14 research outputs found

    System for deployment of groups of unmanned micro aerial vehicles in GPS-denied environments using onboard visual relative localization

    Get PDF
    A complex system for control of swarms of micro aerial vehicles (MAV), in literature also called as unmanned aerial vehicles (UAV) or unmanned aerial systems (UAS), stabilized via an onboard visual relative localization is described in this paper. The main purpose of this work is to verify the possibility of self-stabilization of multi-MAV groups without an external global positioning system. This approach enables the deployment of MAV swarms outside laboratory conditions, and it may be considered an enabling technique for utilizing fleets of MAVs in real-world scenarios. The proposed visual-based stabilization approach has been designed for numerous different multi-UAV robotic applications (leader-follower UAV formation stabilization, UAV swarm stabilization and deployment in surveillance scenarios, cooperative UAV sensory measurement) in this paper. Deployment of the system in real-world scenarios truthfully verifies its operational constraints, given by limited onboard sensing suites and processing capabilities. The performance of the presented approach (MAV control, motion planning, MAV stabilization, and trajectory planning) in multi-MAV applications has been validated by experimental results in indoor as well as in challenging outdoor environments (e.g., in windy conditions and in a former pit mine)

    Decentralized Visual-Inertial-UWB Fusion for Relative State Estimation of Aerial Swarm

    Full text link
    The collaboration of unmanned aerial vehicles (UAVs) has become a popular research topic for its practicability in multiple scenarios. The collaboration of multiple UAVs, which is also known as aerial swarm is a highly complex system, which still lacks a state-of-art decentralized relative state estimation method. In this paper, we present a novel fully decentralized visual-inertial-UWB fusion framework for relative state estimation and demonstrate the practicability by performing extensive aerial swarm flight experiments. The comparison result with ground truth data from the motion capture system shows the centimeter-level precision which outperforms all the Ultra-WideBand (UWB) and even vision based method. The system is not limited by the field of view (FoV) of the camera or Global Positioning System (GPS), meanwhile on account of its estimation consistency, we believe that the proposed relative state estimation framework has the potential to be prevalently adopted by aerial swarm applications in different scenarios in multiple scales.Comment: Accepted ICRA 202

    Leader-Follower Control and Distributed Communication based UAV Swarm Navigation in GPS-Denied Environment

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have developed rapidly in recent years due to technological advances and UAV technology finds applications in a wide range of fields, including surveillance, search and rescue, and agriculture. The utilization of UAV swarms in these contexts offers numerous advantages, increasing their value across different industries. These advantages include increased efficiency in tasks, enhanced productivity, greater safety, and the higher data quality. The coordination of UAVs becomes particularly crucial during missions in these applications, especially when drones are flying in close proximity as part of a swarm. For instance, if a drone swarm is targeted or needs to navigate through a Global Positioning System (GPS)-denied environment, it may encounter challenges in obtaining the location information typically provided by GPS. This poses a new challenge for the UAV swarms to maintain a reliable formation and successfully complete a given mission. In this article, our objective is to minimize the number of sensors required on each UAV and reduce the amount of information exchanged between UAVs. This approach aims to ensure the reliable maintenance of UAV formations with minimal communication requirements among UAVs while they follow predetermined trajectories during swarm missions. In this paper, we introduce a concept that utilizes extended Kalman filter, leader-follower-based control and a distributed data-sharing scheme to ensure the reliable and safe maintenance of formations and navigation autonomously for UAV swarm missions in GPS-denied environments. The formation control approaches and control strategies for UAV swarms are also discussed

    The influence of limited visual sensing on the Reynolds flocking algorithm

    Get PDF
    The interest in multi-drone systems flourished in the last decade and their application is promising in many fields. We believe that in order to make drone swarms flying smoothly and reliably in real-world scenarios we need a first intermediate step which consists in the analysis of the effects of limited sensing on the behavior of the swarm. In nature, the central sensor modality often used for achieving flocking is vision. In this work, we study how the reduction in the field of view and the orientation of the visual sensors affect the performance of the Reynolds flocking algorithm used to control the swarm. To quantify the impact of limited visual sensing, we introduce different metrics such as (i) order, (ii) safety, (iii) union and (iv) connectivity. As Nature suggests, our results confirm that lateral vision is essential for coordinating the movements of the individuals. Moreover, the analysis we provide will simplify the tuning of the Reynolds flocking algorithm which is crucial for real-world deployment and, especially for aerial swarms, it depends on the envisioned application. We achieve the results presented in this paper through extensive Monte-Carlo simulations and integrate them with the use of genetic algorithm optimization
    corecore