7,026 research outputs found

    Formal verification of distributed deadlock detection algorithms

    Full text link
    The problem of distributed deadlock detection has undergone extensive study. Formal verification of deadlock detection algorithms in distributed systems is an area of research that has largely been ignored. Instead, most proposed distributed deadlock detection algorithms have used informal or intuitive arguments, simulation or just neglect the entire aspect of verification of correctness; As a consequence, many of these algorithms have been shown incorrect. This research will abstract the notion of deadlock in terms of a temporal logic of actions and discuss the invariant and eventuality properties. The contributions of this research are the development of a distributed deadlock detection algorithm and the formal verification of this algorithm

    Automating Fine Concurrency Control in Object-Oriented Databases

    Get PDF
    Several propositions were done to provide adapted concurrency control to object-oriented databases. However, most of these proposals miss the fact that considering solely read and write access modes on instances may lead to less parallelism than in relational databases! This paper cope with that issue, and advantages are numerous: (1) commutativity of methods is determined a priori and automatically by the compiler, without measurable overhead, (2) run-time checking of commutativity is as efficient as for compatibility, (3) inverse operations need not be specified for recovery, (4) this scheme does not preclude more sophisticated approaches, and, last but not least, (5) relational and object-oriented concurrency control schemes with read and write access modes are subsumed under this proposition

    Unlocking Blocked Communicating Processes

    Full text link
    We study the problem of disentangling locked processes via code refactoring. We identify and characterise a class of processes that is not lock-free; then we formalise an algorithm that statically detects potential locks and propose refactoring procedures that disentangle detected locks. Our development is cast within a simple setting of a finite linear CCS variant \^a although it suffices to illustrate the main concepts, we also discuss how our work extends to other language extensions.Comment: In Proceedings WWV 2015, arXiv:1508.0338

    Parallel discrete event simulation: A shared memory approach

    Get PDF
    With traditional event list techniques, evaluating a detailed discrete event simulation model can often require hours or even days of computation time. Parallel simulation mimics the interacting servers and queues of a real system by assigning each simulated entity to a processor. By eliminating the event list and maintaining only sufficient synchronization to insure causality, parallel simulation can potentially provide speedups that are linear in the number of processors. A set of shared memory experiments is presented using the Chandy-Misra distributed simulation algorithm to simulate networks of queues. Parameters include queueing network topology and routing probabilities, number of processors, and assignment of network nodes to processors. These experiments show that Chandy-Misra distributed simulation is a questionable alternative to sequential simulation of most queueing network models
    • …
    corecore