4 research outputs found

    Direct kinematics of CDPR with extra cable orientation sensors: the 2 and 3 cables case with perfect measurement and sagging cables

    Get PDF
    International audienceDirect kinematics (DK) of cable-driven parallel robots (CDPR) based only on cable lengths measurements is a complex issue even with ideal cables and consequently even harder for more realistic cable models such as sagging cable. A natural way to simplify the DK solving is to add sensors. We consider here sensors that give a partial or complete measurement of the cable direction at the anchor points and/or measure the orientation of the platform of CDPR with 2 or 3 cables and we assume that the measurements are exact. We provide a solving procedure and maximal number of DK solutions for an extensive combination of sensors for CDPR with sagging cables. We show that at least two measurements are necessary for the planar 2 cables case while six are necessary for the spatial 3 cables case. For spatial CDPR with n cables we prove that at least 2n additional sensors will be required to get a closed-form solution of the DK

    Direct kinematics of CDPR with extra cable orientation sensors: the 2 and 3 cables case with perfect measurement and ideal or elastic cables

    Get PDF
    International audienceDirect kinematics (DK) of cable-driven parallel robots (CDPR) based only on cable lengths measurements is a complex issue even with ideal cables and consequently even harder for more realistic cable models. A natural way to simplify the DK solving is to add sensors. We consider here sensors that give a partial or complete measurement of the cable direction at the anchor points and spatial CDPR with 2/3 cables and we assume that these measurements are exact. We provide a solving procedure and maximal number of DK solutions for an extensive combination of sensors while considering two different cables models: ideal and linearly elastic without deformation

    System identification and cable force control for a cable-driven parallel robot with industrial servo drives

    No full text
    In a cable-driven parallel robot, elastic cables are used to manipulate the end effector in the workspace. In this paper we present a dynamic analysis and system identification for the complete actuator unit of a cable robot including servo controller, winch, cable, cable force sensor and field bus communication. We establish a second-order system with dead time as an analagous model. Based on this investigation, we propose the design and stability analysis of a cable force controller. We present the implementation of feed-forward and integral controllers based on a stiffness model of the cables. As the platform position is not observable the challenge is to control the cable force while maintaining the positional accuracy. Experimental evaluation of the force controller shows, that the absolute positional accuracy is even improved

    Simulation of Discrete-Time Controlled Cable-Driven Parallel Robots on a Trajectory

    Get PDF
    International audienceThis paper addresses the simulation of the state of a discrete-time controlled cable-driven parallel robot (CDPR) with nondeformable or elastic cables over a given trajectory. Being given a CDPR, an arbitrary model for the coiling system and for the control strategy, we exhibit a simulation algorithm that allows one to determine, in a guaranteed way, the platform pose and the cable tensions at any time. We show that such a simulation may require a computing accuracy that imposes to use extended arithmetic and that discrete-time control may lead to drastic differences in the cable tensions as compared to usual continuous time simulation. Hence, the proposed simulation tool allows for a better estimation of the positioning accuracy together with safer estimation of the maximum of the cable tensions
    corecore