2,420 research outputs found

    Contracts and Behavioral Patterns for SoS: The EU IP DANSE approach

    Full text link
    This paper presents some of the results of the first year of DANSE, one of the first EU IP projects dedicated to SoS. Concretely, we offer a tool chain that allows to specify SoS and SoS requirements at high level, and analyse them using powerful toolsets coming from the formal verification area. At the high level, we use UPDM, the system model provided by the british army as well as a new type of contract based on behavioral patterns. At low level, we rely on a powerful simulation toolset combined with recent advances from the area of statistical model checking. The approach has been applied to a case study developed at EADS Innovation Works.Comment: In Proceedings AiSoS 2013, arXiv:1311.319

    Modeling of system knowledge for efficient agile manufacturing : tool evaluation, selection and implementation scenario in SMEs

    Get PDF
    In the manufacturing world, knowledge is fundamental in order to achieve effective and efficient real time decision making. In order to make manufacturing system knowledge available to the decision maker it has to be first captured and then modelled. Therefore tools that provide a suitable means for capturing and representation of manufacturing system knowledge are required in several types of industrial sectors and types of company’s (large, SME). A literature review about best practice for capturing requirements for simulation development and system knowledge modeling has been conducted. The aim of this study was to select the best tool for manufacturing system knowledge modelling in an open-source environment. In order to select this tool, different criteria were selected, based on which several tools were analyzed and rated. An exemplary use case was then developed using the selected tool, Systems Modeling Language (SysML). Therefore, the best practice has been studied, evaluated, selected and then applied to two industrial use cases by the use of a selected opens source tool.peer-reviewe

    Towards the Model-Driven Engineering of Secure yet Safe Embedded Systems

    Full text link
    We introduce SysML-Sec, a SysML-based Model-Driven Engineering environment aimed at fostering the collaboration between system designers and security experts at all methodological stages of the development of an embedded system. A central issue in the design of an embedded system is the definition of the hardware/software partitioning of the architecture of the system, which should take place as early as possible. SysML-Sec aims to extend the relevance of this analysis through the integration of security requirements and threats. In particular, we propose an agile methodology whose aim is to assess early on the impact of the security requirements and of the security mechanisms designed to satisfy them over the safety of the system. Security concerns are captured in a component-centric manner through existing SysML diagrams with only minimal extensions. After the requirements captured are derived into security and cryptographic mechanisms, security properties can be formally verified over this design. To perform the latter, model transformation techniques are implemented in the SysML-Sec toolchain in order to derive a ProVerif specification from the SysML models. An automotive firmware flashing procedure serves as a guiding example throughout our presentation.Comment: In Proceedings GraMSec 2014, arXiv:1404.163

    Combining SysML and AADL for the design, validation and implementation of critical systems

    Get PDF
    The realization of critical systems goes through multiple phases of specification, design, integration, validation, and testing. It starts from high-level sketches down to the final product. Model-Based Design has been acknowledged as a good conveyor to capture these steps. Yet, there is no universal solution to represent all activities. Two candidates are the OMG-based SysML to perform high-level modeling tasks, and the SAE AADL to perform lower-level ones, down to the implementation. The paper shares an experience on the seamless use of SysML and the AADL to model, validate/verify and implement a flight management system

    Integrating Analytical Models with Descriptive System Models: Implementation of the OMG SyML Standard for the Tool-specific Case of MapleSim and MagicDraw

    Get PDF
    AbstractThe Jet Propulsion Laboratory (JPL) is investing heavily in the development of an infrastructure for building system models using the Systems Modeling Language (SysML). An essential component is a transformation apparatus that permits diverse models to be integrated independently of their nature (e.g. declarative, analytical and statistical). This paper presents one useful case: the integration of analytical models expressed using the Modelica language. Modelica is an open standard, declarative, multi-domain modeling language that allows for complex dynamic systems to be modeled. Maplesoft's MapleSim is one software tool that supports the Modelica language. The tool-neutral specification for the transformation between the languages Modelica and SysML is defined in the SysML-Modelica transformation specification (SyML) standard published by the Object Management Group (OMG). As part of the development efforts, said specification has been implemented using the Query-View- Transformation Operational (QVTO) language. During the process, several critical changes to the current SyML standard were proposed. Furthermore, a number of current limitations related to MapleSim were identified. Despite these issues, a proof-of- concept transformation was successfully implemented. In conclusion, the integration of complex simulation models conforming to the Modelica language with SysML-based system models has shown great promise and is a highly useful tool to support the decision making process in design
    • …
    corecore