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Direct kinematics of CDPR with extra cable orientation sensors: the 2

and 3 cables case with perfect measurement and sagging cables

J-P. Merlet1

Abstract— Direct kinematics (DK) of cable-driven parallel
robots (CDPR) based only on cable lengths measurements is
a complex issue even with ideal cables and consequently even
harder for more realistic cable models such as sagging cable.
A natural way to simplify the DK solving is to add sensors.
We consider here sensors that give a partial or complete
measurement of the cable direction at the anchor points and/or
measure the orientation of the platform of CDPR with 2 or
3 cables and we assume that the measurements are exact.
We provide a solving procedure and maximal number of DK
solutions for an extensive combination of sensors for CDPR with
sagging cables. We show that at least two measurements are
necessary for the planar 2 cables case while six are necessary
for the spatial 3 cables case. For spatial CDPR with n cables
we prove that at least 2n additional sensors will be required to
get a closed-form solution of the DK.

I. INTRODUCTION

We consider cable-driven parallel robot (CDPR) with 3

cables whose output points on the base will be denoted by

Ai with anchor point Bi on the platform (figure 1). The
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Fig. 1. A CDPR with sagging cables

winch system assume that the cable is not submitted to any

deformation and is able to control and measure the length at

rest L0 of the cable. But the elasticity and own mass of the

cable induce a sagging effect on the cable that modify its

shape and length. We will assume here that the sagging of

the cable is such that the whole cable lies in a vertical plane

P that includes A,B (see figure 5). A sagging cable model,

called the Irvine model [1], may be defined in P . In this plane

the coordinates of A,B are assumed to be respectively (0,0),

(xb ≥ 0, yb) while Fz, Fx denote the vertical and horizontal

forces exerted on the cable at point B. With this notation the
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coordinates of B are related to the forces Fx, Fz by:

xb = Fx(
L0

EA0

+
sinh−1(Fz)− sinh−1((Fz −

µgL0

Fx

)

µg
) (1)

zb =

√

F 2
x + F 2

z −
√

F 2
x + (Fz − µgL0)2

µg
+
FzL0

EA0

−
µgL2

0

2EA0

(2)

where E is the Young modulus of the cable material, µ its

linear density and A0 the surface of the cable cross-section.

The direct kinematic (DK) problem amounts to find all the

possible pose(s) of the platform being given the L0. Although

this may seen to be mostly a theoretical problem, DK solving

is important also in practice for a better understanding of sin-

gularity and workspace and also for providing an initializing

solution for the real time DK that is then less problematic [2],

[3]. Although relatively well mastered for parallel robots with

rigid legs, DK is still an open issue for CDPR. Even if we

assume ideal cable (with no elasticity and no deformation

of the cable due to its own mass) the DK problem leads to

a larger number of equations than in the rigid leg case [4]

and consequently to solving problems [5], [6], [7], [8], [9],

[10], [3]. The DK problem with the full Irvine model has

been addressed in [11] where it has been shown that the

DK always amount to solve a square system of equations

whatever the number of cables is. A solving algorithm has

also been presented in [11] but is computer intensive. A more

efficient solving scheme has then been presented in [12] but it

is still quite intensive. A major problem with the Irvine model

is that the non algebraic nature of equations (1,2) prohibits to

use elimination methods that have been quite successful for

parallel robots with rigid legs to reduce the DK to the solving

an univariate polynomial. Another issue is that the DK has

usually several solutions while the real CDPR is always in a

given pose among all the possible solutions. The later use of

the real-time DK then imposes to visually determine what is

the current pose of the platform among all the DK solutions.

An intuitive approach to avoid or reduce this non-unicity

problem and to speed up the solving time of the DK is to

add sensors that provide additional information on the cable

beside the cable lengths, as already proposed for classical

parallel robot [13], [14], [15], [16]. A natural candidate will

be to measure the cable tensions as they play an important

role in the DK solving. Unfortunately force measurement

are usually noisy and measuring these tensions on a moving

platform submitted to various mechanical noises appears

to be difficult [17], [18]. Although several attempts have

been made of integrating force sensing in CDPR, none of



them have presented clear result about the reliability of the

measurement.

In this paper we are considering another measurement

possibility which consists in getting complete or partial

information on the cable direction at the anchor points A
and B. The measurement at point A are (figure 2):

• the angle θV between the x axis and the vertical plane

that includes the cable

• the angle θH between the horizontal direction and the

cable tangent at A

A

B
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y
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Fig. 2. Orientation sensors at A may provide the value of θV and/or θH

We introduce a mobile frame attached to the platform whose

center is G, the center of mass of the platform, and vectors

xr,yr, zr. Let u be the unit vector of the cable tangent at

B and up its projection in the xr,yr plane. The measured

angles (figure 3) may be

• the angle αV between up and xr

• the angle αH between up and u

zr
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Fig. 3. Orientation sensors at B may provide the value of αV and/or αH

Realizing such measurement has already been considered:

for example our CDPR MARIONET-Assist uses a simple

rotating guide at A whose rotation is measured by a poten-

tiometer in order to obtain the measurement of θV while

our CDPR MARIONET-VR is instrumented with a more

sophisticated cable guiding system which allows for the

measurement of both θV and θH (figure 4). Our first trials

with such a simple system have shown that the accuracy is

poor as soon as the cable tension is low. We are therefore

considering a non contact system: the idea is to have a

range meter mounted on a rotary head in front of the A
point (figure 5). The head rotates around the x axis until the

range meter detects the cable at point M . The measurement

of the distance d between A′ and M and of the rotation

angle β allows one to calculate the coordinates of M . The

Fig. 4. On the left the rotation guide of MARIONET-Assist which allows
for the measurement of θV . On the right the system used on MARIONET-
VR for the measurement of both θV and θH

coordinates of the points A and M allow us to determine

the cable plane and therefore the θV angle, while the angle

between AM and the x axis provides the θH angle. This

non contact sensing method should provide a better accuracy

than the mechanical guides of figure 4. To the best of our

knowledge no similar system has been proposed for the

platform. For measuring theses angles we may also consider

a vision system as proposed in [19].

We may also consider having a 3D accelerometrer on the

platform and assume that the CDPR motion is sufficiently

slow to neglect the acceleration due to the motion. In that

case the accelerometer will provide 2 orientation angles of

the platform. Such a sensor will be called an IMU and will

be counted as 1 sensor.

II. FUNDAMENTAL EQUATIONS

In this section a superscript j will denote an unknown

of cable j. The components of u in the mobile frame are

um = cos(αV ) cos(αH), cos(αV ) sin(αH), sin(αH). If R

is the rotation matrix between the reference frame and the

mobile frame, R being expressed as functions of 3 angles

ψ, θ, φ, then u in the reference frame is Rum. The vector u

should be perpendicular to the normal to P . A possible way

to express this constraint is to consider the rotation matrix

R1 corresponding to a rotation around the vertical of angle

θV so that the vector R1Rum has 0 as second component.

This constraint may be written as

R1Rum.(0, 1, 0)
T = 0 (3)
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Fig. 5. A new sensor arrangement for measuring the θV , θH angles. A
range meter is mounted on a rotary head located at A′ rotating around the
x axis. The range meter is rotated until it detects the cable and the system
provides the distance d between A′ and the cable and the rotation angle β

This constraint is a function of αV , αH , θV , ψ, θ, φ. Let uv

be the 2D vectors whose components are the first and third

component of R1Rum. In the plane frame the unit vector of

the tangent to the cable at B is expressed as (uv(1), uv(2)).
If we define τB =

√

F 2
x + F 2

z the components of this

vector are also (Fx/τB , Fz/τB). This allows to define a new

constraint

Fz/Fx = uv(2)/uv(1) (4)

This constraint is a function of Fx, Fz, αV , αH , θV and of

ψ, θ, φ. At A the unit tangent vector in the cable plane is

Fx/τA, (FZ − µgL0)/τA with τA =
√

F 2
x + (Fz − µgL0)2

so that we have

(FZ − µgL0)/Fx = tan(θH) (5)

This constraint only involve θH , Fx, Fz . We may also have

to use the mechanical equilibrium of the platform, assuming

that it is submitted only to gravity. The force equilibrium

may be written as R1
T (Fx, 0, Fz)

T = (0, 0,mg) where m
is the platform mass, which leads to

j=3
∑

j=1

− cos(θjV )F
j
x = 0

j=3
∑

j=1

sin(θjV )F
j
x = 0

j=3
∑

j=1

−F j
z −mg = 0 (6)

These 3 constraints are evidently only function of the

θV , Fx, FZ . The moment equations may be written as

j=3
∑

j=1

GBj × (R1
T (Fx, 0, Fz)

T ) = 0 (7)

which are functions of θV , Fx, FZ and of ψ, θ, φ. We may

also use the fact that if the coordinates xb, zb have been

determined, then the components of vector OB in the

reference may be obtained as

OB = OA+RT
1 (xb, 0, zb)

T (8)

provided that the 3 angles θV are known. Our objective is

now to investigate various sensor placements and determine

how the DK solutions may be obtained through only alge-

braic manipulation. In this paper we will assume that all

sensor measurements are exact: we are aware that it is not

realistic but this paper is a preliminary step for investigating

which sensor placement may be used to determine theoretical

solutions while uncertainties on the measurement will be

studied next. It must be noted that the non algebraic Irvine

equations (1,2) may be used only to determine first the xb, zb
(provided that the Fz, Fz have been calculated) and then the

coordinates of the B (provided that θV has been determined).

Therefore our objective is not use these 6 equations in the

DK solving unless the Fx, Fz, θV have been obtained.

Let’s now analyze how many sensors are required. If

we assume that only the θV , θH are measured we have as

constraints the 3 equations (5) and the 3 force equilibrium

(6) with a total of 12 unknowns. For getting a system

with a finite number of solutions we must therefore have

6 measurements. If we add the moment equilibrium (7)

we have nine constraints but we add 3 unknowns (ψ, θ, φ)

for a total of 15 unknowns. Here again we will need 6

measurements to end up with a square system.

If we measure only the αV , αH we have as unknowns 6

αV , αH , the Fx, Fz and ψ, θ, φ, θV (because any constraints

dealing with αV , αH use these 6 later variables) for a total

of 18 unknowns. The constraints are the 6 force and moment

equilibrium (6, 7), the 3 equations (3) and the 3 equations

(4) for a total of 12 equations. Therefore we need at least 6

measurements to get a square system.

More generally assume that we are measuring n1θV ,

n2θH , n3αV , n4αH (on the same B than the measured

αV ), n5αH (on a B that has no αV measurement) and n6
measurement on the ψ, θ, φ. Assuming that n3 or n5 are

greater than 0 we have as unknowns: 6 Fx, Fz , 3n1 θV , 3n6
ψ, θ, φ, |n4 − n3| αH or αV (on the same B) and n5 αH

for a total of 12 + |n4 − n3| + n5 − n1 − n6. In terms of

equations we have the 6 equilibrium, Sup(n3, n4) equations

(3), Sup(n3, n4) equations (4) and n2 equations (5) for a

total of 6 + 2Sup(n3, n4) + n2 + n5. Hence to get a square

system imposes to have 6 ≤ n2+2Sup(n3, n4)+n1+n6−
|n4 − n3|. This formula allows on to show that at least 6

measurements are necessary to solve the DK in analytic

form.

III. PLANAR CASE, 2 CABLES

If we consider a planar robot with 2 cables we have only

θH and αH sensors and the equations of the previous section

are simpler. If θ denote the orientation of the platform the

mechanical equilibrium may written as

F 1

x + F 2

x = 0 F 1

z + F 2

z = mg (9)
i=2
∑

i=1

−GBi(1)F
i
z +GBi(2)F

i
x = 0 (10)



the later equation being a function of θ and of the Fx, Fz .

As for the sensors we have

tan(θ + αH) =
Fz

Fx

(11)

tan(θH) = (FZ − µgL0)/Fx (12)

For solving the DK in symbolic form we cannot use the

Irvine equations (1, 2) unless we have determined the Fx, Fz .

Hence if we use the two first equations of (10), then we have

4 unknowns and 2 constraints, while if we use the 3 equations

(10), then we have 5 unknowns. Hence it is necessary to

have at least 2 sensor measurements to solve the DK in

analytic form.

If we measure 2 θH , then the 2 first equations of (10)

and the 2 equations of (12) constitutes a system of 4 linear

equations in the Fx, Fz . Solving this system and reporting

the result in the Irvine equations leads to the location of

B1, B2. In turn this leads to 2 solutions for the DK, one

with G above B1B2, which is unstable, and one with G
below B1B2, which is stable.

If we measure 2 αH we may obtain the Fx, Fz by solving

the linear system (9),(11) which are linear in the Fx, Fz .

These unknowns are obtained as function of θ and reporting

their value in (10) leads to a function of sin θ, cos θ which

is transformed into a 6th order algebraic equation using the

tangent half-angle substitution. Hence there will be at most

6 stable DK solutions.

If we measure one θH and one αH we may obtain the

Fx, Fz by solving the linear system (9),(11),(12) which

are linear in the Fx, Fz . These unknowns are obtained as

function of θ and reporting their value in (10) leads to a

function of sin θ, cos θ which is transformed into a 4th order

algebraic equation using the tangent half-angle substitution.

Hence there will be at most 4 stable DK solutions.

IV. SPATIAL CASE, 3 CABLES

A. DK with 6 sensors: 3-θV θH

In this section we assume that all A anchor points have

both θV , θH sensors. If we consider the constraints (5, 6) we

get a system of 6 equations in the 6 Fx, Fz which is linear

in these unknowns. Solving for these unknowns allows one

to calculate the coordinates xb, zb for each cable. As the

3 angles θV are known we may then use equation (8) to

determine the coordinates of the three B in the reference

frame and therefore the pose of the platform. In summary

this placement allows to determine a single DK solutions

with the effort of solving a linear system.

B. DK with 6 sensors: 2-θV θH , 1 θV and IMU

In this section we assume that the anchor points A1, A2

have both θV , θH sensors while A3 has only a θV sensor.

An accelerometer is located on the platform. The 2 first

equations of (5), the three equations (6) and the equations of

(7) have as unknowns ψ, θ, φ and the Fx, Fz while being

linear in these later unknowns. We select the first five

equations and the first equation of the moment equilibrium

(7) to get a linear system of 6 equations in the Fx, Fz . After

solving this system the second and third equations of (7) are

only function of ψ, θ, φ. As the accelerometer provides 2 of

these unknowns these 2 equations are just function of the sine

and cosine of the remaining unknown angle. If we use the

Euler’s angles the second equation factors out in 2 terms that

are linear in the cosine, sine of any of the angle ψ, θ, φ. The

first equation is linear in sin(ψ), cos(ψ) and therefore the

2 equations constitute a linear system in these 2 unknowns.

Hence we will obtain at most 2 DK solutions by solving 2

linear systems.

C. DK with 5 sensors: 2-θV θH and IMU

In this section we assume that the anchor points A1, A2

have both θV , θH sensors while an accelerometer is located

on the platform. The 2 first equations of (5), the 6 equilibrium

equations (6) and (7) have as unknowns ψ, θ, φ and the

Fx, Fz while being linear in these later unknowns. We select

the first five equations and the first equation of (7) to get

a linear system of 6 equations in the Fx, Fz . After solving

this system the second and third equations of (7) are only

functions of ψ, θ, φ, θ3V . As the accelerometer provides 2 of

these unknowns these 2 equations are just functions of the

sine and cosine of the remaining unknown angle. If we use

the Euler’s angles the second equation factors out in 2 terms.

The first factor is linear in the cosine, sine of any of the angle

ψ, θ, φ and does not involve θ3V . The first equation is linear in

sin(ψ), cos(ψ) and therefore the first factor and this equation

constitute a linear system in these 2 unknowns. After solving

this system the constraint sin2 ψ + cos2 ψ − 1 involves only

the sine and cosine of θ3V . By using the half-angle tangent

substitution this equation becomes a 4th order polynomial in

T = tan(θ3V /2) and hence we will obtain at most 4 DK

solutions.

The second factor is linear in sin(θ3V ) and after solving for

this variable it appears that the first equation may be written

as cos θ3V F (ψ, θ, φ). As cos θ3V = 0 implies also sin θ3V = 0
only the equation F has to be considered. This equation is

of degree 4 in T1 = tan(ψ/2), T2 = tan(θ/2) and T3 =
tan(φ/2). Whatever is the chosen variable we get for each

root a special case where the mechanical equilibrium is not

dependent upon the value of θ3V while F 1

x , F
2

x , F
1

z , F
2

z , F
3

z

have constant values (meaning that B1, B2 have a fixed

position) and F 3

x is obtained as a/ cos θ3V where a is a

constant. Using he Irvine equations (1,2) we get x3b , z
3

b as

a function of cos θ3V and using equation (8) we obtain the

coordinates of B3 as a function of θ3V . At the same time

B3 must lie on a circle centered in a point located on the

line going through B1, B2, the circle being perpendicular to

this line. The center and the radius of this circle may easily

be calculated from the known distances between (B1, B3),
(B1, B2) and (B2, B3). As B3 must belong to this circle it

induces 2 constraint equations on θ3V and unfortunately there

is no way to determine the maximum number of solutions

of this system as it is not algebraic. However we have found

numerical examples with 2 solutions.



D. DK with 6 sensors: 3-αV αH

In this section we assume that the anchor points B
have both αV , αH sensors. The 3 equations of the force

equilibrium (6) and the equations (4) are linear in the Fx, Fz .

Solving this system leads to 6 equations, the 3 moment

equilibrium (7) and the 3 equations (3), whose unknowns

are the 3 θV and ψ, θ, φ. Hence this system (which may be

transformed into an algebraic form) has in general a finite

number of solution but we have been unable to reduce this

system to an univariate polynomial.

E. DK with 5 sensors: 3-θV , 1 θH and IMU

In this section we assume that the A anchor points have

all θV sensors while A1 has also a θH sensor and an

accelerometer is located on the platform. We consider the

system constituted of the 3 equations of the force equilibrium

(6), the 2 first equations of the moment equilibrium (7) and

the first equation of (5). This system has as unknowns ψ, θ, φ
and the Fx, Fz and is linear in the 6 later variables. Solving

this system and reporting the result in the last equation of the

moment equilibrium (7) leads to an expression that factors

out into 2 components, both of which are linear in the sine,

cosine of any angle ψ, θ, φ considered independently. As

two of these variables are provided by the accelerometer we

end up with two systems that can be written as U cosβ +
V sinβ + W = 0, β being any angle in the set ψ, θ, φ,

which admits two solutions in β. Therefore we get up to 4

solutions in the unknown angle. For each of the solution we

get the position of the B of each cable in the cable plane

and equation (8) allows to calculate them in the reference

frame: hence there may up to 4 solutions of the DK that

are obtained by solving two quadratic polynomials.

F. DK with 5 sensors: 3-θH , 1 θV and IMU

In this section we assume that the A anchor points

have all θH sensors while A1 has also a θV sensor. An

accelerometer is located on the platform. We consider the

system constituted of the 3 equations of the force equilibrium

(6) and the 3 equations (4). This system of 6 equations

has as unknowns θ2V , θ
3

V , and the Fx, Fz and is linear in

the 6 later variables. Solving this system and reporting the

result in the 3 moment equations (7) lead to a system having

ψ, θ, φ, θ2V , θ
3

V as unknowns. Any of the 3 equations of the

moment equilibrium is linear in sin θ2V , cos θ
2

V . We consider

any two pair of these equations to solve in this variables and

report the result in the remaining equation of (7) and in the

constraint equation sin2 θ2V +cos2 θ2V − 1 = 0. This leads to

2 equations in the unknown θ3V , ψ, θ, φ. Using the half-angle

tangent substitution on θ3V and calculating the resultant of the

2 equations in T3 leads to a single equation in ψ, θ, φ. As

the IMU provides two of these angles we have therefore an

univariate equation and using the half-angle substitution on

any of the angle leads to a polynomial of degree 32. Each of

the root of this polynomial leads to a single value for θ2V , θ
3

V

and for the Fx, Fz . This allows one to calculate the xb, zb
for each cable and using equation (8) a single position for

the B. Hence the DK may have up to 32 solutions.

G. DK with 5 sensors: 2-αV αH and IMU

In this section we assume that the B1, B2 anchor points

have both αV , αH sensors and that an accelerometer is

located on the platform. The unknowns are therefore the 6

Fx, Fz , the 3 θV that are used to calculate the xb, zb and the

angles ψ, θ, φ, two of which will be provided by the IMU

for a total of 10 unknowns. In terms of constraint we have

the 6 equilibrium constraints (6,7), the two equations in (3)

and in (4) involving the measured αV , αH for a total of 10

constraints. The 3 force equations (6), the two equations (4)

and the first moment equation of (7) are linear in the Fx, Fz

and are used to find these variables. We assume that θ is not

measured by the IMU (but the process will the same whatever

is the not measured angle). The 2 equations (3) are linear

in the unknowns sin θ, cos θ and are used to determine these

variables with the additional constraint sin2 θ+cos2 θ−1 = 0
which is now a function of θ1V , θ

2

V . The two remaining

equations of the moment equilibrium (7) are now function

of the 3 θV . Hence we have now 3 equations in the 3 θV
that are converted into algebraic form using the tangent half-

angle substitution. Successive resultant in T1, T3 leads to a

single polynomial in T2 which factors out in 2 polynomial

of degree 4 and one polynomial of degree 16. Each root of

these polynomials leads to a single value of the 3 θV and

of θ which in turn leads to a single value for the Fx, Fz

allowing to calculate first the xb, zb of all cables and using

(8) a single location for all the B. Hence the DK may have

up to 24 solutions.

V. USING A SIMPLER CABLE MODEL: THE PARABOLA

CASE

It must be noted that Irvine has proposed as simplified

cable model where the shape of the cable is a parabola.

This model leads to a single solution for the inverse kine-

matic [20], while they are multiple solutions with the full

model [21]. From the DK view point the unknowns are the

3 coordinates (xi, yi, zi) of the Bi and the Fx, Fz for a total

of 15 unknowns as the θV may be expressed as functions

of the xi, yi. The constraint are the 6 equilibrium equations

(6, 7) and the 3 equations (4) (which are identical to the

equations (5)) which amount to:

Fz =
µgL0

2
+ Fx

zb
xb

(13)

where xb, zb are the coordinates of B in the cable plane,

that are derived from the (xi, yi, zi) Three other equations

are obtained by writing that the distance dij between the pair

of points Bi, Bj is a known constant, leading to quadratic

equations in the xi, yi, zi. The final 3 constraints are that the

L0 may be expressed as non linear, non algebraic equations

(involving the logarithm function) of the unknowns, that

therefore cannot be used to have an algebraic system. Hence

we end up with a square system of 15 equations, 12 of

them being algebraic. A benefit of this approach is that

we theoretically need only 3 measurements to get algebraic

system that may provide solution(s) in closed-form. For that

purpose we consider the force equilibrium equations (6) and



the 3 equations (13) that constitutes a linear system in the

Fx, Fz . We may solve this system in these variables but the

presence of zb/xb in equation (13) leads to relatively large

expression for the equations (7) and our trials have shown

that even with 5 additional sensors the elimination process

leads to an univariate polynomial of high degree.

VI. EXTENSION FOR A CDPR WITH n CABLES

If we consider a spatial CDPR with n cables the unknowns

are the 2n Fx, Fz , the n θV and the 6 parameters of the

pose for a total of 3n + 6 unknowns. The constraints are

the 2n Irvine equations (1, 2), the n constraints (3) and the

6 equations of the mechanical equilibrium (6, 7) for a total

of 3n + 6 constraints. Hence if we want to get rid of the

non algebraic equations the measurements should provide

2n data. The simplest case is to measure all θV , θH : in that

case the same reasoning than in section IV-A allows one to

show that the DK will have a single solution.

VII. CONCLUSION

This investigation on additional sensors for simplifying the

direct kinematics of CDPR with sagging cable has shown

that the best sensor arrangement is to use ground-based

sensors that measure the θV , θH angles for all cables. This

arrangement has the advantages of a simple implementation

and of providing usually a single DK solution. We have also

shown that for a CDPR with n cables at least 2n additional

measurement are required for getting the DK solutions in

closed-form and that the θV , θH arrangement on all cables

will provide a single DK solution whatever n is.

Having sensors on the platform is still a possibility but

leads to a more complex solving process that may be

simplified if we have an estimate of the platform orientation

with the drawback of leading to multiple DK solutions. Ac-

celerometer may provide this information but their accuracy

in practice is doubtful.

We have proceeded under the assumption that all mea-

surements are exact, an assumption that is clearly not true

in practice. Taking into account the effective accuracy of the

orientation sensors and its influence on the DK solving is

another issue that has to be investigated.

Another issue is that adding sensors beside the cable

lengths provides sensor redundancy. To reduce the effect of

uncertainties on the DK solution we may consider the DK

as an optimization problem. However using the deterministic

approach to provide an initial guess for the optimization may

make sense.

At this stage it is uncertain if adding orientation sensors on

the cable will provide a reliable solution for the DK problem

and may lead to an improvement of the accuracy of the

CDPR. Possibly direct estimation of the platform pose using

vision, optical markers or telemeter may provide a better

accuracy even for large CDPR.
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