14,851 research outputs found

    Millimeter-wave Evolution for 5G Cellular Networks

    Full text link
    Triggered by the explosion of mobile traffic, 5G (5th Generation) cellular network requires evolution to increase the system rate 1000 times higher than the current systems in 10 years. Motivated by this common problem, there are several studies to integrate mm-wave access into current cellular networks as multi-band heterogeneous networks to exploit the ultra-wideband aspect of the mm-wave band. The authors of this paper have proposed comprehensive architecture of cellular networks with mm-wave access, where mm-wave small cell basestations and a conventional macro basestation are connected to Centralized-RAN (C-RAN) to effectively operate the system by enabling power efficient seamless handover as well as centralized resource control including dynamic cell structuring to match the limited coverage of mm-wave access with high traffic user locations via user-plane/control-plane splitting. In this paper, to prove the effectiveness of the proposed 5G cellular networks with mm-wave access, system level simulation is conducted by introducing an expected future traffic model, a measurement based mm-wave propagation model, and a centralized cell association algorithm by exploiting the C-RAN architecture. The numerical results show the effectiveness of the proposed network to realize 1000 times higher system rate than the current network in 10 years which is not achieved by the small cells using commonly considered 3.5 GHz band. Furthermore, the paper also gives latest status of mm-wave devices and regulations to show the feasibility of using mm-wave in the 5G systems.Comment: 17 pages, 12 figures, accepted to be published in IEICE Transactions on Communications. (Mar. 2015

    End-to-End Simulation of 5G mmWave Networks

    Full text link
    Due to its potential for multi-gigabit and low latency wireless links, millimeter wave (mmWave) technology is expected to play a central role in 5th generation cellular systems. While there has been considerable progress in understanding the mmWave physical layer, innovations will be required at all layers of the protocol stack, in both the access and the core network. Discrete-event network simulation is essential for end-to-end, cross-layer research and development. This paper provides a tutorial on a recently developed full-stack mmWave module integrated into the widely used open-source ns--3 simulator. The module includes a number of detailed statistical channel models as well as the ability to incorporate real measurements or ray-tracing data. The Physical (PHY) and Medium Access Control (MAC) layers are modular and highly customizable, making it easy to integrate algorithms or compare Orthogonal Frequency Division Multiplexing (OFDM) numerologies, for example. The module is interfaced with the core network of the ns--3 Long Term Evolution (LTE) module for full-stack simulations of end-to-end connectivity, and advanced architectural features, such as dual-connectivity, are also available. To facilitate the understanding of the module, and verify its correct functioning, we provide several examples that show the performance of the custom mmWave stack as well as custom congestion control algorithms designed specifically for efficient utilization of the mmWave channel.Comment: 25 pages, 16 figures, submitted to IEEE Communications Surveys and Tutorials (revised Jan. 2018

    Interference in Multi-beam Antenna System of 5G Network

    Get PDF
    Massive multiple-input-multiple-output (MIMO) and beamforming are key technologies, which significantly influence on increasing effectiveness of emerging fifth-generation (5G) wireless communication systems, especially mobile-cellular networks. In this case, the increasing effectiveness is understood mainly as the growth of network capacity resulting from better diversification of radio resources due to their spatial multiplexing in macro- and micro-cells. However, using the narrow beams in lieu of the hitherto used cell-sector brings occurring interference between the neighboring beams in the massive-MIMO antenna system, especially, when they utilize the same frequency channel. An analysis of this effect is the aim of this paper. In this case, it is based on simulation studies, where a multi-elliptical propagation model and standard 3GPP model are used. We present the impact of direction and width of the neighboring beams of 5G new radio gNodeB base station equipped with the multi-beam antenna system on the interference level between these beams. The simulations are carried out for line-of-sight (LOS) and non-LOS conditions of a typical urban environment

    Performance Comparison of Dual Connectivity and Hard Handover for LTE-5G Tight Integration in mmWave Cellular Networks

    Get PDF
    MmWave communications are expected to play a major role in the Fifth generation of mobile networks. They offer a potential multi-gigabit throughput and an ultra-low radio latency, but at the same time suffer from high isotropic pathloss, and a coverage area much smaller than the one of LTE macrocells. In order to address these issues, highly directional beamforming and a very high-density deployment of mmWave base stations were proposed. This Thesis aims to improve the reliability and performance of the 5G network by studying its tight and seamless integration with the current LTE cellular network. In particular, the LTE base stations can provide a coverage layer for 5G mobile terminals, because they operate on microWave frequencies, which are less sensitive to blockage and have a lower pathloss. This document is a copy of the Master's Thesis carried out by Mr. Michele Polese under the supervision of Dr. Marco Mezzavilla and Prof. Michele Zorzi. It will propose an LTE-5G tight integration architecture, based on mobile terminals' dual connectivity to LTE and 5G radio access networks, and will evaluate which are the new network procedures that will be needed to support it. Moreover, this new architecture will be implemented in the ns-3 simulator, and a thorough simulation campaign will be conducted in order to evaluate its performance, with respect to the baseline of handover between LTE and 5G.Comment: Master's Thesis carried out by Mr. Michele Polese under the supervision of Dr. Marco Mezzavilla and Prof. Michele Zorz

    Wearable Communications in 5G: Challenges and Enabling Technologies

    Full text link
    As wearable devices become more ingrained in our daily lives, traditional communication networks primarily designed for human being-oriented applications are facing tremendous challenges. The upcoming 5G wireless system aims to support unprecedented high capacity, low latency, and massive connectivity. In this article, we evaluate key challenges in wearable communications. A cloud/edge communication architecture that integrates the cloud radio access network, software defined network, device to device communications, and cloud/edge technologies is presented. Computation offloading enabled by this multi-layer communications architecture can offload computation-excessive and latency-stringent applications to nearby devices through device to device communications or to nearby edge nodes through cellular or other wireless technologies. Critical issues faced by wearable communications such as short battery life, limited computing capability, and stringent latency can be greatly alleviated by this cloud/edge architecture. Together with the presented architecture, current transmission and networking technologies, including non-orthogonal multiple access, mobile edge computing, and energy harvesting, can greatly enhance the performance of wearable communication in terms of spectral efficiency, energy efficiency, latency, and connectivity.Comment: This work has been accepted by IEEE Vehicular Technology Magazin

    A Link Quality Model for Generalised Frequency Division Multiplexing

    Get PDF
    5G systems aim to achieve extremely high data rates, low end-to-end latency and ultra-low power consumption. Recently, there has been considerable interest in the design of 5G physical layer waveforms. One important candidate is Generalised Frequency Division Multiplexing (GFDM). In order to evaluate its performance and features, system-level studies should be undertaken in a range of scenarios. These studies, however, require highly complex computations if they are performed using bit-level simulators. In this paper, the Mutual Information (MI) based link quality model (PHY abstraction), which has been regularly used to implement system-level studies for Orthogonal Frequency Division Multiplexing (OFDM), is applied to GFDM. The performance of the GFDM waveform using this model and the bit-level simulation performance is measured using different channel types. Moreover, a system-level study for a GFDM based LTE-A system in a realistic scenario, using both a bit-level simulator and this abstraction model, has been studied and compared. The results reveal the accuracy of this model using realistic channel data. Based on these results, the PHY abstraction technique can be applied to evaluate the performance of GFDM based systems in an effective manner with low complexity. The maximum difference in the Packet Error Rate (PER) and throughput results in the abstraction case compared to bit-level simulation does not exceed 4% whilst offering a simulation time saving reduction of around 62,000 times.Comment: 5 pages, 8 figures, accepted in VTC- spring 201
    corecore