5,486 research outputs found

    The Creation, Validation, and Application of Synthetic Power Grids

    Get PDF
    Public test cases representing large electric power systems at a high level of fidelity and quality are few to non-existent, despite the potential value such cases would have to the power systems research community. Legitimate concern for the security of large, high-voltage power grids has led to tight restrictions on accessing actual critical infrastructure data. To encourage and support innovation, synthetic electric grids are fictional, designed systems that mimic the complexity of actual electric grids but contain no confidential information. Synthetic grid design is driven by the requirement to match wide variety of metrics derived from statistics of actual grids. The creation approach presented here is a four-stage process which mimics actual power system planning. First, substations are geo-located and internally configured from seed public data on generators and population. The substation placement uses a modified hierarchical clustering to match a realistic distribution of load and generation substations, and the same technique is also used to assign nominal voltage levels to the substations. With buses and transformers built, the next stage constructs a network of transmission lines at each nominal voltage level to connect the synthetic substations with a transmission grid. The transmission planning stage uses a heuristic inspired by simulated annealing to balance the objectives associated with both geographic constraints and contingency reliability, using a linearized dc power flow sensitivity. In order to scale these systems to tens of thousands of buses, robust reactive power planning is needed as a third stage, accounting for power flow convergence issues. The iterative algorithm presented here supplements a synthetic transmission network that has been validated by a dc power flow with a realistic set of voltage control devices to meet a specified voltage profile, even with the constraints of difficult power flow convergence for large systems. Validation of the created synthetic grids is crucial to establishing their legitimacy for engineering research. The statistical analysis presented in this dissertation is based on actual grid data obtained from the three major North American interconnects. Metrics are defined and examined for system proportions and structure, element parameters, and complex network graph theory properties. Several example synthetic grids are shown as examples in this dissertation, up to 100,000 buses. These datasets are available online. The final part of this dissertation discusses these specific grid examples and extensions associated with synthetic grids, in applying them to geomagnetic disturbances, visualization, and engineering education

    Planning Sensitivities for Building Contingency Robustness and Graph Properties into Large Synthetic Grids

    Get PDF
    Interest in promoting innovation for large, high-voltage power grids has driven recent efforts to reproduce actual system properties in synthetic electric grids, which are fictitious datasets designed to be large, complex, realistic, and totally public. This paper presents new techniques based on system planning sensitivities, integrated into a synthesis methodology to mimic the constraints used in designing actual grids. This approach improves on previous work by explicitly quantifying each candidate transmission line’s contribution to contingency robustness, balancing that with geographic and topological metrics. Example synthetic grids build with this method are compared to actual transmission grids, showing that the emulated careful design also achieves observed complex network properties. The results shed light on how the underlying graph structure of power grids reflects the engineering requirements of their design. Moreover, the datasets synthesized here provide researchers in many fields with public power system test cases that are detailed and realistic

    A Firewall Optimization for Threat-Resilient Micro-Segmentation in Power System Networks

    Full text link
    Electric power delivery relies on a communications backbone that must be secure. SCADA systems are essential to critical grid functions and include industrial control systems (ICS) protocols such as the Distributed Network Protocol-3 (DNP3). These protocols are vulnerable to cyber threats that power systems, as cyber-physical critical infrastructure, must be protected against. For this reason, the NERC Critical Infrastructure Protection standard CIP-005-5 specifies that an electronic system perimeter is needed, accomplished with firewalls. This paper presents how these electronic system perimeters can be optimally found and generated using a proposed meta-heuristic approach for optimal security zone formation for large-scale power systems. Then, to implement the optimal firewall rules in a large scale power system model, this work presents a prototype software tool that takes the optimization results and auto-configures the firewall nodes for different utilities in a cyber-physical testbed. Using this tool, firewall policies are configured for all the utilities and their substations within a synthetic 2000-bus model, assuming two different network topologies. Results generate the optimal electronic security perimeters to protect a power system's data flows and compare the number of firewalls, monetary cost, and risk alerts from path analysis.Comment: 12 pages, 22 figure

    Statistics of Neuronal Identification with Open- and Closed-Loop Measures of Intrinsic Excitability

    Get PDF
    In complex nervous systems patterns of neuronal activity and measures of intrinsic neuronal excitability are often used as criteria for identifying and/or classifying neurons. We asked how well identification of neurons by conventional measures of intrinsic excitability compares with a measure of neuronal excitability derived from a neuron’s behavior in a dynamic clamp constructed two-cell network. We used four cell types from the crab stomatogastric ganglion: the pyloric dilator, lateral pyloric, gastric mill, and dorsal gastric neurons. Each neuron was evaluated for six conventional measures of intrinsic excitability (intrinsic properties, IPs). Additionally, each neuron was coupled by reciprocal inhibitory synapses made with the dynamic clamp to a Morris–Lecar model neuron and the resulting network was assayed for four measures of network activity (network activity properties, NAPs). We searched for linear combinations of IPs that correlated with each NAP, and combinations of NAPs that correlated with each IP. In the process we developed a method to correct for multiple correlations while searching for correlating features. When properly controlled for multiple correlations, four of the IPs were correlated with NAPs, and all four NAPs were correlated with IPs. Neurons were classified into cell types by training a linear classifier on sets of properties, or using k-medoids clustering. The IPs were modestly successful in classifying the neurons, and the NAPs were more successful. Combining the two measures did better than either measure alone, but not well enough to classify neurons with perfect accuracy, thus reiterating that electrophysiological measures of single-cell properties alone are not sufficient for reliable cell identification
    • 

    corecore