3 research outputs found

    Impacts of Mobility Models on RPL-Based Mobile IoT Infrastructures: An Evaluative Comparison and Survey

    Get PDF
    With the widespread use of IoT applications and the increasing trend in the number of connected smart devices, the concept of routing has become very challenging. In this regard, the IPv6 Routing Protocol for Low-power and Lossy Networks (PRL) was standardized to be adopted in IoT networks. Nevertheless, while mobile IoT domains have gained significant popularity in recent years, since RPL was fundamentally designed for stationary IoT applications, it could not well adjust with the dynamic fluctuations in mobile applications. While there have been a number of studies on tuning RPL for mobile IoT applications, but still there is a high demand for more efforts to reach a standard version of this protocol for such applications. Accordingly, in this survey, we try to conduct a precise and comprehensive experimental study on the impact of various mobility models on the performance of a mobility-aware RPL to help this process. In this regard, a complete and scrutinized survey of the mobility models has been presented to be able to fairly justify and compare the outcome results. A significant set of evaluations has been conducted via precise IoT simulation tools to monitor and compare the performance of the network and its IoT devices in mobile RPL-based IoT applications under the presence of different mobility models from different perspectives including power consumption, reliability, latency, and control packet overhead. This will pave the way for researchers in both academia and industry to be able to compare the impact of various mobility models on the functionality of RPL, and consequently to design and implement application-specific and even a standard version of this protocol, which is capable of being employed in mobile IoT applications

    Modeling Crowd Mobility and Communication in Wireless Networks

    Get PDF
    This dissertation presents contributions to the fields of mobility modeling, wireless sensor networks (WSNs) with mobile sinks, and opportunistic communication in theme parks. The two main directions of our contributions are human mobility models and strategies for the mobile sink positioning and communication in wireless networks. The first direction of the dissertation is related to human mobility modeling. Modeling the movement of human subjects is important to improve the performance of wireless networks with human participants and the validation of such networks through simulations. The movements in areas such as theme parks follow specific patterns that are not taken into consideration by the general purpose mobility models. We develop two types of mobility models of theme park visitors. The first model represents the typical movement of visitors as they are visiting various attractions and landmarks of the park. The second model represents the movement of the visitors as they aim to evacuate the park after a natural or man-made disaster. The second direction focuses on the movement patterns of mobile sinks and their communication in responding to various events and incidents within the theme park. When an event occurs, the system needs to determine which mobile sink will respond to the event and its trajectory. The overall objective is to optimize the event coverage by minimizing the time needed for the chosen mobile sink to reach the incident area. We extend this work by considering the positioning problem of mobile sinks and preservation of the connected topology. We propose a new variant of p-center problem for optimal placement and communication of the mobile sinks. We provide a solution to this problem through collaborative event coverage of the WSNs with mobile sinks. Finally, we develop a network model with opportunistic communication for tracking the evacuation of theme park visitors during disasters. This model involves people with smartphones that store and carry messages. The mobile sinks are responsible for communicating with the smartphones and reaching out to the regions of the emergent events

    Gestion de groupe partitionnable dans les réseaux mobiles spontanés

    Get PDF
    Dans les réseaux mobiles spontanés (en anglais, Mobile Ad hoc NETworks ou MANETs), la gestion de groupe partitionnable est un service de base permettant la construction d'applications réparties tolérantes au partitionnement. Aucune des spécifications existantes ne satisfait les deux exigences antagonistes suivantes : 1) elle doit être assez forte pour fournir des garanties utiles aux applications réparties dans les systèmes partitionnables ; 2) elle doit être assez faible pour être résoluble. Dans cette thèse, nous proposons une solution à la gestion de groupe partitionnable en environnements réseaux très dynamiques tels que les MANETs. Pour mettre en œuvre notre solution, nous procédons en trois étapes. Tout d'abord, nous proposons un modèle de système réparti dynamique qui caractérise la stabilité dans les MANETs. Ensuite, nous adaptons pour les systèmes partitionnables l'approche Paxos à base de consensus Synod. Cette adaptation résulte en la spécification d'un consensus abandonnable AC construit au-dessus d'un détecteur ultime des a participants d'une partition PPD et d'un registre ultime par partition RPP. PPD garantit la vivacité dans une partition même si la partition n'est pas complètement stable tandis que RPP préserve la sûreté dans la même partition. Enfin, la gestion de groupe partitionnable est résolue en la transformant en une séquence d'instances de AC. Chacun des modules PPD, RPP, AC et gestion de groupe partitionnable est implanté et prouvé. Par ailleurs, nous analysons les performances de PPD par simulationIn Mobile Ad hoc NETworks or MANETs, partitionable group membership is a basic service for building partition-tolerant applications. None of the existing specifications satisfy the two following antagonistic requirements: 1) it must be strong enough to simplify the design of partition-tolerant distributed applications in partitionable systems; 2) it must be weak enough to be implantable. In this thesis, we propose a solution to partitionable group membership in very dynamic network environment such as MANETs. To this means, we proceed in three steps. First, we develop a dynamic distributed system model that characterises stability in MANETs. Then, we propose a solution to the problem of partitionable group membership by adapting Paxos for such systems. This adatation results in a specification of abortable consensus AC which is composed of an eventual a partition-participants detector PPD and an eventual register per partition RPP. PPD guarantees liveness in a partition even if the partition is not completely stable whereas RPP ensures safety in the same partition. Finally, partitionable group membership is solved by transforming it into a sequence of abortable consensus instances AC. Each of the modules PPD, RPP, AC, and partitionable group membership is implanted and proved. Next, we analyse the performances of PPD by simulationEVRY-INT (912282302) / SudocSudocFranceF
    corecore