21,442 research outputs found

    Asynchronous techniques for system-on-chip design

    Get PDF
    SoC design will require asynchronous techniques as the large parameter variations across the chip will make it impossible to control delays in clock networks and other global signals efficiently. Initially, SoCs will be globally asynchronous and locally synchronous (GALS). But the complexity of the numerous asynchronous/synchronous interfaces required in a GALS will eventually lead to entirely asynchronous solutions. This paper introduces the main design principles, methods, and building blocks for asynchronous VLSI systems, with an emphasis on communication and synchronization. Asynchronous circuits with the only delay assumption of isochronic forks are called quasi-delay-insensitive (QDI). QDI is used in the paper as the basis for asynchronous logic. The paper discusses asynchronous handshake protocols for communication and the notion of validity/neutrality tests, and completion tree. Basic building blocks for sequencing, storage, function evaluation, and buses are described, and two alternative methods for the implementation of an arbitrary computation are explained. Issues of arbitration, and synchronization play an important role in complex distributed systems and especially in GALS. The two main asynchronous/synchronous interfaces needed in GALS-one based on synchronizer, the other on stoppable clock-are described and analyzed

    A High-level EDA Environment for the Automatic Insertion of HD-BIST Structures

    Get PDF
    This paper presents a High-Level EDA environment based on the Hierarchical Distributed BIST (HD-BIST), a flexible and reusable approach to solve BIST scheduling issues in System-on-Chip applications. HD-BIST allows activating and controlling different BISTed blocks at different levels of hierarchy, with a minimum overhead in terms of area and test time. Besides the hardware layer, the authors present the HD-BIST application layer, where a simple modeling language, and a prototypical EDA tool demonstrate the effectiveness of the automation of the HD-BIST insertion in the test strategy definition of a complex System-on-Chip

    Architecture Design Space Exploration for Streaming Applications Through Timing Analysis

    Get PDF
    In this paper we compare the maximum achievable throughput of different memory organisations of the processing elements that constitute a multiprocessor system on chip. This is done by modelling the mapping of a task with input and output channels on a processing element as a homogeneous synchronous dataflow graph, and use maximum cycle mean analysis to derive the throughput. In a HiperLAN2 case study we show how these techniques can be used to derive the required clock frequency and communication latencies in order to meet the application's throughput requirement on a multiprocessor system on chip that has one of the investigated memory organisations

    Open source microprocessor and on-chip-bus for system-on-chip

    Get PDF
    A System-On-Chip (SoC) is a complex integrated circuit that combines blocks of processor, memory and peripheral devices in one chip. SoCs often form the main or the only component of embedded systems. The advantages of the SoC include improvements in performance, size, reliability, power dissipation, cost, and design turn-around time. The hardware blocks – sometimes referred to as intellectual property cores or just IPs – are connected using a proprietary or open on-chip bus (OCB). The SoCs may be fabricated as application-specific integrated circuits (ASICs) or field-programmable gate arrays (FPGAs). The non-recurring engineering (NRE) costs for ASICs are much higher although the unit cost for the finished product is lower. For simpler designs and/or lower production runs, FPGAs are usually more cost-effective. One of the costs in implementing an SoC is acquiring the source code or designing the required cores. An approach for reducing costs is to use open source hardware. Open source cores have the advantages of zero license and royalty cost, ability to modify the cores at will, no limitation on supply and maintenance, portability and simplified prototyping. We discuss our implementation of a skeleton SoC incorporating a DLX processor, the Wishbone on-chip bus, and a memory system. The processor bus- memory combination forms a foundation to which a designer can add more cores such as memory and peripherals as long as they comply with the Wishbone protocol. The DLX processor and memory are described in VHDL, while the Wishbone module is in Verilog HDL. Quartus II software is used to synthesize, compile and verify the functionality of CPU and Wishbone by simulation and timing analysis. The partial SoC system is implemented in Altera APEX20KE200 FPGA board. Nios, which is the core processor in the FPGA board, is used as an intermediate processor which communicates with DLX and the rest of the system via Avalon Bus Protocol to verify system operation and functionality in real hardware environment

    A programmable microsystem using system-on-chip for real-time biotelemetry

    Get PDF
    A telemetry microsystem, including multiple sensors, integrated instrumentation and a wireless interface has been implemented. We have employed a methodology akin to that for System-on-Chip microelectronics to design an integrated circuit instrument containing several "intellectual property" blocks that will enable convenient reuse of modules in future projects. The present system was optimized for low-power and included mixed-signal sensor circuits, a programmable digital system, a feedback clock control loop and RF circuits integrated on a 5 mm × 5 mm silicon chip using a 0.6 μm, 3.3 V CMOS process. Undesirable signal coupling between circuit components has been investigated and current injection into sensitive instrumentation nodes was minimized by careful floor-planning. The chip, the sensors, a magnetic induction-based transmitter and two silver oxide cells were packaged into a 36 mm × 12 mm capsule format. A base station was built in order to retrieve the data from the microsystem in real-time. The base station was designed to be adaptive and timing tolerant since the microsystem design was simplified to reduce power consumption and size. The telemetry system was found to have a packet error rate of 10<sup>-</sup><sup>3</sup> using an asynchronous simplex link. Trials in animal carcasses were carried out to show that the transmitter was as effective as a conventional RF device whilst consuming less power

    Adaptive OFDM System Design For Cognitive Radio

    Get PDF
    Recently, Cognitive Radio has been proposed as a promising technology to improve spectrum utilization. A highly flexible OFDM system is considered to be a good candidate for the Cognitive Radio baseband processing where individual carriers can be switched off for frequencies occupied by a licensed user. In order to support such an adaptive OFDM system, we propose a Multiprocessor System-on-Chip (MPSoC) architecture which can be dynamically reconfigured. However, the complexity and flexibility of the baseband processing makes the MPSoC design a difficult task. This paper presents a design technology for mapping flexible OFDM baseband for Cognitive Radio on a multiprocessor System-on-Chip (MPSoC)

    Power-aware system-on-chip test scheduling using enhanced rectangle packing algorithm

    Get PDF
    The current semiconductor technology allows integration of all components onto a single chip called system-on-chip (SoC), which scales down the size of product and improves the performance. When a system becomes more complicated, testing process, such as test scheduling, becomes more challenging. Recently, peak power has also been considered as constraints in the test scheduling problem. Besides these constraints, some add-on techniques including pre-emption and non-consecutive test bus assignment have been introduced. The main contribution of each technique is the reduction of idling time in the test scheduling and thus reducing the total test time. This paper proposes a power-aware test scheduling called enhanced rectangle packing (ERP). In this technique, we formulate the test scheduling problem as the rectangle packing with horizontally and vertically split-able items (rectangles) which are smaller to fill up more compactly the test scheduling floor plan. Experimental results conducted on ITC'02 SoC benchmark circuits revealed positive improvement of the power-aware ERP algorithm in reducing total SoC test time
    corecore