7,684 research outputs found

    Systems and algorithms for wireless sensor networks based on animal and natural behavior

    Full text link
    In last decade, there have been many research works about wireless sensor networks (WSNs) focused on improving the network performance as well as increasing the energy efficiency and communications effectiveness. Many of these new mechanisms have been implemented using the behaviors of certain animals, such as ants, bees, or schools of fish.These systems are called bioinspired systems and are used to improve aspects such as handling large-scale networks, provide dynamic nature, and avoid resource constraints, heterogeneity, unattended operation, or robustness, amongmanyothers.Therefore, thispaper aims to studybioinspired mechanisms in the field ofWSN, providing the concepts of these behavior patterns in which these new approaches are based. The paper will explain existing bioinspired systems in WSNs and analyze their impact on WSNs and their evolution. In addition, we will conduct a comprehensive review of recently proposed bioinspired systems, protocols, and mechanisms. Finally, this paper will try to analyze the applications of each bioinspired mechanism as a function of the imitated animal and the deployed application. Although this research area is considered an area with highly theoretical content, we intend to show the great impact that it is generating from the practical perspective.Sendra, S.; Parra Boronat, L.; Lloret, J.; Khan, S. (2015). Systems and algorithms for wireless sensor networks based on animal and natural behavior. International Journal of Distributed Sensor Networks. 2015:1-19. doi:10.1155/2015/625972S1192015Iram, R., Sheikh, M. I., Jabbar, S., & Minhas, A. A. (2011). Computational intelligence based optimization in wireless sensor network. 2011 International Conference on Information and Communication Technologies. doi:10.1109/icict.2011.5983561Lloret, J., Bosch, I., Sendra, S., & Serrano, A. (2011). A Wireless Sensor Network for Vineyard Monitoring That Uses Image Processing. Sensors, 11(6), 6165-6196. doi:10.3390/s110606165Lloret, J., Garcia, M., Bri, D., & Sendra, S. (2009). A Wireless Sensor Network Deployment for Rural and Forest Fire Detection and Verification. Sensors, 9(11), 8722-8747. doi:10.3390/s91108722Dasgupta, P. (2008). A Multiagent Swarming System for Distributed Automatic Target Recognition Using Unmanned Aerial Vehicles. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 38(3), 549-563. doi:10.1109/tsmca.2008.918619Quwaider, M., & Biswas, S. (2012). Delay Tolerant Routing Protocol Modeling for Low Power Wearable Wireless Sensor Networks. Network Protocols and Algorithms, 4(3). doi:10.5296/npa.v4i3.2054Sendra, S., Lloret, J., Garcia, M., & Toledo, J. F. (2011). Power Saving and Energy Optimization Techniques for Wireless Sensor Neworks (Invited Paper). Journal of Communications, 6(6). doi:10.4304/jcm.6.6.439-459Liu, M., & Song, C. (2012). Ant-Based Transmission Range Assignment Scheme for Energy Hole Problem in Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 8(12), 290717. doi:10.1155/2012/290717Riva, G., & Finochietto, J. M. (2012). Pheromone-based In-Network Processing for Wireless Sensor Network Monitoring Systems. Network Protocols and Algorithms, 4(4). doi:10.5296/npa.v4i4.2206Garcia, M., Sendra, S., Lloret, J., & Canovas, A. (2011). Saving energy and improving communications using cooperative group-based Wireless Sensor Networks. Telecommunication Systems, 52(4), 2489-2502. doi:10.1007/s11235-011-9568-3Kim, J.-Y., Sharma, T., Kumar, B., Tomar, G. S., Berry, K., & Lee, W.-H. (2014). Intercluster Ant Colony Optimization Algorithm for Wireless Sensor Network in Dense Environment. International Journal of Distributed Sensor Networks, 10(4), 457402. doi:10.1155/2014/457402Dressler, F., & Akan, O. B. (2010). A survey on bio-inspired networking. Computer Networks, 54(6), 881-900. doi:10.1016/j.comnet.2009.10.024Atakan, B., & Akan, O. B. (2006). Immune System Based Distributed Node and Rate Selection in Wireless Sensor Networks. 2006 1st Bio-Inspired Models of Network, Information and Computing Systems. doi:10.1109/bimnics.2006.361806Di Pietro, R., & Verde, N. V. (2011). Introducing epidemic models for data survivability in Unattended Wireless Sensor Networks. 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks. doi:10.1109/wowmom.2011.5986165Marwaha, S., Indulska, J., & Portmann, M. (2009). Biologically Inspired Ant-Based Routing in Mobile Ad hoc Networks (MANET): A Survey. 2009 Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing. doi:10.1109/uic-atc.2009.95Jha, V., Khetarpal, K., & Sharma, M. (2011). A survey of nature inspired routing algorithms for MANETs. 2011 3rd International Conference on Electronics Computer Technology. doi:10.1109/icectech.2011.5942042Fernandez-Marquez, J. L., Di Marzo Serugendo, G., Montagna, S., Viroli, M., & Arcos, J. L. (2012). Description and composition of bio-inspired design patterns: a complete overview. Natural Computing, 12(1), 43-67. doi:10.1007/s11047-012-9324-yCamilo, T., Carreto, C., Silva, J. S., & Boavida, F. (2006). An Energy-Efficient Ant-Based Routing Algorithm for Wireless Sensor Networks. Lecture Notes in Computer Science, 49-59. doi:10.1007/11839088_5Selvakennedy, S., Sinnappan, S., & Shang, Y. (2006). T-ANT: A Nature-Inspired Data Gathering Protocol for Wireless Sensor Networks. Journal of Communications, 1(2). doi:10.4304/jcm.1.2.22-29Almshreqi, A. M. S., Ali, B. M., Rasid, M. F. A., Ismail, A., & Varahram, P. (2012). An improved routing mechanism using bio-inspired for energy balancing in wireless sensor networks. The International Conference on Information Network 2012. doi:10.1109/icoin.2012.6164367Chen, G., Guo, T.-D., Yang, W.-G., & Zhao, T. (2006). An improved ant-based routing protocol in Wireless Sensor Networks. 2006 International Conference on Collaborative Computing: Networking, Applications and Worksharing. doi:10.1109/colcom.2006.361893Okdem, S., & Karaboga, D. (2006). Routing in Wireless Sensor Networks Using Ant Colony Optimization. First NASA/ESA Conference on Adaptive Hardware and Systems (AHS’06). doi:10.1109/ahs.2006.63Salehpour, A.-A., Mirmobin, B., Afzali-Kusha, A., & Mohammadi, S. (2008). An energy efficient routing protocol for cluster-based wireless sensor networks using ant colony optimization. 2008 International Conference on Innovations in Information Technology. doi:10.1109/innovations.2008.4781748Wen, Y., Chen, Y., & Pan, M. (2008). Adaptive ant-based routing in wireless sensor networks using Energy*Delay metrics. Journal of Zhejiang University-SCIENCE A, 9(4), 531-538. doi:10.1631/jzus.a071382Liao, W.-H., Kao, Y., & Wu, R.-T. (2011). Ant colony optimization based sensor deployment protocol for wireless sensor networks. Expert Systems with Applications, 38(6), 6599-6605. doi:10.1016/j.eswa.2010.11.079Pavai, K., Sivagami, A., & Sridharan, D. (2009). Study of Routing Protocols in Wireless Sensor Networks. 2009 International Conference on Advances in Computing, Control, and Telecommunication Technologies. doi:10.1109/act.2009.133Juan, L., Chen, S., & Chao, Z. (2007). Ant System Based Anycast Routing in Wireless Sensor Networks. 2007 International Conference on Wireless Communications, Networking and Mobile Computing. doi:10.1109/wicom.2007.603Wang, C., & Lin, Q. (2008). Swarm intelligence optimization based routing algorithm for Wireless Sensor Networks. 2008 International Conference on Neural Networks and Signal Processing. doi:10.1109/icnnsp.2008.4590326Jiang, H., Wang, M., Liu, M., & Yan, J. (2012). A quantum-inspired ant-based routing algorithm for WSNs. Proceedings of the 2012 IEEE 16th International Conference on Computer Supported Cooperative Work in Design (CSCWD). doi:10.1109/cscwd.2012.6221881Okazaki, A. M., & Frohlich, A. A. (2011). Ant-based Dynamic Hop Optimization Protocol: A routing algorithm for Mobile Wireless Sensor Networks. 2011 IEEE GLOBECOM Workshops (GC Wkshps). doi:10.1109/glocomw.2011.6162356Hui, X., Zhigang, Z., & Xueguang, Z. (2009). A Novel Routing Protocol in Wireless Sensor Networks Based on Ant Colony Optimization. 2009 International Conference on Environmental Science and Information Application Technology. doi:10.1109/esiat.2009.460AbdelSalam, H. S., & Olariu, S. (2012). BEES: BioinspirEd backbonE Selection in Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems, 23(1), 44-51. doi:10.1109/tpds.2011.100Da Silva Rego, A., Celestino, J., dos Santos, A., Cerqueira, E. C., Patel, A., & Taghavi, M. (2012). BEE-C: A bio-inspired energy efficient cluster-based algorithm for data continuous dissemination in Wireless Sensor Networks. 2012 18th IEEE International Conference on Networks (ICON). doi:10.1109/icon.2012.6506592Neshat, M., Sepidnam, G., Sargolzaei, M., & Toosi, A. N. (2012). Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications. Artificial Intelligence Review, 42(4), 965-997. doi:10.1007/s10462-012-9342-2Antoniou, P., Pitsillides, A., Blackwell, T., & Engelbrecht, A. (2009). Employing the flocking behavior of birds for controlling congestion in autonomous decentralized networks. 2009 IEEE Congress on Evolutionary Computation. doi:10.1109/cec.2009.4983153Ruihua, Z., Zhiping, J., Xin, L., & Dongxue, H. (2011). Double cluster-heads clustering algorithm for wireless sensor networks using PSO. 2011 6th IEEE Conference on Industrial Electronics and Applications. doi:10.1109/iciea.2011.5975688Kulkarni, R. V., Venayagamoorthy, G. K., & Cheng, M. X. (2009). Bio-inspired node localization in wireless sensor networks. 2009 IEEE International Conference on Systems, Man and Cybernetics. doi:10.1109/icsmc.2009.5346107Kulkarni, R. V., & Venayagamoorthy, G. K. (2010). Bio-inspired Algorithms for Autonomous Deployment and Localization of Sensor Nodes. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 663-675. doi:10.1109/tsmcc.2010.2049649Xin Song, Cuirong Wang, Wang, J., & Bin Zhang. (2010). A hierarchical routing protocol based on AFSO algorithm for WSN. 2010 International Conference On Computer Design and Applications. doi:10.1109/iccda.2010.5541265Gao, X. Z., Wu, Y., Zenger, K., & Huang, X. (2010). A Knowledge-Based Artificial Fish-Swarm Algorithm. 2010 13th IEEE International Conference on Computational Science and Engineering. doi:10.1109/cse.2010.49Wang, L., & Ma, L. (2011). A hybrid artificial fish swarm algorithm for Bin-packing problem. Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology. doi:10.1109/emeit.2011.6022829Yiyue, W., Hongmei, L., & Hengyang, H. (2012). Wireless Sensor Network Deployment Using an Optimized Artificial Fish Swarm Algorithm. 2012 International Conference on Computer Science and Electronics Engineering. doi:10.1109/iccsee.2012.453Yang, X.-S. (2010). A New Metaheuristic Bat-Inspired Algorithm. Studies in Computational Intelligence, 65-74. doi:10.1007/978-3-642-12538-6_6Goyal, S., & Patterh, M. S. (2013). Performance of BAT Algorithm on Localization of Wireless Sensor Network. INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY, 6(3), 351-358. doi:10.24297/ijct.v6i3.4481Krishnanand, K. N., & Ghose, D. (2006). Glowworm swarm based optimization algorithm for multimodal functions with collective robotics applications. Multiagent and Grid Systems, 2(3), 209-222. doi:10.3233/mgs-2006-2301Apostolopoulos, T., & Vlachos, A. (2011). Application of the Firefly Algorithm for Solving the Economic Emissions Load Dispatch Problem. International Journal of Combinatorics, 2011, 1-23. doi:10.1155/2011/523806Liao, W.-H., Kao, Y., & Li, Y.-S. (2011). A sensor deployment approach using glowworm swarm optimization algorithm in wireless sensor networks. Expert Systems with Applications, 38(10), 12180-12188. doi:10.1016/j.eswa.2011.03.053Sun, Y., Jiang, Q., & Zhang, K. (2012). A clustering scheme for Reachback Firefly Synchronicity in wireless sensor networks. 2012 3rd IEEE International Conference on Network Infrastructure and Digital Content. doi:10.1109/icnidc.2012.6418705Zungeru, A. M., Ang, L.-M., & Seng, K. P. (2012). Termite-Hill. International Journal of Swarm Intelligence Research, 3(4), 1-22. doi:10.4018/jsir.2012100101KumarE, S., S. M., K., & Kumar B. P., V. (2014). Clustering Protocol for Wireless Sensor Networks based on Rhesus Macaque (Macaca mulatta) Animal's Social Behavior. International Journal of Computer Applications, 87(8), 20-27. doi:10.5120/15229-3754Breza, M., & McCann, J. A. (2008). Lessons in Implementing Bio-inspired Algorithms on Wireless Sensor Networks. 2008 NASA/ESA Conference on Adaptive Hardware and Systems. doi:10.1109/ahs.2008.72Aziz, N. A. B. A., Mohemmed, A. W., & Sagar, B. S. D. (2007). Particle Swarm Optimization and Voronoi diagram for Wireless Sensor Networks coverage optimization. 2007 International Conference on Intelligent and Advanced Systems. doi:10.1109/icias.2007.4658528Falcon, R., Li, X., Nayak, A., & Stojmenovic, I. (2012). A harmony-seeking firefly swarm to the periodic replacement of damaged sensors by a team of mobile robots. 2012 IEEE International Conference on Communications (ICC). doi:10.1109/icc.2012.6363859Antoniou, P., & Pitsillides, A. (2010). A bio-inspired approach for streaming applications in wireless sensor networks based on the Lotka–Volterra competition model. Computer Communications, 33(17), 2039-2047. doi:10.1016/j.comcom.2010.07.020Benahmed, K., Merabti, M., & Haffaf, H. (2012). Inspired Social Spider Behavior for Secure Wireless Sensor Networks. International Journal of Mobile Computing and Multimedia Communications, 4(4), 1-10. doi:10.4018/jmcmc.2012100101Alrajeh, N. A., & Lloret, J. (2013). Intrusion Detection Systems Based on Artificial Intelligence Techniques in Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 9(10), 351047. doi:10.1155/2013/351047Hussain, S., Matin, A. W., & Islam, O. (2007). Genetic Algorithm for Hierarchical Wireless Sensor Networks. Journal of Networks, 2(5). doi:10.4304/jnw.2.5.87-97Hussain, S., Matin, A. W., & Islam, O. (2007). Genetic Algorithm for Energy Efficient Clusters in Wireless Sensor Networks. Fourth International Conference on Information Technology (ITNG’07). doi:10.1109/itng.2007.97Ferentinos, K. P., & Tsiligiridis, T. A. (2007). Adaptive design optimization of wireless sensor networks using genetic algorithms. Computer Networks, 51(4), 1031-1051. doi:10.1016/j.comnet.2006.06.013Jia, J., Chen, J., Chang, G., & Tan, Z. (2009). Energy efficient coverage control in wireless sensor networks based on multi-objective genetic algorithm. Computers & Mathematics with Applications, 57(11-12), 1756-1766. doi:10.1016/j.camwa.2008.10.036Nan, G.-F., Li, M.-Q., & Li, J. (2007). Estimation of Node Localization with a Real-Coded Genetic Algorithm in WSNs. 2007 International Conference on Machine Learning and Cybernetics. doi:10.1109/icmlc.2007.4370265Saleem, K., Fisal, N., Abdullah, M. S., Zulkarmwan, A. B., Hafizah, S., & Kamilah, S. (2009). Proposed Nature Inspired Self-Organized Secure Autonomous Mechanism for WSNs. 2009 First Asian Conference on Intelligent Information and Database Systems. doi:10.1109/aciids.2009.75Jabbari, A., & Lang, W. (2010). Advanced Bio-inspired Plausibility Checking in a Wireless Sensor Network Using Neuro-immune Systems: Autonomous Fault Diagnosis in an Intelligent Transportation System. 2010 Fourth International Conference on Sensor Technologies and Applications. doi:10.1109/sensorcomm.2010.24Ponnusamy, V., & Abdullah, A. (2010). Biologically Inspired (Botany) Mobile Agent Based Self-Healing Wireless Sensor Network. 2010 Sixth International Conference on Intelligent Environments. doi:10.1109/ie.2010.46Li, J., Cui, Z., & Shi, Z. (2012). An Improved Artificial Plant Optimization Algorithm for Coverage Problem in WSN. Sensor Letters, 10(8), 1874-1878. doi:10.1166/sl.2012.2627Sendra, S., Llario, F., Parra, L., & Lloret, J. (2014). Smart Wireless Sensor Network to Detect and Protect Sheep and Goats to Wolf Attacks. Recent Advances in Communications and Networking Technology, 2(2), 91-101. doi:10.2174/22117407112016660012Sendra, S., Granell, E., Lloret, J., & Rodrigues, J. J. P. C. (2013). Smart Collaborative Mobile System for Taking Care of Disabled and Elderly People. Mobile Networks and Applications, 19(3), 287-302. doi:10.1007/s11036-013-0445-zGarcia, M., Sendra, S., Lloret, G., & Lloret, J. (2011). Monitoring and control sensor system for fish feeding in marine fish farms. IET Communications, 5(12), 1682-1690. doi:10.1049/iet-com.2010.0654Sendra, S., Lloret, J., Rodrigues, J. J. P. C., & Aguiar, J. M. (2013). Underwater Wireless Communications in Freshwater at 2.4 GHz. IEEE Communications Letters, 17(9), 1794-1797. doi:10.1109/lcomm.2013.072313.131214Lloret, J., Sendra, S., Ardid, M., & Rodrigues, J. J. P. C. (2012). Underwater Wireless Sensor Communications in the 2.4 GHz ISM Frequency Band. Sensors, 12(4), 4237-4264. doi:10.3390/s12040423

    Smart Computing and Sensing Technologies for Animal Welfare: A Systematic Review

    Get PDF
    Animals play a profoundly important and intricate role in our lives today. Dogs have been human companions for thousands of years, but they now work closely with us to assist the disabled, and in combat and search and rescue situations. Farm animals are a critical part of the global food supply chain, and there is increasing consumer interest in organically fed and humanely raised livestock, and how it impacts our health and environmental footprint. Wild animals are threatened with extinction by human induced factors, and shrinking and compromised habitat. This review sets the goal to systematically survey the existing literature in smart computing and sensing technologies for domestic, farm and wild animal welfare. We use the notion of \emph{animal welfare} in broad terms, to review the technologies for assessing whether animals are healthy, free of pain and suffering, and also positively stimulated in their environment. Also the notion of \emph{smart computing and sensing} is used in broad terms, to refer to computing and sensing systems that are not isolated but interconnected with communication networks, and capable of remote data collection, processing, exchange and analysis. We review smart technologies for domestic animals, indoor and outdoor animal farming, as well as animals in the wild and zoos. The findings of this review are expected to motivate future research and contribute to data, information and communication management as well as policy for animal welfare

    Embedded neural network for real-time animal behavior classification

    Get PDF
    Recent biological studies have focused on understanding animal interactions and welfare. To help biolo- gists to obtain animals’ behavior information, resources like wireless sensor networks are needed. More- over, large amounts of obtained data have to be processed off-line in order to classify different behaviors.There are recent research projects focused on designing monitoring systems capable of measuring someanimals’ parameters in order to recognize and monitor their gaits or behaviors. However, network unre- liability and high power consumption have limited their applicability.In this work, we present an animal behavior recognition, classification and monitoring system based ona wireless sensor network and a smart collar device, provided with inertial sensors and an embeddedmulti-layer perceptron-based feed-forward neural network, to classify the different gaits or behaviorsbased on the collected information. In similar works, classification mechanisms are implemented in aserver (or base station). The main novelty of this work is the full implementation of a reconfigurableneural network embedded into the animal’s collar, which allows a real-time behavior classification andenables its local storage in SD memory. Moreover, this approach reduces the amount of data transmittedto the base station (and its periodicity), achieving a significantly improving battery life. The system hasbeen simulated and tested in a real scenario for three different horse gaits, using different heuristics andsensors to improve the accuracy of behavior recognition, achieving a maximum of 81%.Junta de Andalucía P12-TIC-130

    A smart self-organizing node deployment algorithm in wireless sensor networks

    Get PDF

    Collaborative signal and information processing for target detection with heterogeneous sensor networks

    Get PDF
    In this paper, an approach for target detection and acquisition with heterogeneous sensor networks through strategic resource allocation and coordination is presented. Based on sensor management and collaborative signal and information processing, low-capacity low-cost sensors are strategically deployed to guide and cue scarce high performance sensors in the network to improve the data quality, with which the mission is eventually completed more efficiently with lower cost. We focus on the problem of designing such a network system in which issues of resource selection and allocation, system behaviour and capacity, target behaviour and patterns, the environment, and multiple constraints such as the cost must be addressed simultaneously. Simulation results offer significant insight into sensor selection and network operation, and demonstrate the great benefits introduced by guided search in an application of hunting down and capturing hostile vehicles on the battlefield

    Semi-wildlife gait patterns classification using Statistical Methods and Artificial Neural Networks

    Get PDF
    Several studies have focused on classifying behavioral patterns in wildlife and captive species to monitor their activities and so to understanding the interactions of animals and control their welfare, for biological research or commercial purposes. The use of pattern recognition techniques, statistical methods and Overall Dynamic Body Acceleration (ODBA) are well known for animal behavior recognition tasks. The reconfigurability and scalability of these methods are not trivial, since a new study has to be done when changing any of the configuration parameters. In recent years, the use of Artificial Neural Networks (ANN) has increased for this purpose due to the fact that they can be easily adapted when new animals or patterns are required. In this context, a comparative study between a theoretical research is presented, where statistical and spectral analyses were performed and an embedded implementation of an ANN on a smart collar device was placed on semi-wild animals. This system is part of a project whose main aim is to monitor wildlife in real time using a wireless sensor network infrastructure. Different classifiers were tested and compared for three different horse gaits. Experimental results in a real time scenario achieved an accuracy of up to 90.7%, proving the efficiency of the embedded ANN implementation.Junta de Andalucía P12-TIC-1300Ministerio de Economía y Competitividad TEC2016-77785-

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing
    corecore