3 research outputs found

    SystemC-AMS thermal modeling for the co-simulation of functional and extra-functional properties

    Get PDF
    Temperature is a critical property of smart systems, due to its impact on reliability and to its inter-dependence with power consumption. Unfortunately, the current design flows evaluate thermal evolution ex-post, on offline power traces. This does not allow to consider temperature as a dimension in the design loop, and it misses all the complex inter-dependencies with design choices and power evolution. In this paper, by adopting the functional language SystemC-AMS, we propose a method to enable thermal/power/functional co-simulation. The system thermal model is built by using state-of-the-art circuit equivalent models, by exploiting the support for electrical linear networks intrinsic of SystemC-AMS. The experimental results will show that the choice of SystemC-AMS is a winning strategy for building a simultaneous simulation of multiple functional and extra-functional properties of a system. The generated code exposes an accuracy comparable to that of the reference thermal simulator HotSpot. Additionally, the initial overhead due to the general purpose nature of SystemC-AMS is compensated by surprisingly high performance of transient simulation, with speedups as high as two orders of magnitude

    Génération de modèles de haut niveau enrichis pour les systèmes hétérogènes et multiphysiques

    Get PDF
    Systems on chip are more and more complex as they now embed not only digital and analog parts, butalso sensors and actuators. SystemC and its extension SystemC AMS allow the high level modeling ofsuch systems. These tools are efficient for feasibility study, architectural exploration and globalverification of heterogeneous and multiphysics systems. At low level of abstraction, the simulationdurations are too important. Moreover, synchronization problems appear when cosimulations areperformed. It is possible to abstract the low level models that are developed by the specialists of thedifferent domains to create high level models that can be simulated faster using SystemC/SystemCAMS. The models of computation and the modeling styles have been studied. A relation is shownbetween the modeling style, the model size and the simulation speed. A method that generatesautomatically the high level model of an analog linear circuit from its low level representation isproposed. Then, it is shown how to include in the high level model some information allowing thepower consumption estimation. After that, the multiphysics systems modeling is studied. Twomethods are discussed: firstly, the one that uses the electrical equivalent circuit, then the one based onthe bond graph approach. It is shown how to generate a bond graph equivalent model from a low levelrepresentation. Finally, the modeling of a wind turbine system is discussed in order to illustrate thedifferent concepts presented in this thesis.Les systèmes sur puce sont de plus en plus complexes : ils intègrent des parties numériques, desparties analogiques et des capteurs ou actionneurs. SystemC et son extension SystemC AMSpermettent aujourd’hui de modéliser à haut niveau d’abstraction de tels systèmes. Ces outilsconstituent de véritables atouts dans une optique d’étude de faisabilité, d’exploration architecturale etde vérification du fonctionnement global des systèmes complexes hétérogènes et multiphysiques. Eneffet, les durées de simulation deviennent trop importantes pour envisager les simulations globales àbas niveau d’abstraction. De plus, les simulations basées sur l’utilisation conjointe de différents outilsprovoquent des problèmes de synchronisation. Les modèles de bas niveau, une fois crées par lesspécialistes des différents domaines peuvent toutefois être abstraits afin de générer des modèles dehaut niveau simulables sous SystemC/SystemC AMS en des temps de simulation réduits. Une analysedes modèles de calcul et des styles de modélisation possibles est d’abord présentée afin d’établir unlien avec les durées de simulation, ceci pour proposer un style de modélisation en fonction du niveaud’abstraction souhaité et de l’ampleur de la simulation à effectuer. Dans le cas des circuits analogiqueslinéaires, une méthode permettant de générer automatiquement des modèles de haut niveaud’abstraction à partir de modèles de bas niveau a été proposée. Afin d’évaluer très tôt dans le flot deconception la consommation d’un système, un moyen d’enrichir les modèles de haut niveaupréalablement générés est présenté. L’attention a ensuite été portée sur la modélisation à haut niveaudes systèmes multiphysiques. Deux méthodes y sont discutées : la méthode consistant à utiliser lecircuit équivalent électrique puis la méthode basée sur les bond graphs. En particulier, nous proposonsune méthode permettant de générer un modèle équivalent au bond graph à partir d’un modèle de basniveau. Enfin, la modélisation d’un système éolien est étudiée afin d’illustrer les différents conceptsprésentés dans cette thèse

    System-level modeling of electromechanical devices with energy consumption

    No full text
    ISBN : 978-1-4673-3107-4International audienceThis paper presents an approach for high-level modeling of electromechanical systems. The proposed methodology starts from a low-level description and generate automatically the corresponding bond-graph model. The following steps consist on finding a behavioral model such as a state space representation which is enriched with the information needed to compute the energy consumption and the losses of the system. The development is done using SystemC AMS modeling environment: a particularly well suited language for high-level modeling of heterogeneous systems. The modeling of an electromechanical filter will be used as case study
    corecore