3,346 research outputs found

    A portable EIT system for emergency medical care

    Get PDF
    Electrical Impedance Tomography (EIT) is a medical imaging technique in which images of tissue conductivity within a body can be inferred from surface electrode measurements. The main goal of this study is to develop a portable EIT system incorporating an optimized electrode layout to detect intracranial haematomas for use in emergency care. A growing haematoma can cause severe and even permanent damage to the delicate tissue of the brain, morbidity, and eventual death of the patient. No capability is at present available for the diagnosis of haematomas pre-hospitalisation or by first-responders. The lack of this crucial information can lead to bad decisions on patient management, and in particular, where to send the patient. Blood has a high electrical conductivity contrast relative to other cranial tissue and can be detected and monitored using electrical impedance methods. EIT is a non-invasive, low-cost monitoring alternative to other imaging modalities, and has the potential to detect bleeding and to localize the approximate bleeding site. A device of this nature would reduce treatment delays, save on costs and waste, and most significantly, positively impact patient outcomes. The first step was a numerical simulation study on FE models. The full array and the hemi-array electrode layouts were modelled and the anomalies were simulated in different positions with different sizes. The results were obtained using TSVD and WMNM reconstruction methods by COMSOL linked with MATLAB. The simulated anomalies were detected for all the positions using both layouts; however those from the full array were in general superior to the hemi-array. In order to perform realistic experiments, a prototype EIT system was constructed in the laboratory. The constructed EIT has 16 channels and operates in the frequency range of 10 kHz to 100 kHz with a temporal resolution of 100 frames per second and high level of accuracy of 93.5 %. The minimum number of 8 electrodes was chosen in this study for emergency care. Minimizing the number of electrodes speeds up the electrode setup process and avoids the need to move the patient s head in emergency care. In the second part of this study, phantom experiments were performed to find an optimised electrode layout for emergency care. The full array and the hemi-array were investigated using phantom experiments. As expected, the full array layout had the best performance in general; however, the performance of the hemi-array layout was very poor. Thus a novel optimised electrode layout (semi-array) for emergency care was proposed and evaluated in phantom experiments. For the hemi-array and the semi-array layouts, measurement sensitivity depends strongly on the anomaly location since the electrodes are not placed all over the head. The HA layout performed very badly, with the best radial localization error of 0.8100 mm, compared to the SA layout with the worst error of 0.2486 mm. Some reconstructed anomalies located far from the electrodes in the posterior region were almost invisible or erroneous for the hemi-array layout; however, it is enhanced by using the semi-array layout. Finally, in vitro experiments were conducted on ovine models. In most of the experiments carried out by other researchers, since the location of the simulated anomalies was not known and the simulated blood was normally injected into the body or the head, localization of the anomalies was not considered and the quantity of the injected blood was investigated solely. In our new method of experiment, the position of the anomalies was known a priori and thus could be compared accurately to the EIT results. The full array and the semi-array layouts were compared in terms of detection, localisation and size estimation of haematomas. As expected, the full array layout was found to be more robust than the semi-array layout with the best mean value of the localization error of 0.0564 mm and the worst QI error of around 30%. Using a minimum number of electrodes in an optimised layout is always desirable in clinical applications. The semi-array 8-electrode layout prevents unnecessary movements and the electrode connections to the head would be very quick in emergency care. Although the semi-array 8-electrode layout reduced the sensitivity of the measurements, the findings from the experiments indicated its potential to detect and monitor haematomas and probably extend its application for emergency applications where the required accuracy is not critical

    In vitro localization of intracranial haematoma using electrical impedance tomography semi-array

    Get PDF
    Electrical Impedance Tomography is a non-invasive and portable method that has good potential as an ‎alternative to the conventional modalities for early detection of intracranial haematomas in high risk patients. ‎Early diagnosis can reduce treatment delays and most significantly can impact patient outcomes. Two eight-‎electrode layouts, a standard ring full array (FA) and a semi-array (SA), were investigated for their ability to ‎detect, localise and quantify simulated intracranial haematomas in vitro on ovine models for the purpose of ‎early diagnosis. SA layout speeds up electrode application and avoids the need to move and lift the patient's ‎head. Haematomas were simulated using gel samples with the same conductivity as blood. Both layouts, FA ‎and SA, could detect the presence of haematomas at any location within the skull. The mean of the relative ‎radial position error with respect to the brain radius was 7% for FA and 6% for SA, for haematomas close to the ‎electrodes, and 11% for SA for haematomas far from the electrodes at the back of the head. Size estimation ‎was not as good; the worst size estimation error for FA being around 30% while the best for SA was 50% for ‎simulated haematomas close to the electrodes.

    Haematoma detection using EIT in a sheep model

    Get PDF
    Performance evaluation of a portable digital electrical impedance tomography system to detect haematomas using a sheep model is presented. Two different experiments have been performed using 8-electrode full array configuration. Artificial haematomas were introduced in the first experiment by injecting blood-like conductivity solution via the brainstem, and in the second by placing blood-like conductivity gel at a certain position on top of the parietal lobes of the brain on the left and right sides. For the first experiment, the Electrical Impedance Tomography (EIT) images were reconstructed sequentially for different injection volumes and the quantity index (QI) was calculated as a function of the injected solution volume. The results show a linear relationship of QI to the injected volume. For the second experiment, the images were successfully reconstructed and haematoma was clearly detected and localised using our developed system. The promising results of sheep experiments prove that our developed EIT system is able to detect and quantify small haematomas in head

    The Influence of Multi-frequency Current Injection in Image Reconstruction for Two-Dimensional High-Speed Electrical Impedance Tomography (EIT)

    Get PDF
    The image reconstruction for two-dimensional high-speed Electrical Impedance Tomography (EIT) has been successfully studied with multi-frequency current injection. The aim of this study is to get the best image reconstruction under the influence of multi-frequency current injection of this EIT system. In this method, we used current injection at 1 mA with varies of frequency in the range 10 to 50 kHz injected at the practical phantoms with 16 electrodes. Polyvinyl chloride (PVC) cylinder was put in the practical phantom as the anomaly. Then, The boundary voltage of the practical phantom was measured by the voltage measurement circuit. After that, it processed in the computer with Gauss-Newton Algorithm to got image reconstruction. The result showed that the best image reconstruction was achieved at 10 kHz of frequency current injection. The best image reconstruction had more accuracy of shape, position and electrical properties of an anomaly in boundary phantom than another image reconstruction result

    Imaging and inverse problems of electromagnetic nondestructive evaluation

    Get PDF
    Electromagnetic nondestructive evaluation (NDE) is used widely in industry to assess the character of structures and materials noninvasively. A major aspect of any NDE system is solving the associated inverse problem to characterize the material under study. The solution of the inverse problem is directly related to the physics of a particular electromagnetic NDE system which can be either fully dynamic, quasistatic, or static depending on the operating frequency and material parameters. In a general electromagnetic NDE system, indirect inversion techniques which utilize large amounts of a priori knowledge and some type of calibration scheme are employed to characterize materials. However, in certain test situations the governing physics of an electromagnetic NDE system allow direct inversion techniques to be employed which can be used to image flaws in a material. There has, however, been research which attempts to utilize direct inversion methods which do not rely on the underlying physics of the electromagnetic NDE system;This dissertation first describes the importance of the underlying physics to the solution of the electromagnetic NDE inverse problem. In this context, the inverse problem of fully dynamic electromagnetic NDE and magnetoquasistatic (MQS) NDE are developed to elucidate their underlying mathematical and physical properties. It is shown that the inverse problem for MQS phenomena is generally much more difficult than that of fully dynamic electromagnetic phenomena. Experiments are conducted which utilize fully dynamic millimeter wave NDE and MQS eddy current NDE to compare and contrast the physics and inverse problem of each technique. Two methods are then examined as a possible means of inverting MQS data with direct techniques. A transformation from diffusion to waves is examined as a method of inverting MQS data as a pseudo-wave field. An analytic inversion of the transformation is developed and used to gain insight into robustness issues associated with the method. Also, an averaging scheme is developed to increase the robustness of the transformation. Next, a technique is developed which utilizes phase shifts of steady state eddy current impedance measurements to directly image subsurface flaws in electrically conducting materials. A 1-D analytic study and a 2-D finite element simulation are used to gain insight into the underlying physics associated with the method. A modification to the technique is developed which utilizes the finite element model to account for phase distortions associated with the induced eddy currents in a test sample. An experiment is then carried out to demonstrate this direct inversion technique on actual eddy current data;The results of this study show that the use of direct inversion methods for imaging electromagnetic NDE must be carried out with a clear understanding of the underlying physical phenomena. There are many instances where direct inversion schemes can be applied to fully dynamic electromagnetic fields. Due to physical limitations associated with MQS phenomena, direct inversion methods are not generally applicable to MQS data. However, a transformation technique is shown to be a potential means for utilizing direct inversion techniques on MQS. A second direct inversion technique introduced for MQS data has potential for imaging subsurface flaws in electrically conducting materials. There are, however, severe limitations to both inversion methods which reduce their usefulness

    Frequency difference EIT with localization:A Potential Medical Imaging Tool during Cancer Treatment

    Get PDF
    Electrical impedance tomography (EIT) has attracted great interest in a number of medical applications. It offers several unique advantages, such as being safe, low cost, and having high temporal resolution over other tomographic imaging protocols. The frequency dependence of electrical conductivity in biological samples gives EIT imaging a renewed chance to be a monitoring technique for new and very important medical applications, such as tumor tracking during radiation therapy. Therefore, frequency difference EIT (fdEIT), which reconstructs images using difference data at two injecting frequencies, is a good candidate for high-speed tissue characterization in dynamical settings. However, a low spatial resolution of EIT is a major drawback that limits its uses. In some cases, such as the treatment of tumors, prior knowledge about the location of a tumor is provided by early diagnostic images. This prior knowledge coupled with the spectroscopic knowledge of the frequency response of a tumor against normal tissue gives a possibility for localized fdEIT imaging, which can significantly enhance the spatial resolution. The experimental results in this paper demonstrate this for the purpose of such monitoring of an inclusion exhibiting frequency-dependent impedance and are quantitatively compared with traditional methods. The new method's performances and robustness are demonstrated numerically using several image quality measures. This could give the EIT new roles to play, for motion compensation in conjunction with the traditional low-speed but high-resolution medical imaging systems and dynamic tumor tracking.</p

    Novel Approaches for Nondestructive Testing and Evaluation

    Get PDF
    Nondestructive testing and evaluation (NDT&E) is one of the most important techniques for determining the quality and safety of materials, components, devices, and structures. NDT&E technologies include ultrasonic testing (UT), magnetic particle testing (MT), magnetic flux leakage testing (MFLT), eddy current testing (ECT), radiation testing (RT), penetrant testing (PT), and visual testing (VT), and these are widely used throughout the modern industry. However, some NDT processes, such as those for cleaning specimens and removing paint, cause environmental pollution and must only be considered in limited environments (time, space, and sensor selection). Thus, NDT&E is classified as a typical 3D (dirty, dangerous, and difficult) job. In addition, NDT operators judge the presence of damage based on experience and subjective judgment, so in some cases, a flaw may not be detected during the test. Therefore, to obtain clearer test results, a means for the operator to determine flaws more easily should be provided. In addition, the test results should be organized systemically in order to identify the cause of the abnormality in the test specimen and to identify the progress of the damage quantitatively
    • …
    corecore