33 research outputs found

    Flexible Macroblock Ordering for Context-Aware Ultrasound Video Transmission over Mobile WiMAX

    Get PDF
    The most recent network technologies are enabling a variety of new applications, thanks to the provision of increased bandwidth and better management of Quality of Service. Nevertheless, telemedical services involving multimedia data are still lagging behind, due to the concern of the end users, that is, clinicians and also patients, about the low quality provided. Indeed, emerging network technologies should be appropriately exploited by designing the transmission strategy focusing on quality provision for end users. Stemming from this principle, we propose here a context-aware transmission strategy for medical video transmission over WiMAX systems. Context, in terms of regions of interest (ROI) in a specific session, is taken into account for the identification of multiple regions of interest, and compression/transmission strategies are tailored to such context information. We present a methodology based on H.264 medical video compression and Flexible Macroblock Ordering (FMO) for ROI identification. Two different unequal error protection methodologies, providing higher protection to the most diagnostically relevant data, are presented

    Acesso banda larga sem fios em ambientes heterogéneos de próxima geração

    Get PDF
    Doutoramento em Engenharia InformĂĄticaO acesso ubĂ­quo Ă  Internet Ă© um dos principais desafios para os operadores de telecomunicaçÔes na prĂłxima dĂ©cada. O nĂșmero de utilizadores da Internet estĂĄ a crescer exponencialmente e o paradigma de acesso "always connected, anytime, anywhere" Ă© um requisito fundamental para as redes mĂłveis de prĂłxima geração. A tecnologia WiMAX, juntamente com o LTE, foi recentemente reconhecida pelo ITU como uma das tecnologias de acesso compatĂ­veis com os requisitos do 4G. Ainda assim, esta tecnologia de acesso nĂŁo estĂĄ completamente preparada para ambientes de prĂłxima geração, principalmente devido Ă  falta de mecanismos de cross-layer para integração de QoS e mobilidade. Adicionalmente, para alĂ©m das tecnologias WiMAX e LTE, as tecnologias de acesso rĂĄdio UMTS/HSPA e Wi-Fi continuarĂŁo a ter um impacto significativo nas comunicaçÔes mĂłveis durante os prĂłximos anos. Deste modo, Ă© fundamental garantir a coexistĂȘncia das vĂĄrias tecnologias de acesso rĂĄdio em termos de QoS e mobilidade, permitindo assim a entrega de serviços multimĂ©dia de tempo real em redes mĂłveis. Para garantir a entrega de serviços multimĂ©dia a utilizadores WiMAX, esta Tese propĂ”e um gestor cross-layer WiMAX integrado com uma arquitectura de QoS fim-a-fim. A arquitectura apresentada permite o controlo de QoS e a comunicação bidireccional entre o sistema WiMAX e as entidades das camadas superiores. Para alĂ©m disso, o gestor de cross-layer proposto Ă© estendido com eventos e comandos genĂ©ricos e independentes da tecnologia para optimizar os procedimentos de mobilidade em ambientes WiMAX. Foram realizados testes para avaliar o desempenho dos procedimentos de QoS e mobilidade da arquitectura WiMAX definida, demonstrando que esta Ă© perfeitamente capaz de entregar serviços de tempo real sem introduzir custos excessivos na rede. No seguimento das extensĂ”es de QoS e mobilidade apresentadas para a tecnologia WiMAX, o Ăąmbito desta Tese foi alargado para ambientes de acesso sem-fios heterogĂ©neos. Neste sentido, Ă© proposta uma arquitectura de mobilidade transparente com suporte de QoS para redes de acesso multitecnologia. A arquitectura apresentada integra uma versĂŁo estendida do IEEE 802.21 com suporte de QoS, bem como um gestor de mobilidade avançado integrado com os protocolos de gestĂŁo de mobilidade do nĂ­vel IP. Finalmente, para completar o trabalho desenvolvido no Ăąmbito desta Tese, Ă© proposta uma extensĂŁo aos procedimentos de decisĂŁo de mobilidade em ambientes heterogĂ©neos para incorporar a informação de contexto da rede e do terminal. Para validar e avaliar as optimizaçÔes propostas, foram desenvolvidos testes de desempenho num demonstrador inter-tecnologia, composta pelas redes de acesso WiMAX, Wi-Fi e UMTS/HSPA.Ubiquitous Internet access is one of the main challenges for the telecommunications industry in the next decade. The number of users accessing the Internet is growing exponentially and the network access paradigm of “always connected, anytime, anywhere” is a central requirement for the so-called Next Generation Mobile Networks (NGMN). WiMAX, together with LTE, was recently recognized by ITU as one of the compliant access technologies for 4G. Nevertheless, WiMAX is not yet fully prepared for next generation environments, mainly due to the lack of QoS and mobility crosslayer procedures to support real-time multimedia services delivery. Furthermore, besides the 4G compliant WiMAX and LTE radio access technologies, UMTS/HSPA and Wi-Fi will also have a significant impact in the mobile communications during the next years. Therefore, it is fundamental to ensure the coexistence of multiple radio access technologies in what QoS and mobility procedures are concerned, thereby allowing the delivery of real-time services in mobile networks. In order to provide the WiMAX mobile users with the demanded multimedia services, it is proposed in this Thesis a WiMAX cross-layer manager integrated in an end-to-end all-IP QoS enabled architecture. The presented framework enables the QoS control and bidirectional communication between WiMAX and the upper layer network entities. Furthermore, the proposed cross-layer framework is extended with media independent events and commands to optimize the mobility procedures in WiMAX environments. Tests were made to evaluate the QoS and mobility performance of the defined architecture, demonstrating that it is perfectly capable of handling and supporting real time services without introducing an excessive cost in the network. Following the QoS and mobility extensions provided for WiMAX, the scope of this Thesis is broaden and a seamless mobility architecture with QoS support in heterogeneous wireless access environments is proposed. The presented architecture integrates an extended version of the IEEE 802.21 framework with QoS support, as well as an advanced mobility manager integrated with the IP level mobility management protocols. Finally, to complete the work within the framework of this Thesis, it is proposed an extension to the handover decisionmaking processes in heterogeneous access environments through the integration of context information from both the network entities and the enduser. Performance tests were developed in a real testbed to validate the proposed optimizations in an inter-technology handover scenario involving WiMAX, Wi-Fi and UMTS/HSPA

    Adaptive load balancing routing algorithms for the next generation wireless telecommunications networks

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and was awarded by Brunel UniversityWith the rapid development of wireless networks, mesh networks are evolving as a new important technology, presenting a high research and commercial interest. Additionally, wireless mesh networks have a wide variety of applications, offering the ability to provide network access in both rural and urban areas with low cost of maintenance. One of the main functionalities of a wireless mesh network is load balancing routing, which is the procedure of finding the best, according to some criteria, routes that data need to follow to transfer from one node to another. Routing is one of the state-of-the-art areas of research because the current algorithms and protocols are not efficient and effective due to the diversity of the characteristics of these networks. In this thesis, two new routing algorithms have been developed for No Intra-Cell Interference (NICI) and Limited Intra-Cell Interference (LICI) networks based on WiMAX, the most advanced wireless technology ready for deployment. The algorithms created are based on the classical Dijkstra and Ford-Fulkerson algorithms and can be implemented in the cases of unicast and multicast transmission respectively.State scholarships foundation of Greece

    Comparison of vertical handover decision-based techniques in heterogeneous networks

    Get PDF
    Industry leaders are currently setting out standards for 5G Networks projected for 2020 or even sooner. Future generation networks will be heterogeneous in nature because no single network type is capable of optimally meeting all the rapid changes in customer demands. Heterogeneous networks are typically characterized by some network architecture, base stations of varying transmission power, transmission solutions and the deployment of a mix of technologies (multiple radio access technologies). In heterogeneous networks, the processes involved when a mobile node successfully switches from one radio access technology to the other for the purpose of quality of service continuity is termed vertical handover or vertical handoff. Active calls that get dropped, or cases where there is discontinuity of service experienced by mobile users can be attributed to the phenomenon of delayed handover or an outright case of an unsuccessful handover procedure. This dissertation analyses the performance of a fuzzy-based VHO algorithm scheme in a Wi-Fi, WiMAX, UMTS and LTE integrated network using the OMNeT++ discrete event simulator. The loose coupling type network architecture is adopted and results of the simulation are analysed and compared for the two major categories of handover basis; multiple and single criteria based handover methods. The key performance indices from the simulations showed better overall throughput, better call dropped rate and shorter handover time duration for the multiple criteria based decision method compared to the single criteria based technique. This work also touches on current trends, challenges in area of seamless handover and initiatives for future Networks (Next Generation Heterogeneous Networks)

    An optimal admission control protocol for heterogeneous multicast streaming services

    Get PDF
    We investigate optimal call admission control (CAC) policy for multicast streaming services (MSS) in 3rd generation (3G) and beyond wireless mobile networks. Several MSS sessions are supported simultaneously in a bandwidth-limited network. Active sessions are those that are currently serving some users, and inactive sessions are those that are currently not serving any users. An admission decision in MSS is required only when an inactive session is requested, unlike in unicasting. For this reason, if a user request for an inactive MSS session arrives, we should make an admission decision in anticipation of (i) the possible reward earned based on users served during a session active time generated by accepting it, and (ii) the influence of the session active time upon the future status of network bandwidth and admission decisions. Our objective is to determine when to admit or block a user asking an inactive MSS session to achieve the optimality in rewards. We formulate this problem as a semi-Markov decision process (SMDP), and a value iteration algorithm is used to obtain an optimal stationary deterministic policy. We also derive the user blocking probability of the optimal policy by analyzing an embedded Markov chain induced by it.http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=26hb201

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modiïŹed our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the ïŹeld of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks
    corecore