Because activated T cells can process and present antigen (Wyss-Coray et al., 1993), we suggest that a two-way interaction between $\gamma\delta$ and $\alpha\beta$ T cells may result in mutual regulatory roles of these two subpopulations in the immune response (Kasahara et al., 1993). Analysis of this interaction may be essential for understanding the biological function of $\gamma\delta$ T cells.

TWO DISTINCT SUBPOPULATIONS OF $\alpha\beta$ T CELLS

TCR2 and TCR3 Cells Differ in Function

In addition to their differences in ontogeny and tissue distribution, the two $\alpha\beta$ T cell subpopulations that express TCR2 or TCR3 receptors also exhibit functional differences (Table 2). Both TCR2 and TCR3 cells are capable of GVH alloreactivity, but they vary in their GVH potential depending on donor and recipient MHC combinations

Variable	TCRα	TCRβ
cDNA, kb	1.7	1.3
Amino acids	257	273
Predicted molecular weight, kDa	28	31
Predicted isoelectric point	5.0	8.5
Possible N-glycosylation sites	1	4
Homology to mammals, %		
Constant region	26	35
Joining region	35	47
Diversity region	1	+
Variable region	28	22 (Vβ1) 46 (Vβ2)

TABLE 2. Comparison of chicken T cell receptor (TCR) TCR α and TCR β chains

¹No diversity region in TCRa.

(Char *et al.*, personal communication). This may suggest repertoire differences in the TCR2 and TCR3 populations.

When TCR2 cells are suppressed by embryonic injection of anti-TCR2 monoclonal antibody and subsequent thymectomy, the treated chickens acquire increased levels of TCR3 cells but are deficient in TCR2 cells (Chen et al., 1989; Cihak et al., 1991). These TCR2-depleted birds appear healthy and they can respond normally to many T cell-dependent and T cell-independent antigens (unpublished data). Their serum IgG and IgM concentrations are also normal but their capacity for IgA production is severely compromised (Cihak et al., 1991). Secretory IgA concentrations in bile and lung lavage fluid are reduced 1,000- to 10,000-fold, and secretory IgA antibodies are not produced in response to mucosal immunization. These results indicate the importance of TCR2 cells in IgA production.

TCRβ Genes

Definition of the chicken TCR α and TCR β genes has provided insight into the molecular basis for the differences in the two $\alpha\beta$ T cell subsets. The cloning of the TCR β chain was achieved by cross-hybridization of a chicken cDNA library with fragments of a mixture of mammalian

TCR^β DNA under low stringency conditions (Tjoelker *et al.*, 1990). A chicken TCR β cDNA encodes a protein of approximately 300 amino acids including leader (L), variable (V), joining (J), diversity (D), and constant (C) regions (Figure 1). Although chicken and mammalian TCR β chains display only approximately 30% overall amino acid sequence identity, a number of conserved structural features are observed. These include consensus amino acids that are found in the most mammalian TCRB chains, the cysteine residues that form intra- and interdisulfide bonds, and a positively charged lysine that is thought to form a salt bridge with a negatively charged amino acid of CD3 molecules in the transmembrane domain (Bernot and Auffray, 1991).

The TCR β locus contains mammaliantype, V, D, J, and C segments (Tjoelker *et al.*, 1990; Cooper *et al.*, 1991). The exon structure of the C region is virtually identical with that of mammals. The genomic V, D, and J elements are flanked by classical heptamernonamer recombination signal sequences. As in mammals, the TCR β repertoire in the chicken is created by ordered recombination of V-D-J segments. However, the chicken TCR β locus is much simpler in that it contains only two V β families and does not feature a duplication of the J and C regions (Tjoelker *et al.*, 1990; Lahti *et al.*,

FIGURE 1. Sketch depicts overall T cell receptor (TCR) $TCR\alpha\beta$ structure and indicates disulfide bonds, possible N-glycosylation sites (CHO), leader (L), variable (V), diversity (D), joining (J), and constant (C) regions. The consensus amino acid residues and their positions are listed by protein structure.

1991). Within each V β gene family, most chicken strains contain approximately 6 members of the V β 1 and 3 to 5 members of the V β 2 family, although 17 V β 1 members have been identified in the chicken strain H.B19 (Dunon *et al.*, 1994). Likewise, only four relatively similar J segments are identified. Thus there is a limited capacity for combinatorial diversity in the avian TCR β repertoire. Instead, the CDR3 sequences formed by VD and DJ recombination with N-sequence additions are unique for each TCR β (McCormack *et al.*, 1991).

TCRα Genes

The chicken TCR α genes have only recently been identified. The TCRa proteins were isolated by antibody affinity chromatography and peptide sequences were determined. Degenerate oligonucleotide probes were then used to identify $TCR\alpha$ cDNA. A TCR α cDNA clone consists of 1.7 kb containing a 375-bp 5' untranslated region, a 503-bp 3' untranslated region, and an open reading frame of 825 bp (Göbel et al., 1993). The predicted 275 amino acid TCR α chain contains V, J, and C regions. Although chicken TCR α shares only 26% overall homology with its mammalian counterpart, most of the consensus amino acids thought to be important for structural integrity of the mammalian TCR α chains are conserved (Figure 1). Genomic analysis reveals multiple J segments and at least one V α family that contains approximately 25 members. The classical heptamer and nonamer recombination signal sequences and length of the spacer between them are conserved. In contrast to the mammalian and avian TCR β loci, however, a single exon encodes the avian L α and V α . A comparison of TCR α and β chains is shown in Table 3.

TCR2 and TCR3 Cells Use Distinct V_β Families. The relationship between TCR gene usage and the TCR2 and TCR3 sublineages defined by mAb was analyzed by Northern blotting. Both TCR2 and TCR3 cells contain C α and C β mRNA, confirming that they are subsets of $\alpha\beta$ T cells. Although the same $D\beta$ and $J\beta$ are shared by both subsets, the TCR2 cells contain only V β 1 transcripts and TCR3 cells contain only V β 2 mRNA (Lahti et al., 1991). Furthermore, TCR2 cells undergo V-D-J joining by deletional rearrangement, whereas TCR3 cells undergo V-D-J joining by inversional rearrangement (Table 2). This might explain why the V β 1 gene segment rearranges prior to $V\beta 2$ segment during ontogeny. Interestingly, mammalian TCR β chain sequences can be subdivided into two subgroups, V β I and V β II, based on the structural similarities of the proteins (Schiffer et al., 1992), and these same structural features are conserved in chicken V β 1 and V β 2 (Tjoelker *et* al., 1990).

Characteristic	TCR2	TCR3
Appearance during ontogeny		
Thymus	E14 ²	E17
Spleen	E19	D2
Phenotype		
CD4:ĆD8 ratio	2:1 to 3:1	4:1
Tissue homing pattern		
Spleen	Periarteriolar sheaths	Periarteriolar sheaths
Intestine	Lamina propria	Rarely identified
Function	•••	
Helper activity for IgA production	Yes	No
Graft vs host	Quantitative differences de- pending on MHC pairing	Quantitative differences de- pending on MHC pairing
TCR β^2 usage	Vβ1 (1.1 to 1.17)	Vβ2 (2.1 to 2.5)
Mechanism of $V\beta$ rearrangement	Deletion	Inversion

TABLE 3. Two distinct $\alpha\beta$ T cell subpopulations in the chicken¹

 $^{1}TCR = T$ cell receptor.

²Embryonic day 14.

The V α usage by TCR2 and TCR3 cells may also contribute to their differences in function. To examine the utilization of $V\alpha$ segments by TCR2 and TCR3 cells, a panel of the defined cell lines was examined by Northern blot analysis. Under very stringent conditions 2 of 10 cell lines reacted with the V α 1 probe cloned from TCR2 cell line UG9 (Göbel *et al.*, 1993). Analysis of V $\alpha^$ cDNA clones has revealed multiple $V\alpha$ families in the chicken. Homology between the V α 1 and V α 2 members is only around 24%. Interestingly, both TCR2 and TCR3 cells can use $V\alpha^2$ family members, suggesting that V β 1 and V β 2 genes themselves govern functional differences in TCR2 and TCR3 T cells.

CONCLUDING REMARKS

Comparative studies reveal striking conservation of T cell development in avian and mammalian species. The relatively high frequency of $\gamma\delta$ T cells in the chicken and the experimental accessibility of the embryo make birds a valuable model for study of the early divergence in the $\alpha\beta$ and $\gamma\delta$ T cell lineages as well as the physiological role of $\gamma \delta$ T cells. The two subsets of $\alpha\beta$ T cells recognized by TCR2 and TCR3 mAb express prototypic VBI and V β II genes, and they differ in their ontogeny, tissue distribution, and function. It is not yet known whether or not the two $\alpha\beta$ subpopulations utilize different V α genes. The relative simplicity of the avian $\alpha\beta$ TCR gene loci may thus reveal basic principles in T cell physiology that are difficult to appreciate in more complex mammalian systems. Finally, our studies in the chicken model suggest that $\gamma\delta$ and $\alpha\beta$ T cells are functionally interdependent.

REFERENCES

- Bernot, A., and C. Auffray, 1991. Primary structure and ontogeny of an avian CD3 transcript. Proc. Natl. Acad. Sci. USA 88:2550-2554.
- Bucy, R. P., C. H. Chen, J. Cihak, U. Lösch, and M. D. Cooper, 1988. Avian T cells expressing $\gamma\delta$ receptors localize in the splenic sinusoids and the intestinal epithelium. J. Immunol. 141: 2200–2205.
- Bucy, R. P., C. H. Chen, and M. D. Cooper, 1990. Ontogeny of T cell receptors in the chicken thymus. J. Immunol. 144:1161–1168.
- Chan, M. M., C. H. Chen, L. L. Ager, and M. D.

Cooper, 1988. Identification of the avian homologues of mammalian CD4 and CD8 antigens. J. Immunol. 140:2133–2138.

- Char, D., P. Sanchez, C. H. Chen, R. P. Bucy, and M. D. Cooper, 1990. A third sublineage of avian T cells can be identified with a T cell receptor-3-specific antibody. J. Immunol. 145:3547–3555.
- Chen, C. H., L. L. Ager, G. L. Gartland, and M. D. Cooper, 1986. Identification of a T3/T cell receptor complex in chickens. J. Exp. Med. 164: 375–380.
- Chen, C. H., R. P. Bucy, and M. D. Cooper, 1990. T cell differentiation in birds. Semin. Immunol. 2: 79–86.
- Chen, C. H., J. Cihak, U. Lösch, and M. D. Cooper, 1988. Differential expression of two T cell receptors, TCR 1 and TCR 2, on chicken lymphocytes. Eur. J. Immunol. 18:539–543.
- Chen, C. H., J. M. Pickel, J. M. Lahti, and M. D. Cooper, 1991. Surface markers on avian immune cells. Pages 1–22 *in*: Avian Cellular Immunology. J. M. Sharma, ed. CRC Press, Boca Raton, FL.
- Chen, C. H., J. T. Sowder, J. M. Lahti, J. Cihak, U. Lösch, and M. D. Cooper, 1989. TCR3: A third T-cell receptor in the chicken. Proc. Natl. Acad. Sci. USA 86:2351-2355.
- Cihak, J., G. Hoffmann-Fezer, H.W.L. Ziegler-Heibrock, H. Stein, B. Kaspers, C. H. Chen, M. D. Cooper, and U. Lösch, 1991. T cells expressing the Vβ1 T-cell receptor are required for IgA production in the chicken. Proc. Natl. Acad. Sci. USA 88:10951–10955.
- Cihak, J., U. Lösch, G. Hoffmann-Fezer, C. H. Chen, M. D. Cooper, and H.W.L. Ziegler-Heitbrock, 1993. In vivo depletion of chicken T-cell subsets. Scand. J. Immunol. 38:123-129.
- Cihak, J., H.W.L. Ziegler-Heitbrock, H. Trainer, I. Schranner, M. Merkenschlager, and U. Lösch, 1988. Characterization and functional properties of a novel monoclonal antibody which identifies a T cell receptor in chickens. Eur. J. Immunol. 18:533–537.
- Coltey, M., R. P. Bucy, C. H. Chen, J. Cihak, U. Lösch, D. Char, N. M. Le Douarin, and M. D. Cooper, 1989. Analysis of the first two waves of thymus homing stem cells and their T cell progeny in chick-quail chimeras. J. Exp. Med. 170:543-557.
- Coltey, M., F. V. Jotereau, and N. M. Le Douarin, 1987. Evidence for a cyclic renewal of lymphocyte precursor cells in the embryonic chick thymus. Cell Differ. 22:71-82.
- Cooper, M. D., C. H. Chen, R. P. Bucy, and C. B. Thompson, 1991. Avian T cell ontogeny. Adv. Immunol. 50:87-117.
- Davidson, N. J., C. H. Chen, and R. L. Boyd, 1992. Kinetics of chicken embryonic thymocyte development in ovo and in organ culture. Eur. J. Immunol. 22:1429-1435.
- Dunon, D., J. Schwager, J.-P. Dangy, M. D. Cooper, and B. A. Imhof, 1994. T cell migration during development: homing is not related to TCR Vβ1 repertoire selection. Eur. Mol. Biol. Org. J. 13: 808–815.
- George, J. F., and M. D. Cooper, 1990. $\gamma\delta$ T cells and α/β T cells differ in their development patterns of receptor expression and modulation require-

ments. Eur. J. Immunol. 20:2177-2181.

- Göbel, T.W.F., C. H. Chen, J. Lahti, T. Kubota, C.-I. Kuo, R. Aebersold, L. Hood, and M. D. Cooper, 1994. Identification of T cell receptor alpha (TCRα) genes in the chicken. Proc. Natl. Acad. Sci. USA 91:1094–1098.
- Haas, W., P. Pereira, and S. Tonegawa, 1993. Gamma/delta cells. Ann. Rev. Immunol. 11: 673-685.
- Kasahara, Y., C. H. Chen, and M. D. Cooper, 1993. Growth requirements for avian γδ T cells include exogenous cytokines, receptor ligation and in vivo priming. Eur. J. Immunol. 23: 2230–2236.
- Kong, F.-K., E. Paramithiotis, M.J.H. Ratcliffe, M. D. Cooper, and C. H. Chen, 1994. Differential expression of CD8 α and CD8 β chains by avian T cells. Fed. Am. Soc. Exp. Biol. J. (in press).
- cells. Fed. Am. Soc. Exp. Biol. J. (in press). Lahti, J. M., C. H. Chen, L. W. Tjoelker, J. M. Pickel, K. A. Schat, B. W. Calnek, C. B. Thompson, and M. D. Cooper, 1991. Two distinct αβ T-cell lineages can be distinguished by the differential usage of T-cell receptor Vβ gene segments. Proc. Natl. Acad. Sci. USA 88:10956-10960.
- McCormack, W. T., L. W. Tjoelker, G. Stella, C. E. Postema, and C. B. Thompson, 1991. Chicken Tcell receptor β -chain diversity: An evolutionarily conserved D β -encoded glycine turn within the hypervariable CDR3 domain. Proc. Natl. Acad. Sci. USA 88:7699–7703.

- Quere, P., M. D. Cooper, and G. J. Thorbecke, 1990. Characterization of suppressor T cells for antibody production by chicken spleen cells. I. Antigen-induced suppressor cells are CT8⁺, TcR1⁺ ($\gamma\delta$) T cells. Immunology 71:517–522. Schiffer, M., E. A. Kabat, and T. T. Wu, 1992.
- Schiffer, M., E. A. Kabat, and T. T. Wu, 1992. Subgroups of Tcr α chains and correlation with T-cell function. Immunogenetics 35:224–234.
- Sowder, J. T., C. H. Chen, L. L. Ager, M. M. Chan, and M. D. Cooper, 1988. A large subpopulation of avian T cells express a homologue of the mammalian T_{γ}/δ receptor. J. Exp. Med. 167: 315-322.
- Tjoelker, L. W., L. M. Carlson, K. Lee, J. Lahti, W. T. McCormack, J. M. Leiden, C. H. Chen, M. D. Cooper, and C. B. Thompson, 1990. Evolutionary conservation of antigen recognition: The chicken T-cell receptor β chain. Proc. Natl. Acad. Sci. USA 87:7856–7860.
- Veillette, A., and M.J.H. Ratcliffe, 1991. Avian CD4 and CD8 interact with a cellular tyrosine protein kinase homologous to mammalian p56-lck. Eur. J. Immunol. 21:397-401.
- Wyss-Coray, T., D. Mauri-Hellweg, K. Baumann, F. Bettens, R. Grunow, and W. J. Pichler, 1993. The B7 adhesion molecule is expressed on activated human T cells: functional involvement in T-T cell interactions. Eur. J. Immunol. 23:2175–2180.