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ABBREVIATIONS 

The following abbreviations may be used without definition in P o u l t r y S c i e n c e . Plural] 
abbreviations do not require "s". Chemical Symbols and three-letter abbreviations for 
amino acids do not need definition. Units of measure, except those shown below, should 
be abbreviated as listed in the C R C H a n d b o o k f o r C h e m i s t r y a n d P h y s i c s (CRC Press, 
2000 Corporate Blvd., Boca Raton, FL 33431) and do not need to be defined. 

A adenine ME n nitrogen-corrected metabolizable energy 
AME apparent metabolizable energy MHC major histocompatability complex 
AME n nitrogen-corrected apparent mRNA messenger ribonucleic acid 

metabolizable energy min minute 
ANOVA analysis of variance mo month 
B cell bursal-derived, bursal-equivalent MS mean Square 

derived cell N normal 
bp base pairs n number of observations 
BSA bovine serum albumin NRC National Research Council 
BW body weight NS not significant 
C cytosine PAGE Polyacrylamide gel electrophoresis 
cDNA complementary DNA PBS phosphate-buffered saline 
cfu colony-forming units ppm parts per million 
CP crude protein pfu plaque-forming units 
cpm counts per minute r correlation coefficient 
CV coefficient of Variation r2 coefficient of determination, simple 
d day R 2 coefficient of determination, multiple 
df degrees of freedom RIA radioimmunoassay 
DM dry matter RNA ribonucleic acid 
DNA deoxyribonucleic acid rpm revolutions per minute 
EDTA ethylenediaminetetraacetate s second 
ELISA enzyme-linked immunosorbent s.c. subcutaneous 

antibody assay SD Standard deviation 
g gram SDS sodium dodecyl sulfate 
9 gravity SE Standard error 
G guanine SEM Standard error of the mean 
GAT glutamic acid-alanine-tyrosine SRBC sheep red blood cells 
h hour T thymine 
HPLC high-performance (high-pressure) TBA thiobarbituric acid 

liquid chromatography T cell thymic-derived cell 
ICU international chick units TME true metabolizable energy 
ig immunoglobulin TME n nitrogen-corrected true metabolizable 
i.m. intramuscular energy 
j.p. intraperitoneal Tris tris(hydroxymethyl)aminomethane 
IU international units TSAA total sulfur amino acids 
i.v. intravenous U uridine 
kb kilobase pairs USDA United States Department of Agriculture 
kDa kilodalton vol/vol volume to volume 
L liter* vs versus 
m meter wt/vol weight to volume 

micro wt/wt weight to weight 
M molar wk week 
ME metabolizable energy X mean 

year 

*Also capitalized with any combination, e.g., mL 
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T Cell Development in the Chicken1 

C. H . CHEN, T.W.F. GÖBEL, T. KUBOTA, and M . D. COOPER 

Division of Developmental a n d Clinical I m m u n o l o g y , D e p a r t m e n t s of M e d i a n e , 
Pediatrics, and Microbiology, a n d the Howard H u g h e s M e d i c a l I n s t i t u t e , 

University of Alabama at B i r m i n g h a m , B i r m i n g h a m , Alabama 3 5 2 9 4 

ABSTRACT This review summarizes our current view of 76 and aß T cell 
development in the chicken. In it we emphasize the functional interplay 
between the 76 and aß T cell subpopulations. 
(Key words: T cell receptors 76 and aß, V/3 usage, T cell subpopulations, 
accessory molecules, monoclonal antibodies) 

INTRODUCTION 

Many features of T cell development in 
birds and mammals are very similar. The 
T cell receptors (TCR) and accessory 
molecules defined for mammalian T cells 
are well conserved in birds. The analysis 
of avian T cell development using 
monoclonal antibodies against these cell 
surface molecules also reveals that the 
central features of T cell development in 
mammals are also conserved in the 
chicken. On the other hand, the avian T 
cell repertoire is much less complex, and 
the avian embryo more assessible for 
experimental manipulation. These and 
other unique features make the avian 
model System an informative one for 
study of T cell development and function. 

T CELL RECEPTORS AND 
ACCESSORY MOLECULES 

Monoclonal antibodies (mAb) have 
been produced against a variety of func-
tionally important molecules expressed on 
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the surface of chicken T cells (Chen et a l , 
1991), and most of these have well-defined 
mammalian counterparts. The chicken T 
cell receptors can be divided into three 
subgroups, each of which can be identified 
by a specific mAb. All of the 76 T cells are 
recognized by the TCR1 mAb (Sowder et 
a l , 1988), whereas two discrete subsets of 
aß T cells can be identified by the TCR2 
and TCR3 mAb (Chen et a l , 1988; Cihak et 
a l , 1988; Char et a l , 1990). A l l three 
receptor molecules are disulfide-linked 
heterodimers that are noncovalently as-
sociated with a CD3 protein complex to 
form a signal transduction unit. The avian 
CD3 complex contains chains similar to 
the mammalian CD3 7, b, e, and f chains 
(Chen et a l , 1986; Göbel et a l , unpublished 
data), but only the CD3 gene that encodes 
a 19-kDa chain has been cloned so far 
(Bernot and Auffray, 1991; Lahti et a l , St. 
Jude Children's Research Hospital, Mem
phis, T N 38101-0318, personal communica-
tion). The sequence of this chicken CD3 
protein has homology with both the 
mammalian CD3 7 and 5 chains. 

The CD4 and CD8 coreceptors have 
also been identified in the chicken (Chan 
et a l , 1988). The CD4 molecule is a Single 
peptide and CD8 is a disulfide-linked 
dimer. Each molecule is associated with a 
cellular tyrosine protein kinase that is 
homologous to the mammalian p56 lck 

(Veillette and Ratcliffe, 1991). As in mam
mals, both CD8a and ß chains are ex
pressed in the chicken to form CD8aa 
homodimers and CD8aj3 heterodimers 

1012 
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(Kong et a l , 1994; Young et a l , Institute for 
Animal Health, Newsbury, Berkshire 
RG16 O N M , U.K., personal communica-
tion). The molecular weights, tissue distri-
bution, and function of the TCR/CD3, 
CD4, and CD8 molecules are all very 
similar to their mammalian counterparts 
(Chen et a l , 1990; Cooper et a l , 1991). 

THREE SUBPOPULATIONS 
OF T CELLS 

The avian thymus is colonized with 
thymocyte precursors in waves during 
embryogenesis, and the thymocyte 
progeny of each sequential wave overlap 
each other (Coltey et a l , 1987). During T 
cell ontogeny, the three subpopulations of 
T cells appear in the order TCR1, TCR2, 
and TCR3 (Char et a l , 1990). Analyses of 
chicken thymocyte development in chick-
quail chimeras reveal that all three subsets 
of T cells are derived from each wave of 
thymocyte precursors (Coltey et a l , 1989). 
Migration of the three T cell subsets to the 
periphery also follows the same TCR1, 
TCR2, an TCR3 order (Char et a l , 1990), 
but the TCR2 cells become the predomi-
nant population in mature chickens. 

UNIQUE FEATURES OF 
TCR1 (7*) CELLS 

Unlike human and mouse, in which 76 
cells comprise a minor subset of T lym-
phocytes in the circulation (Haas et a l , 
1993), the chicken has a relatively large 
subset of 76 T cells (Sowder et a l , 1988). 
The frequency of TCR1 cells is usually 20 
to 25% of the total blood T cells, but can 
reach approximately 50% in chickens of 6 
mo of age (Cihak et a l , 1993). The high 
frequency of avian 76 T cells and the 
availability of the anti-76 mAb has al-
lowed extensive characterization of the 
properties of 76 T cells in the chicken 
(Table 1). 

The 76 thymocytes are unlike the aß T 
cells in that they express high levels of 
their TCR complex from the earliest time 
in appearance in the thymic cortex, and 
these yS receptors are relatively difficult 
to modulate by receptor cross-linkage 
(George and Cooper, 1990). Whereas aß 
thymocytes take several days to migrate 

T A B L E 1. Special features of avian 
T cell receptor 1 (TCR 1) cells 

1. Large subpopulation of T cells 
2. Characteristic i n t r a t h y m i c developmental 

pattern 
Short cortical transit time 
High level of TCR1/CD3 expression 
Not easily aborted via TCRl-mediated 

Signals 
3. Preferential homing to intestinal epithelium 

and splenic red pulp 
4. Acquire CD8 in the periphery 
5. Cytotoxic capability, but lack graft-vs-host 

potential 
6. Require exogenous growth factors 

from cortex to medulla, during which they 
undergo extensive proliferation and selec-
tion, 76 cells rapidly traverse this compart-
ment and soon exit from the thymus (Bucy 
et a l , 1990). These results suggest that 76 T 
cells may not undergo the same selection 
pressures as aß thymocytes. 

The distribution patterns differ for aß 
and 76 cells in peripheral lymphoid tissues 
(Bucy et a l , 1988). In the spieen, the 76 
cells are located predominantly in the 
sinusoidal areas. In the intestine, they are 
preferentially localized in the epithelium. 
In contrast, both TCR2 and TCR3 cells 
home to the periarteriolar lymphatic 
sheaths in spieen, and TCR2 cells are 
located mainly in the lamina propria of 
the intestine. Interestingly, TCR3 cells are 
rarely found in the intestine. 

The majority of the 76 cells in thymus 
and blood are CD4-CD8- (Sowder et a l , 
1988), although a small subset of them 
may express CD8 or CD4 coreceptors 
(unpublished data; Davidson et a l , 1992). 
However, when the 7Ö cells migrate into 
the spieen and intestine, most of them 
begin to express CD8. 

The biological function of 76 T cells is 
still unclear, but they are clearly capable of 
cytotoxic activity i n v i t r o . Using a 
redirected cytotoxicity assay, y& T cells 
were shown to specifically lyse anti-CD3 
hybridoma cells (Chan et a l , Rutgers 
University, Piscataway, NJ 08855-6268, 
personal communication). The CD8+ yd T 
cells may also be involved in down-
regulation of immune responses (Quere et 
a l , 1990). However, they are incapable of 
inducing graft-vs-host (GVH) reactions, 
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whereas both the TCR2 and TCR3 sub
populations of CD4+ aß T cells are capable 
of G V H activity (Char et a l , Baylor 
College of Medicine, Division of Neuros-
ciences, Houston, TX 77030-3498, personal 
communication). 

DEPENDENCE OF yd T CELL 
GROWTH ON aß T CELLS 

During studies on the developmental 
origin of yd T cells, we examined the long-
term effects of thymectomy on the de
velopment of T cells. Neonatal thymec
tomy resulted in a dramatic and persistent 
decrease of TCR1 cells to a frequency of 
5% or less of blood T cells, whereas the 
frequencies of TCR2 and TCR3 cells were 
not altered significantly (Chen et a l , 1989; 
Cihak et a l , 1993). This Observation sug-
gests that expansion of the yd population 
in the periphery requires continual seed
ing of ritymic yd T cells. Moreover, unlike 
the aß cells that exhibit follicular growth, 
yd cells do not. Instead they are randomly 
distributed in the peripheral tissues 
predominantly as Single cells (Bucy et a l , 
1990). These results imply that the yd T 
cells differ strikingly from aß T cells in 
their proliferative characteristics. 

Because of their high frequency in the 
chicken, it is relatively easy to analyze the 
growth requirements of normal yd T cells. 
When TCR1, TCR2, and TCR3 cells are 
purified by negative selection and their 
proliferative responses compared, the 
TCR1 cells cannot respond well to mito-
gens or TCR ligation, except in the 

presence of aß T cells. In contrast, the aß T 
cells can grow very well alone (Kasahara 
et a l , 1993). The TCR1 cells fail to produce 
adequate amount of interleukin (IL)-2 and 
they proliferate in response to receptor 
ligation only in the presence of exogenous 
cytokines, including IL-2. Furthermore, 
only the CD8+ subpopulation of yd T cells 
responds to the dual Stimulation of recep
tor ligation and exogenous growth factors. 
The CD8+76 T cells are relatively large and 
express M H C Class II on their surface, 
indicating a State of activation. Because 
activated T cells can process and present 
antigen (Wyss-Coray et a l , 1993), we 
suggest that a two-way interaction be-
tween yd and aß T cells may result in 
mutual regulatory roles of these two 
subpopulations in the immune response 
(Kasahara et a l , 1993). Analysis of this 
interaction may be essential for under-
standing the biological function of yd T 
cells. 

TWO DISTINCT SUBPOPULATIONS 
OF aß T CELLS 

7Cf?2 a n d T C R 3 C e l l s 
D i f f e r i n F u n c t i o n 

In addition to their differences in on-
togeny and tissue distribution, the two aß T 
cell subpopulations that express TCR2 or 
TCR3 receptors also exhibit functional 
differences (Table 2). Both TCR2 and TCR3 
cells are capable of G V H alloreactivity, but 
they vary in their G V H potential depending 
on donor and recipient M H C combinations 

T A B L E 2. Comparison of chicken T cell receptor (TCR) TCRcc and TCR/J chains 

Variable TCRa TCRß 

cDNA, kb 1.7 1.3 
Amino acids 257 273 
Predicted molecular weight, kDa 28 31 
Predicted isoelectric point 5.0 8.5 
Possible N-glycosylation Sites 1 4 
Homology to mammals, % 

35 Constant region 26 35 
Joining region 35 47 
Diversity region + 
Variable region 28 22 (V01) Variable region 

46 (V/32) 

l N o diversity region in TCRa. 
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(Char et a l , personal communication). This 
may suggest repertoire differences in the 
TCR2 and TCR3 populations. 

When TCR2 cells are suppressed by 
embryonic injection of anti-TCR2 
monoclonal antibody and subsequent 
thymectomy, the treated chickens acquire 
increased levels of TCR3 cells but are 
deficient in TCR2 cells (Chen et a l , 1989; 
Cihak et a l , 1991). These TCR2-depleted 
birds appear healthy and they can respond 
normally to many T cell-dependent and T 
cell-independent antigens (unpublished da
ta). Their serum IgG and IgM concentra-
tions are also normal but their capacity for 
IgA production is severely compromised 
(Cihak et a l , 1991). Secretory IgA concentra-
tions in bile and lung lavage fluid are 
reduced 1,000- to 10,000-fold, and secretory 
IgA antibodies are not produced in re
sponse to mucosal immunization. These 
results indicate the importance of TCR2 
cells in IgA production. 

TCRß G e n e s 

Definition of the chicken TCRa and 
TCRß genes has provided insight into the 
molecular basis for the differences in the 
two aß T cell subsets. The cloning of the 
TCRß chain was achieved by cross-
hybridization of a chicken cDNA library 
with fragments of a mixture of mammalian 

TCRß D N A under low stringency condi-
tions (Tjoelker et a l , 1990). A chicken TCRß 
cDNA encodes a protein of approximately 
300 amino acids including leader (L), varia
ble (V), joining (J), diversity (D), and 
constant (C) regions (Figure 1). Although 
chicken and mammalian TCRß chains dis-
play only approximately 30% overall amino 
acid sequence identity, a number of con
served structural features are observed. 
These include consensus amino acids that 
are found in the most mammalian TCRß 
chains, the cysteine residues that form 
intra- and interdisulfide bonds, and a 
positively charged lysine that is thought to 
form a salt bridge with a negatively charged 
amino acid of CD3 molecules in the trans-
membrane domain (Bernot and Auffray, 
1991). 

The TCRß locus contains mammalian-
type, V, D, J, and C segments (Tjoelker et a l , 
1990; Cooper et a l , 1991). The exon structure 
of the C region is virtually identical with 
that of mammals. The genomic V, D, and J 
elements are flanked by classical heptamer-
nonamer recombination signal sequences. 
As in mammals, the TCRß repertoire in the 
chicken is created by ordered recombina
tion of V-D-J segments. However, the 
chicken TCRß locus is much simpler in that 
it contains only two Vß families and does 
not feature a duplication of the J and C 
regions (Tjoelker et a l , 1990; Lahti et a l , 
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FIGURE 1. Sketch depicts overall T cell receptor (TCR) TCRotß structure and indicates disulfide bonds, 
possible N-glycosylation sites (CHO), leader (L), variable (V), diversity (D), joining (J), and constant (C) regions. 
The consensus amino acid residues and their positions are listed by protein structure. 
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1991). Within each Vß gene family, most 
chicken strains contain approximately 6 
members of the V/81 and 3 to 5 members of 
the V/32 family, although 17 V/31 members 
have been identified in the chicken strain 
H.B19 (Dunon et a l , 1994). Likewise, only 
four relatively similar J segments are identi
fied. Thus there is a limited capacity for 
combinatorial diversity in the avian TCRß 
repertoire. Instead, the CDR3 sequences 
formed by V D and DJ recombination with 
N-sequence additions are unique for each 
TCRß (McCormack et a l , 1991). 

T C R a G e n e s 

The chicken TCRa genes have only 
recently been identified. The TCRa proteins 
were isolated by antibody affinity chro-
matography and peptide sequences were 
determined. Degenerate oligonucleotide 
probes were then used to identify TCRa 
cDNA. A TCRa cDNA clone consists of 1.7 
kb containing a 375-bp 5' untranslated 
region, a 503-bp 3' untranslated region, and 
an open reading frame of 825 bp (Göbel et 
a l , 1993). The predicted 275 amino acid 
TCRa chain contains V, J, and C regions. 
Although chicken TCRa shares only 26% 
overall homology with its mammalian 
counterpart, most of the consensus amino 
acids thought to be important for structural 
integrity of the mammalian TCRa chains 
are conserved (Figure 1). Genomic analysis 

reveals multiple J segments and at least one 
Va family that contains approximately 25 
members. The classical heptamer and 
nonamer recombination Signal sequences 
and length of the spacer between them are 
conserved. In contrast to the mammalian 
and avian TCRß loci, however, a Single 
exon encodes the avian La and Va. A 
comparison of TCRa and ß chains is shown 
in Table 3. 

T C R 2 a n d T C R 3 C e l l s U s e D i s t l n c t Vß 
F a m i l i e s . The relationship between TCR 
gene usage and the TCR2 and TCR3 
sublineages defined by mAb was analyzed 
by Northern blotting. Both TCR2 and TCR3 
cells contain Ca and Cß mRNA, confirming 
that they are subsets of aß T cells. Although 
the same Dß and Jß are shared by both 
subsets, the TCR2 cells contain only Vßl 
transcripts and TCR3 cells contain only Vß2 
mRNA (Lahti et a l , 1991). Furthermore, 
TCR2 cells undergo V-D-J joining by dele-
tional rearrangement, whereas TCR3 cells 
undergo V-D-J joining by inversional rear
rangement (Table 2). This might explain 
why the Vßl gene segment rearranges prior 
to Vß2 segment during ontogeny. Interest-
ingly, mammalian TCRß chain sequences 
can be subdivided into two subgroups, Vßl 
and Vßll, based on the structural sinülari-
ties of the proteins (Schiffer et a l , 1992), and 
these same structural features are con
served in chicken Vßl and Vß2 (Tjoelker et 
a l , 1990). 

T A B L E 3. Two distinct aß T cell subpopulations in the chicken1 

Characteristic 

Appearance during ontogeny 
Thymus 
Spleen 

Phenotype 
CD4:CD8 ratio 

Tissue homing pattern 
Spleen 
Intestine 

Function 
Helper activity for IgA 
production 

Graft vs host 

TCR/32 usage 
Mechanism of Vß rearrangement 

TCR2 

E142 
E19 

2:1 to 3:1 

Periarteriolar sheaths 
Lamina propria 

Yes 

Quantitative differences de-
pending on M H C pairing 

Vßl (1.1 to 1.17) 
Deletion 

TCR3 

E17 
D2 

4:1 

Periarteriolar sheaths 
Rarely identified 

No 

Quantitative differences de-
pending on M H C pairing 

Vß2 (2.1 to 2.5) 
Inversion 

!TCR = T cell receptor. 
2Embryonic day 14. 
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The Va usage by TCR2 and TCR3 cells 
may also contribute to their differences in 
function. To examine the utilization of Va 
segments by TCR2 and TCR3 cells, a panel 
of the defined cell lines was examined by 
Northern blot analysis. Under very strin-
gent conditions 2 of 10 cell lines reacted 
with the V a l probe cloned from TCR2 cell 
line UG9 (Göbel et a l , 1993). Analysis of Va" 
cDNA clones has revealed multiple Va 
f amilies in the chicken. Homology between 
the V a l and Va2 members is only around 
24%. Interestingly, both TCR2 and TCR3 
cells can use Va2 family members, suggest-
ing that V/31 and V/32 genes themselves 
govern functional differences in TCR2 and 
TCR3 T cells. 

CONCLUDING REMARKS 

Comparative studies reveal striking 
conservation of T cell development in 
avian and mammalian species. The rela
tively high frequency of yd T cells in the 
chicken and the experimental accessibility 
of the embryo make birds a valuable 
model for study of the early divergence in 
the a/3 and yd T cell lineages as well as the 
physiological role of 75 T cells. The two 
subsets of a/3 T cells recognized by TCR2 
and TCR3 mAb express prototypic V/31 
and V/3II genes, and they differ in their 
ontogeny, tissue distribution, and func
tion. It is not yet known whether or not 
the two a/3 subpopulations utilize differ-
ent Va genes. The relative simplicity of the 
avian aß TCR gene loci may thus reveal 
basic principles in T cell physiology that 
are difficult to appreciate in more complex 
mammalian Systems. Finally, our studies 
in the chicken model suggest that yd and 
aß T cells are functionally interdependent. 
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