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Abstract

Design is an essential component of sustainable development. Computational modelling has

become a useful technique that facilitates the design of complex systems. Variables that charac-

terises a complex system are encoded into a computational model using mathematical concepts

and through simulation each of these variables alone or in combination are modified to observe

the changes in the outcome. This allows the researchers to make predictions on the behaviour

of the real system that is being studied in response to the changes. The ultimate goal of any

design process is to come up with the best design; as resources are limited, to minimize the cost

and resource consumption, and to maximize the performance, profits and efficiency. To optimize

means to find the best solution, the best compromise among several conflicting demands subject

to predefined requirements. Therefore, computational optimization, modelling and simulation

forms an integrated part of the modern design practice.

This thesis defines a data analytics driven methodology which enables the identification of

alternative solutions of computational design by analysing the generational history of the pop-

ulation based heuristic search used to generate the templates. While optimisation is focused on

obtaining the optimal solution this methodology focuses on alternative solutions which are sub

optimal by fitness or solutions with similar fitness but different structures. When the optimal

design solution is less robust, alternative solutions can offer a sufficiently good accuracy and an

achievable resource requirement. The main advantage of the methodology is that it exploits the

exploration process of the solution space during a single run, by focusing also on suboptimal

solutions, which usually get neglected in the search for an optimal one. The history of the

heuristic search is analysed for the emergence of alternative solutions and evolving of a solution.

By examining how an initial solution converts to an optimal solution core design patterns are

identified, and these were used to improve the design process. Further, this method limits the

number of runs of the heuristic search as more solution space is covered. The methodology is

generic because it can be used to any instance where a population based heuristic search is ap-

plied to generate optimal designs. The applicability of the methodology is demonstrated using

three case studies from mathematics (building of a mathematical function for a set target) and

biology (obtaining alternative designs for genomic metabolic models [GEM] and DNA walker

circuits). In each case a different heuristic search method was used: Gene expression program-

ming (mathematical expressions), genetic algorithms (GEM models) and simulated annealing

(DNA walker circuits). Descriptive analytics, visual analytics and clustering was mainly used to
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build the data analytics driven approach in identifying alternative solutions. This data analytics

driven methodology is useful in optimising the computational design of complex systems.
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Chapter 1

Introduction

1.1 Modelling of Complex Systems

Design is an essential component of sustainable development. A good design ensures the object

(or the system) being built can perform its intended tasks, has a proper mechanism of handling

errors and exceptions and can accommodate requirements which could arise in the future. Thus,

a designer is required to have thorough domain knowledge and the ability to foresee all the

potential opportunities and threats to ensure a robust design. However, as the complexity of

the system increases it becomes impossible for a human designer to gain sufficient insight into

the system so as to provide better design and accurate predictions. Therefore, computational

modelling has become a useful technique that facilitates the design of complex systems.

Computational modelling is the use of computers to simulate the behaviour of complex sys-

tems. Numerous variables that characterises a complex system are encoded into a computational

model using mathematical concepts. During simulation each of these variables alone or in combi-

nation are modified to observe the changes in the outcome. This allows the researchers to make

predictions on the behaviour of the real system that is being studied in response to the changes.

One of the main advantages of this method is that it allows the scientists to experiment with

endless permutations and combinations of input parameters that have been otherwise impossible

to make out by a human experimenter. Thus, computational modelling can expedite research

by facilitating scientists to conduct as many simulated experiments as required by computer

saving time, money and material. Synthetic biology is one of the novel areas that is benefited

by computational modelling (Andrianantoandro et al. 2006).

The ultimate goal of any design process is to come up with the best design; as resources

are limited, to minimize the cost and resource consumption, and to maximize the performance,
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profits and efficiency. To optimize means to find the best solution, the best compromise among

several conflicting demands subject to predefined requirements. Mathematical optimization

has been extremely successful as an aid to better decision making. Therefore, computational

optimization, modelling and simulation forms an integrated part of the modern design practice.

1.2 Computational Design in Synthetic Biology

A human is a multicellular organism. A human body is made up of over 30 trillion cells. A human

body has levels of organisations built-in on top of these cells. For example a group of specialised

cells make up tissues, specialised tissues make up organs and organs make up organ systems.

Respiratory system, digestive system, nervous system, skeletal system and reproductive systems

are some of the organ systems that have dedicated functionalities. Such complex network of

biologically relevant entities (i.e. integrated activity of organs) is referred to as a biological

system. For example the respiratory system consists of five organs namely pharynx, larynx,

bronchi, lungs and diaphragm, and the integrated activity of these organs help to achieve the

main functionality of the respiratory system; to breathe in oxygen and breathe out carbon diox-

ide. Similarly single cell organisms have biological systems. For example there are protein-bound

organelles in the cytoplasm which in-coordination carries out bacterial metabolism. Bacterial

metabolism is another example of a biological system.

System biology is the computational and mathematical modelling of these complex biological

systems. As Hiroaki Kitano says it is important to study the structure of a system structure and

how it is related to its dynamics (Kitano 2002). Because a system is not just the assembly of

its components (i.e. organs or genes and proteins) but how the components are assembled and

how they interact with each other. According to Kitano, four main properties can be derived

from a system-level understanding of a biological system.

1. System structure – gene interactions and metabolic pathways in intercellular and multi-

cellular structures

2. System dynamics – how the system behaves over time under various conditions

3. The control method – mechanisms that systematically control the state of the cell

4. The design method - Strategies to modify and construct biological systems having desired

properties can be devised based on definite design principles and simulations, instead of

blind trial-and-error
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The Human Genome Project (Collins et al. 1998) is one such example of an effort taken to

obtain a system level understanding of the human body. Study of single cell organisms such as

bacteria are more popular in systems biology because of the smaller genome. Another example

is sequencing of the complete genome of Escherichia coli MG1655 bacteria strain (Edwards and

Palsson 2000) and the development of the computational model of E. coli bacterium’s metabolic

activity by the Passon’s group (Feist et al. 2007).

Figure 1.1: Data analytics driven design - This diagram is an illustration of design completed
in various stages of synthetic and systems biology

In the process diagram presented in 1.1 the left hand side represents the systems biology

aspect of my thesis. Through my work I have looked at two types of realities; E. coli K 12

MG1655 bacteria and a DNA Walker circuit. As mentioned above E. coli K 12 MG1655 bacteria

is the strain sequenced by the Passon’s group. A computational model was developed by the

same group to depict the metabolic activity of the bacteria. This stochastic computational model

was simulated in the computer using a special program called Snoopy. The simulation resulted

in behaviour (reaction rates and concentration of metabolites). In my Master’s dissertation I

have analysed the structure (genes, metabolites and reactions) and behaviour of these models

to identify similarities between the models and group them using cluster analysis.

The second reality is DNA walker circuits. DNA walker circuit discussed in this thesis was

obtained from the work published by the Gilber’s group (Gilbert, Heiner, and Rohr 2018). The

DNA walker circuit presented the paper is designed to evaluate a binary expression. Walker
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circuit behaviour was simulated using simulation software called Marcie. Further information

on DNA walker circuits will be discussed in Chapter 7.

The most important aspect of systems biology is that the system-level understanding of a

biological system paves the road for the ambitious to alter an existing reality and construct new

realities. This is where synthetic biology comes into play. Synthetic biology can be simply defined

as designing and fabrication of biological components and systems for useful purposes. Today

synthetic biology (including genetic engineering) underlies a multi-billion dollar industry offering

solutions to some of the most intractable problems. The ability to insert new combinations

of genetic material into (or remove unfavourable genetic information from) micro-organisms,

animals (Robl 2002) and plants (Yau and Stewart 2013), (Jiang et al. 2013) offers novel ways to

produce valuable small molecules into proteins; provides the means to produce plants (Li et al.

2012) and animals (Wall et al. 2005) that are disease resistant; tolerant of harsh environments,

and have higher yields of useful products (Nielsen 2001); and provides new methods to treat and

prevent human diseases.

There are two main disciplines in synthetic biology; the design and fabrication of biological

components and systems that do not already exist in the natural world (creating artificial life)

and the re-design (Fuentes et al. 2016) and fabrication of existing biological systems (Benner

and Sismour 2005). For example in order to synthetically produce Artemisinin the scientists

built a new metabolic pathway in yeast by assembling 10 genes from 3 organisms. This attempt

is an example of re-designing of existing biological systems (Yeast) [see (Paddon and Keasling

2014) for further details on synthetic biology].

With the recent advancement in genome editing techniques such as CRIPR modification

of biological systems have become much easier. However the main problem is to identify the

correct and novel sequences of gene that should be removed, replaced or added. For example

a single cell E. coli bacterium consists of 4000 genes. If we were to filter the most suitable

combination of genes responsible for the optimal production of bio products, we would have to

test all possible combinations of 4000 genes. This large solution space (4000 factorial of possible

combinations) makes blind trial and error impossible with regards to time and resources, and it

would be a waste to explore each and every possible combination. This problem can be solved

by incorporating computational methods such as simulations and data analytics.

In systems biology we create an abstraction of a model that could be simulated in a com-

puter. This model could be used to run experiments. Model simulation has several advantages.

Modifications could be done easily and behaviour could be monitored instantly. This method
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is inexpensive in terms of lab resources required to modify and grow the bacteria in the lab.

Further data analytics and machine learning techniques such as optimisation gives novel avenues

to explore a large solution space.

1.3 Motivation

However, the extensive level of complexity of real-work systems often makes it difficult to ac-

curately characterise a system into a perfect computational model and the non-linearity in

correlations makes it difficult to adequately capture them by optimization tools. Consequently,

there is a gap between approximations delivered by optimization and their practical possibilities.

In certain instances, the optimal design proposed by the optimisation tool typically involves im-

plementation impracticalities in predicted parameters making the optimal design less robust (i.e.

too many modifications, impossible alterations, highly time and resource consuming alterations).

In such cases it is considerate to settle for robust suboptimal design options with sufficiently

good accuracy and reasonable resource expenditure. Hence alternative solutions with optimal

(similar behaviour and different structures) or suboptimal behaviour play a vital role in the

design process.

Computational optimisation is a widely used technique to search a large solution space in

order to find the optimal solution that delivers the required behaviour. The process begins with

the random solution or a generation of solutions. Then the solution(s) are expressed and the

fitness of each individual is evaluated. The individuals are modified to improve their fitness.

This process is repeated for a certain number of generations or until a solution has been found.

An optimisation approach is focused on finding the best solution. However, an optimisation

approach comes across several intermediary solutions which are sub optimal in fitness during

the continuous improvement cycle that runs from the initial solution until the program reaches

the optimal solution. But these solutions get discarded at the end. Hence, the history of an

optimisation program holds valuable information in identifying potential alternative solutions. I

am proposing an approach where the history of an optimisation approach is saved and analyzed

in order to find alternative solutions and improve computational design.

Therefore, analysing the history of an optimisation approach is essential in identifying these

alternative solutions. For this purpose, data analytics techniques are applied. Generation history

from optimisation and characteristics of individual solutions could be used to gain insights on

the solution space explored by the optimisation tools. This amounts to a large volume of
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data generated over a short period of time with different data types (i.e. real data, nominal,

ordinal, time series, graphs and etc). identifying alternative solutions may involve performing

descriptive statistics, structural comparisons, groupings, pattern recognition, solution profiling

and etc depending on the solution type. In order to analyse these large amounts of data efficiently

and accurately, it is essential to incorporate data analytics techniques.

Therefore the research question I intend to answer through my research is "When using

computation optimisation to improve system design, how can alternative solutions be efficiently

found by analysing the history of the optimisation approach?"

I intend to look at three different example scenarios where different optimisation approaches

are applied for improving system design. The history of the optimisation program will be stored

and analysed in identifying alternative solutions.

1.4 Contributions

Contributions of this thesis are the following:

• A general methodology to identify alternative designs by analysing the optimi-

sation history of population based heuristic search for computational models

In order to address the challenges mentioned above a novel data analytics driven method-

ology is defined in this thesis. The methodology enables the identification of alternative

solutions of computational designs by analysing the generational history of the population

based heuristic search used to generate the designs.

The methodology is composed of three main phases. In the first phase a mathematical

model which depicts the behaviour of the whole or part of a complex system is defined. In

the second phase, computational optimisation methods are used to generate designs which

optimises a pre-defined target behaviour. The choice of optimisation method depends on

the model characteristics. Optimisation archive is generated in this phase. The archive

stores all the solutions which were generated throughout the optimisation process. These

populations of solutions are ordered by the order of appearance and generation. In the

third phase the optimisation archive will be analysed using data analytics techniques to

obtain three main insights, namely, extracting alternative solutions (behaviourally similar

but structurally different) by solution profiling, core model enhancement by examining

the evolution of a particular solution over time in a generation, and formalizing model

constraints.
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The proposed methodology is generic because it can be used to any instance where a

population based heuristic search is applied to generate optimal designs for complex com-

putational models. The methodology was applied to three problem areas, which were

represented using a three different data structures; i) binary trees (producing a mathe-

matical function for a set target), ii) sequences (optimising designs for genomic metabolic

models of bacteria) and iii) graphs (producing optimal DNA walker circuits). In each case

a different heuristic search method was used: Gene expression programming (arithmetic

expressions), genetic algorithms (GEM models) and simulated annealing (DNA walker cir-

cuits). Descriptive analytics, visual analytics and clustering was mainly used to build the

data analytics driven approach in identifying alternative solutions. The methodology is

explained in detail in Chapter 3.

The application areas covered in this thesis are mainly from synthetic biology. According

to the synthetic biology design approach described by Henier & Gilbert (Heiner, Gilbert,

and Donaldson 2008), computational models that depict the desired behaviour need to be

physically constructed in order to verify its behaviour and the computational approach

which was used to generate the design (Figure 1.2 depicts how computational design is

applied in synthetic biology). Information obtained from physical implementation is then

used to improve the computational design process. Therefore alternative computational

solutions (design) can be used to drive the engineering of alternative physical designs. In

this case the [alternative] solution acts as an [alternative] design template (or blueprint).

Figure 1.2: The role of modeling in synthetic biology - The diagram represents the connection
between design and construction of bio-systems. Firstly, blueprints of systems with a predicted
behaviour are created and tested. Next bio-systems are constructed using the blueprints. Finally,
the observed behavior of these physical systems are used to verify and improve designs.
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• Application of the methodology to identify alternative tree structures in a

population of arithmetic expressions generated using Gene Expression Pro-

gramming

The proposed methodology was applied to extract alternative solutions from a population

of arithmetic expressions. An optimisation program called gene expression programming

(GEP) was used to generate arithmetic expressions for a predefined target with a predefined

set of operands and operators (four operators were used: addition, division, multiplication

and division). Arithmetic expressions were represented using a binary tree data structure.

Solutions generated during different runs of the optimisation process were compiled into

a population of solutions. A pair-wise structural similarity distance inspired by tree edit

distance was used to compare the tree structures and cluster to identify alternative solu-

tions. Application of the methodology to arithmetic expression and analysis is described

in detail in Chapter 4.

• Application of the methodology to identify alternative GEM models in a pop-

ulation of metabolic network models generated using Genetic algorithms

In this scenario the methodology is applied to genome metabolic models (GEM) of E.coli

bacteria which simulates the metabolic activities of the E.coli bacteria. The model is

originally a biochemical network model however, it can be depicted as a graph. A genetic

algorithm optimisation technique was used to generate designs which optimised the pre-

defined target behaviour. During the second phase of the methodology, solutions for each

generation were stored in the optimisation archive. A GEM model composes of three main

data categories, namely, genes, reactions and metabolites which is correlated in multiple

levels. However, for the analysis carried out in this thesis the data was considered in a

sequential level. GEM models were compared pair-wise. A pair-wise similarity measure

was defined and computed between pair of models based on the gene and reaction compo-

sition of the two models. For example, the number of common genes between two models

or number of common reactions between two models. For models A and B the similarity

could be defined as (A∩B)/MAX(|A|, |B|). Application of the methodology and analysis

of the solution populations is described in detail in Chapter 5.

• Application of the methodology to identify alternative DNA circuit layouts in

a population of circuit graphs generated using simulated annealing

In this example the methodology is used to analyse a population of DNA circuits. A DNA
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circuit is represented as a graph data structure which is consisted of nodes and arcs laid

out on a Cartesian plane. The DNA circuit discussed in this thesis evaluates a simple logic

expression. Simulated annealing optimisation technique is used generate circuit layouts

which optimises (reduces) the area and (information) leaks in the circuit. Simulated an-

nealing program was implemented in order to generate the solutions. Optimisation archive

stores solutions generated in each run along with the iteration number. In the analysis

stage the structures of circuits are compared using a novel comparison method inspired by

the RMSD method to identify structurally similarities. Next the solutions will be clustered

based on the similarity score to identify alternative solutions. Four different versions of

DNA circuit named Toy, Toy0, Toy1 and Toy2 are examined in this section. Application of

the methodology and analysis of the solution populations is described in detail in Chapter

6.

• Software suite used for the data generation and analysis purposes

Following is the list of software used and implemented for the data generation and analysis

of each application which is described in above points 2 through 4. The software suite can

be found in the Github repository at https://github.com/yasodaj/AlternativeStructures.

– Processing of arithmetic expressions

∗ Gene Expression Programming optimisation program developed using Java to

automatically generate arithmetic expressions

∗ Python code for comparing the similarity between two tree structures for math-

ematical expressions

∗ R code for clustering of arithmetic expressions and generating and visualising

summary statistics

A detailed description is available in Chapter 4.

– Processing of GEM models

∗ R code to analyse and visualise the commonality in genes and reactions in GEM

models

A detailed description is available in Chapter 5.

– Processing of DNA walker circuits

∗ Simulated Annealing program to automatically generate DNA circuit layouts

using Java
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∗ Java program to validate a given DNA circuit layout

∗ Java program to compute the leaks and area of a given DNA circuit layout

∗ R program to plot DNA circuits using a node-arc connection table

∗ Java program to structural compare two DNA circuit layouts using the RMSD

minimisation algorithm

∗ R code for clustering of DNA circuits and generating and visualising summary

statistics

A detailed description is available in Chapter 6.

1.5 Publications

• Towards dynamic genome-scale models

Gilbert, D., Heiner, M., Jayaweera, Y. and Rohr, C., 2019. Towards dynamic genome-scale

models. Briefings in bioinformatics, 20(4), pp.1167-1180.

This analysis was carried out for a paper titled "Towards dynamic genome-scale models

" and the research was led by Prof. David Gilbert, Prof.Monika Heiner and Christian Rohr.

Paper was published in the Briefings in Bioinformatics Oxford Journal. The paper proposes a

methodology and related workflow based on publicly available tools to profile and analyze whole

genome-scale biochemical models. The article provides guidance to modellers in computational

methods to identify and apply suitable combination of tools for analysing dynamic behaviour

of large scale metabolic models. In the workflow presented in the paper, the last step, trace

analysis, introduces several data analytics techniques to analyze the behaviour of dynamic simu-

lation traces. My contribution for the paper was identifying and applying suitable data analytics

techniques and visualization methods to perform whole system data analytics and sub-system

data analytics. This included writing R scripts for visualizing system behaviour, applying hier-

archical clustering over reaction rate traces, investigating the evolution of properties over time,

clustering the subsystems by their average behaviour, clustering the subsystems according to the

degree of their structural inter-connectivity, pairwise comparing the clusterings by behaviour and

structural inter-connectivity, clustering by subsystem average behaviour, clustering according to

subsystem structural inter-connectivity, pairwise comparison of the clusterings by behaviour

(both min-growth and enhanced-growth model) and structural inter-connectivity. The thesis

doesn’t contain any excerpts from the paper. However, clustering and custom distance measure-

ment techniques used in the paper was useful when analysing the system behaviour of genome

11



Chapter 1: Introduction

metabolic models of bacteria and DNA walker circuits (example application area discussed in

chapter 6 and 7).

1.6 Thesis Outline

Figure 1.3: Thesis outline - The thesis can be read in the above order.

Chapter 2 provides an introduction to the main concepts discussed in the thesis. Existing

data analytics driven methodologies are discussed too. Data driven methodology to identify

alternative solutions is introduced in Chapter 3. Chapter 4, 5 and 6 discusses about the appli-

cation of the methodology to identify alternative solutions. In Chapter 4 the methodology is

applied to a mathematical problem where an optimisation approach is used to obtain alternative

mathematical expression for a given target. Application of the methodology to GEM models is

discussed in Chapter 5. Chapter 6 describes the application of the methodology to identify al-

ternative solutions to DNA walker circuits. This chapter also includes the implementation of the

Simulated annealing optimisation program to heuristically search the optimal design, method

to compare two layouts by structure and application of optimisation to improve computation

design of walker circuits. Finally conclusions, open problems and potential directions for future

work are presented in Chapter 7.
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Chapter 2

Applications and current trends in

design, synthetic biology and

computational optimisation

Introduction

This chapter provides a brief introduction to key concepts focused in my research. First an

overview of the design process is provided. The research is focused in the area of biology.

Hence next sections focus on providing an introduction to systems and synthetic biology and

how computational design and modelling is used to improve design in biological systems. Next

the use of data analytics and computational optimisations in modelling biological systems to

improve the design of systems will be presented. Finally the effective use of alternative solutions

in the design process will be discussed.

2.1 Design

2.1.1 Design: A definition

In English, the word design is both a noun and a verb. The word ’design’ was introduced to the

English language in 1540s. The word design is derived from the Latin word designare meaning

’to designate’ and the French word desseign which gives a similar meaning (Harper 2015).

As a noun it means a plan or drawing produced to show the look and function or workings

of a building, garment, or other object before it is made. As a verb it means decide upon the

13



Chapter 2: Background

look and functioning of (a building, garment, or other object), by making a detailed drawing of

it(Oxford Dictionary 2004).

Concept of design is used in many fields such as art, engineering, software development,

fashion, architecture, processes design, product design and etc in different ways. Design is

planning to manufacture an object, system, component or structure. Hence design can be

formally defined as:

"a specification of an object, manifested by an agent, intended to accomplish goals, in a

particular environment, using a set of primitive components, satisfying a set of requirements,

subject to constraints" (Ralph and Wand 2009).

2.1.2 Design as a process

Design is an essential component of sustainable development. Safety of a building depends on

the strength of the structure it is built on. Similarly a good design ensures the object you

are building can perform it’s intended tasks, has a proper mechanism of handling errors and

exceptions and can accommodate functionalities which could come up in the future. Apart from

deciding the object’s functionality a design could used to determine how existing resources can

be optimally utilised to create the object. Hence design is a vital part of any development.

Design is being used in all most all disciplines and the process of design significantly varies

depending on the context it is being used. Hence it is difficult to define a standard process for

design. However Dorst and Dijkhuis discusses about two basic and fundamentally different ways

of designing (Dorst and Dijkhuis 1995).

1. Design as a rational problem solving process

Design is done by staying within the logical-positivism framework of science. Each aspect

of the design process is either analytic or conclusively verifiable or at least confirm-able by

observation and experiment. There is much stress on the rigour of the analysis of design

processes, objective observation and direct generalizability of the findings. Logical analysis

and contemplation of design are the main ways of producing knowledge about the design

process. The Rational Model is based on a rationalist philosophy (design is informed by

research and knowledge in a predictable and controlled manner) and underlies the waterfall

model systems development life cycle. (Brooks Jr 2010)

The Rational Model states:
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• Designers attempt to optimize a design candidate for known constraints and objec-

tives

• The design process is plan-driven

• The design process is understood in terms of a discrete sequence of stages

Typical states of The Rational Model includes

• Pre-production design: Main task of this phase is to conceptualize and document the

design solution. This includes stating the design goals, researching existing similar

design solutions and analysing the design goals in order to finalise the design solution

and compile a defining a design requirement specification

• Design during production: During this phase a prototype of the design defined in the

previous stage will be implemented and the tested. This helps continuous improve-

ment of the designed solution

• Post production design feedback for future designs: The tested prototype solution will

be implemented in the actual production environment. An evaluation of the solution

will be done in order to identify the areas of improvement and future growth

• Redesign: any or all stages in the design process repeated with corrections made at

any time before, during, or after production

This form of design is mainly followed in engineering (mechanical, electrical), software

development, physics and architecture.

2. Design as a process of reflection-in-action

Designers which follow this design paradigm believe that any design problem is unique and

a core skill of designers’ lies in determining how every single problem should be tackled.

Such fundamentally unique problems are tackled with the aid of constructionist view of hu-

man perception- and thought processes. A designer sees design as a ’reflective conversation

with the situation’. Problems are actively set or ’framed’ by designers, who take action

(make ’moves’) improving the (perceived) current situation. This has always been left to

the professional knowledge of experienced designers, and has not been considered describ-

able or generalizable in any meaningful way. Thus people who follow this design paradigm

find it unacceptable that these problems cannot be described in the prevalent analytical

framework, and that their solving therefore cannot really be taught in the professional

schools.
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The Action-Centric model is an example for design as a process of reflection-in-action.

The model states:

• Designers use creativity and emotion to generate design candidates

• The design process is improvised (without preparation)

• No universal sequence of stages is followed – analysis, design and implementation are

contemporary and inextricably linked

This form of design is mainly followed in arts and fashion.

2.1.3 Design disciplines

How design is used in engineering, computer science and biology will be discussed below.

• Design in engineering

Design in engineering covers a range of disciplines such as process design, vehicle design,

military design, building and structural construction design, space-craft design, and ap-

pliance design. Design is a component of the engineering process. Design is carried out

as a rational problem solving process. By applying scientific and mathematical principles

to practical ends such as the design of efficient and economical structures, machines, pro-

cesses, and systems. Hence the design process is more similar to The Rational Model. For

an in-depth review refer (Lewis, Chen, and Schmidt 2006; Paynter 1961).

• Design in software engineering

Design is used in several aspects in software engineering namely software process design,

software design patterns, design paradigm in programming and user interface design.

When it comes to designing software processes (building software programs) there is a

separate category of design paradigms used namely waterfall model, spiral model, evolu-

tionary model and Agile model. There is another variation of design called software design

patterns. These patterns define how to develop reusable solution to a commonly occurring

problem within a given context. Singleton, Abstract factor, Factory and Bridge are some

examples for design patterns. Another variation of design used in software engineering is

the logical design in programming. Object-oriented programming, logic programming and

structured programming are few examples of different programming paradigms. These de-

sign models explains how a program is constructed and executed. Designing user interfaces
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is a separate paradigm which involves programming, arts and user psychology (Pressman

2005).

• Design in biology Adrian Mackenzie in his paper “Design in synthetic biology” characterises

the design process by analysing the application of design techniques, such as bioinformatics

software, presentation of information (i.e. diagrams), in modelling biological structures

such as metabolic pathways, minimal genomes and biological standard parts (Mackenzie

2010). According to Mackenzie design processes in synthetic biology is based on two main

notions; meta-technique and meta-material.

It is observed that, in biology, design principles are used as a means of eliminating un-

certainties and complexities. Meta-technique refers to the process of encapsulating these

design techniques and formalizing them through practices of collaboration and standard-

isation. Meta-material refers to the methods used to represent biological behaviour in

a designable format such as models, layered-processes, pathways and networks. Meta-

materials and meta-techniques in combination represents dynamism of living things in the

design processes. Even though, in real world, biological systems are a collection of complex

and interlinked subsystems that work in synchronization, the computational modelling pro-

cess is de-coupled. Computational modelling (designing) of biological systems are done in

mainly three ways; development of complex individual and interlinked subsystems, chang-

ing the interactions between the interlinked subsystems, and implementation of the whole

biological system. Hence Mackenzie identifies three main construction approaches in syn-

thetic biology which are related to design principles such as abstraction, decoupling and

modularity used in engineering. They are;

– Device-based standardised construction

– Mid-range problem-focused re-engineering of microbes as biotechnologies

– Whole genome engineering

Design in biology plays a significant role in how the public view novel technology such

as biotechnology. A detailed explanation on design in synthetic biology can be found in

(Mackenzie 2010).
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2.2 Data Analytics in Synthetic Biology Design

2.2.1 Introduction to Data Analytics

Data analytics refers to qualitative and quantitative techniques and processes used to enhance

productivity and business gain. Data is extracted and categorized to identify and analyse be-

havioural data and patterns, and techniques vary according to organizational requirements.

Bioinformatics is the field in which data analytics techniques are incorporated in the field of

biology. Bioinformatics is conceptualising biology in terms of molecules (in the sense of physi-

cal chemistry) and applying "informatics techniques" (derived from disciplines such as applied

maths, computer science and statistics) to understand and organise the information associated

with these molecules, on a large scale (Hucka et al. 2003).

In my thesis I have proposed a methodological approach to identify alternative solutions

in a population based optimisation approach. The methodology is presented in Chapter 3. In

instances where computational optimisation is used to improve design of complex system I have

proposed a method to store the history of the optimisation process and extract alternative so-

lutions. In order to extract solutions from the history different analytical techniques (mainly

clustering and statistical analysis) was applied. These techniques were applied in three different

example applications to understand the relationship between structure and behaviour of com-

putational models. Applications include identification of alternative solutions through analysing

structure and output of mathematical expressions (see Chapter 4), behaviour of metabolic mod-

els of bacteria and their structure (gene and reaction composition of models) (see Chapter 5),

and, DNA walker circuit layout and its behaviour (see Chapter 6).

2.2.2 Prior Work: Analytics in Synthetic Biology

The research proposed in this plan builds on mainly two research efforts conducted previously;

the master’s dissertation and contributions to research paper, Reaction profiling for behavioural

analysis of genome-scale biochemical models.

“Data Analysis Techniques for Metabolic Models of Bacterial Strains to Support Computa-

tional Design for Synthetic Biology” was my master’s dissertation which I experimented on a set

of data analysis techniques which can be applied to generate various perspectives of the E. coli

genomic data. 55 publically available computational models of E.coli and Shigella strains were

used for the analysis. The 55 models were broadly classified into two classes as E.coli and Shigella
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or into four classes as Shigella, Commensal Strains, Intestinal Pathogens and Extra-Intestinal

Pathogens. A combination of supervised and unsupervised learning approaches was used to check

whether these computational models could be grouped into their respective classes through the

analysis of static properties and behaviours of the models. Three clustering algorithms (Hier-

archical (Guess and Wilson 2002), K-medoids (Park, Lee, and Jun 2006) and DBSCAN (Ester

et al. 1996)) with Euclidean distance as the dissimilarity measure were applied on static data.

Hierarchical and DBSCAN clustering algorithms were applied to behaviour data with distance

measures Euclidean, Discrete Wavelet Transform (DWT) and Dynamic Time Warping (DTW)

(Liao 2005). The codes used for the analysis in the mastered thesis were generalized and compiled

into a set of libraries. Some of these libraries were reused for the analysis in the paper making

the analysis fast. Paper “Reaction profiling for behavioural analysis of genome-scale biochem-

ical models” discusses about a set of methods to profile and analyse genome-scale biochemical

models, based on the dynamic behaviour over time of reactions as well as of metabolites. We

demonstrate our methodology by applying it to a reduced model of the whole genome metabolism

of E.coli K-12. I performed clustering, and data analysis, over time series of reaction rates.

2.3 Optimisation

In a broad sense optimisation is the process of selecting the best possible solution for a problem

from a set of all possible solutions.

Optimisation has become an important tool used in decision making on system design, anal-

ysis and operation. It is widely used in engineering, in electronic design automation, automatic

control systems, and optimal design problems arising in civil, medical, chemical, mechanical,

and aerospace engineering. Optimisation is also used for problems arising in network design

and operation (shortest route, pipeline networks), finance (portfolio management), supply chain

management, scheduling, and many other areas. The list of applications is still steadily expand-

ing.

For most of these applications, optimisation is used as an aid to a human decision maker who

supervises the process, checks the results, and modifies the solution based on actions suggested by

the optimisation problem. For instance buying or selling assets to achieve the optimal portfolio.

Additionally, with the improvement of computational power there is a rapid growth in embedded

optimisation where optimisation is used to automatically make real-time choices, and carry out

the associated actions, with no (or little) human intervention or oversight. For example Search
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Engine Optimisation, News feed optimisation in Facebook. (references)

2.3.1 Why Optimisation?

As discussed in Chapter 1, the research question which is intended to answer through this re-

search is how to generate alternative designs for engineering bacteria, with suitable combinations

of genes responsible for the optimal production of a specific bio product?

Bacteria are cells. Cells have many parts, each with a different function. Some of these

parts, called organelles, are specialized structures that perform certain tasks within the cell.

Different species of bacteria have different structures and their capabilities varies according to

these structures. Building block of a cell is proteins. Genetic information (i.e. DNA) in a

bacteria has the instruction manual describing the way these proteins should be created so the

bacteria can get the embedded functionalities. In other words genetic information of bacteria

decides the structure and capabilities of a bacteria. Hence the design of a bacteria refers to the

DNA sequence of the bacteria.

Bacteria has several thousand genes. As mentioned above the total genome of a E. coli con-

sists of 4000 genes. The most suitable combination of genes responsible for optimal production

of bio products can be found after testing all the possible combinations of 4000 genes. This large

solution space (4000 factorial of possible combinations) is impossible to explore with regards to

time and computational resources and it would be a waste of resources to explore each and every

possible combination.

Therefore optimisation provides a mechanism to automatically traversing through the large

solution space in an efficient manner (time and resource). With proper optimisation methods

we could also get the alternative design solutions which could be useful apart from the optimal

solution and enhance the search by specifying constraints which designs should abide to. Ad-

ditionally reliable solutions can be found without needing a lot of pre-experience information

relating to the problem.

2.3.2 Definition

Optimisation is the process of selecting the best possible solution for a problem utilizing the

available resources while ensuring the constraints imposed in achieving the solution are not

violated (Qing 2006).

An optimisation problem can be mathematically defines as follows.

Find x = [x1 x2 · · · xN ] where
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minimize f(x)

subject to gi(x) ≤ 0, i = 1, ...,m

hi(x) = 0, i = 1, ..., p

x is the optimisation parameter

f(x) : is the objective function to be minimized over the variable x

gi(x) ≤ 0 are m inequality constraints

hi(x) = 0 are p equality constraints

Figure 2.1: Feasible Search Space of Optimisation with multiple objective functions

For instance in portfolio optimisation, an investor seeks the best way to invest some capital

in a set of n assets. The variable x represents the investment in an asset. The objective

or cost function might be a measure of the overall risk or variance of the portfolio return.

In this instance, the optimisation problem corresponds to choosing a portfolio allocation that

minimizes risk, among all possible allocations that meet the firm requirements. The constraints

might represent a limit on the budget (i.e., a limit on the total amount to be invested), the

requirement that investments are non-negative (assuming short positions are not allowed), and

a minimum acceptable value of expected return for the whole portfolio.

2.3.3 Properties of an Optimisation Problem

As explained above an optimisation problem is made up of three essential properties: optimisa-

tion parameters x; objective functions, f(x) and constraint functions gi(x) and hi(x).
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• Optimisation Parameters

Optimisation parameters (x) are the quantities that can be treated as variables in an

optimisation problem. For example in the investment fund management problem, the

optimisation parameters are the amounts of money invested in each fund. Optimisation

parameters are also referred to as decision variables. An optimisation parameter can be

continuous, discrete, or even symbolic.

• Objective Function

In general there are several acceptable solutions for a given problem. However the purpose

of optimisation is to select the best possible solution. Therefore, a criterion has to be

specified for comparing different solutions. This criterion, when expressed as a function

of the optimisation parameters (design variables), is called as the objective function. For

instance, in the investment fund management problem, the best plan is the one which

gives a maximum return.

An optimisation problem can have more than one objective function. For example, in the

investment fund management problem, the best plan can also be selected based on which

has the maximum return and minimum risk. Even though almost all optimisation problems

have objective functions, there are instances where an objective function is not required.

For instance, when designing integrated circuit layouts the goal is to find optimisation

parameters (design variables) that satisfy the constraints of the model. In such a scenario

a user does not particularly want to optimise anything, hence there is no necessity to define

an objective function.

• Constraint Function

Constraints specify the restriction on the values an optimisation parameter (design vari-

able) can have. For example, the investment fund management problem, the amount of

money invested should not exceed the available money. Hence design constraints represent

the limitation on the performance or behaviour of the system.

Same as objective functions, when defining an optimisation problem constrains are not

absolutely necessary. In certain scenarios constrain functions and objective functions are

interchangeable.
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2.3.4 Types of Minima

Minima is used to describe the solution for an optimisation problem. Figure 2.2 is an illustration

of the different types of minima.

• Global Minimum

A point x∗ is a global minimum of the function f(x) if we have f(x∗) < f(x) for any x

such that x∗ ̸= x. This point is marked in 2.2 as global minimum.

• Strong Local Minimum

A point x∗ is a strong local minimum of the function f(x) if we have f(x∗) < f(x) for any

x ∈ V (x∗) and x∗ ̸= x, where V (x∗) defines a neighbourhood of x∗. Three points which

fall under this definition is marked in 2.2.

• Weak Local Minimum

A point x∗ is a weak local minimum of the function f(x) if we have f(x∗) ≤ f(x) for any

x ∈ V (x∗) and x∗ ̸= x, where V (x∗) defines a neighbourhood of x∗.

Figure 2.2: Types of minima in optimisation [source:
https://www.phy.ornl.gov/csep/mo/node5.html]

Usually in an optimisation problem, we seek for the global minimum (or maximum) of F (x).

An optimisation problem may have two or more local minima. Since optimisation algorithms in

general are iterative procedures which start with an initial estimate of the solution and converge
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to a single solution, one or more local minima ma be missed. If the global minimum is missed,

a suboptimal solution will be achieved. Therefore as a best practice optimisation is performed

several times with different initial estimates. This is a summarised explanation on minima; see

(Antoniou and Lu 2007) for further details.

2.4 Classification of optimisation problems applied in optimal

design

In reality the problems we encounter are different in nature. The physical properties involved

and how they behave are different from one instance to another. For example managing an

investment fund is different to deciding the optimal trajectory for space mission. Hence it is

difficult to have one optimisation algorithm to model all the problems. There are numerous

optimisation algorithms proposed to cater different types of problems.

This introduces the need for a suitable categorisation of the algorithms used in the context

of optimal design in order to provide a guideline for selecting the appropriate algorithm for your

need. Literature on optimisation gives no definitive answer as to what is the categorisation

of optimisation algorithms. Like most of the concepts in science it is subjected to individual

perspective. Several structures have been imposed based on the properties of an optimisation

problem. Below are some of the major categorisations of the algorithms.

Optimisation algorithms are design and inspired by real world problem. Hence the word

algorithm and problem will be used interchangeably during explanations.

• Unconstrained Optimisation and Constrained Optimisation

Important distinction between optimisation problems are based on the types of values al-

lowed for decision variables. Unconstrained optimisation problems have No constraints on

the values which variables can accept. Derivative free optimisation, non-linear equations,

non-linear least-squares problem are few examples for unconstrained optimisation.

Where as in contrast in constrained optimisation problems there are constraints on the

values variables can accept. The constraints on the variables can vary widely from simple

bounds to systems of equalities and inequalities that model complex relationships among

the variables. Bound constrained optimisation, linear programming, quadratic program-

ming and non-linear programming are few examples for constrained optimisation.

All three example applications discussed in this thesis uses constrained on the decision
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variables. In the first example, using gene expression programming optimisation to gener-

ate the optimal mathematical expression, there are constraints on the number and type of

operators that are allowed, the range of operands allowed and the length of the expression

(see Chapter 4). In the second example, a genetic algorithm is used to optimize the biomass

production of a GEM model of bacteria, the number of genes and reactions associated with

genes are constrained and only allowed to pick form a pre-defined list (see chapter 5). In

the last example, where random restart hill climbing and simulated annealing algorithms

are used to optimize the layout of DNA walker circuits, the number of nodes and where

they can be placed on the Cartesian plane have constrains (see Chapter 6).

• Black-box optimization

Most of the optimization methods require us to have an understanding about the under-

lying fitness function, and especially its rate of change. When an optimization problem

can be formulated numerically (i.e., without the use of simulations), such optimization

methods often present the most efficient choice. However, in certain scenarios (e.g. ar-

chitectural design practice), an explicit formulation of the objective function and of its

gradient often is unavailable. Architectural designers generate and evaluate design candi-

dates employing simulations and other quantitative measures derived from a parametric

model (Oxman 2006) without specifying a mathematical expression that relates the model

parameters to the fitness criterion. Therefore, in black-box optimization, it is unknown

how the fitness function is calculated. A set of known decision variables with known lower

and upper bounds will be fed to the black-box. The black-box will then output the fitness

value which will be used to evaluate the fitness of the candidate. Optimization problems

involving numerical simulations are one of the primary applications of black-box methods

(Wortmann and Nannicini 2016).

From the work presented in this thesis, there is only one example that falls under bank-box

optimization. The second example application area discussed in this thesis (see Chapter 5)

uses a model-based optimisation search. In this example, a genetic algorithm is employed

to optimise the structure of a genomic metabolic model of bacteria. The optimisation

program generates a solutions and then the solution is passed on to a simulator in order to

compute the fitness. The simulator uses ordinary differential equations to predict metabolic

behaviour of bacteria. The fitness value is then used in the evaluation process in the genetic

algorithm (see Chapter 5).

25



Chapter 2: Background

2.4.1 Optimisation problems considered in this thesis

My research was focused on defining a methodological approach to identifying alternative solu-

tions by analysing the optimisation history of a optimisation program. The methodology was

applied to three example application areas. When considering the characteristics of these ex-

ample applications, they can be broadly categorized into two main classes of search problems;

metaheuristics and model-based optimisation.

1. Metaheuristics

Metaheuristic is a technique designed to find a sufficiently good solution (not the best/

globally optimal solution) to an optimization problem within a limited computational

capacity (i.e. time) (Parejo et al. 2012). Metaheuristic search can be considered as a min-

imization or maximization problem. When searching over a large set of feasible solutions,

metaheuristic search often finds good solutions more quickly when classic methods are too

slow or for finding an approximate solution when classic methods fail to find any exact

solution. Metaheuristics search sample a subset of solutions which is otherwise too large to

be completely enumerated or otherwise explored. This is achieved by trading optimality,

completeness, accuracy, or precision for speed. In a way, it can be considered a shortcut.

Two major components of a metaheuristic algorithm are: intensification (exploitation) and

diversification (exploration). Diversification refers to generate diverse solutions in order to

explore the search space on a global scale, while intensification refers to focus the search

in a local region knowing that a current good solution is found in this region. A good bal-

ance between intensification and diversification will help in reaching global optimal (Yang

2011).

Two out of the three example applications fall under this category. First application is

use of gene expression optimisation algorithm to produce a mathematical expression that

would evaluate to a specified target value while using the user specified operators and

operand range (see Chapter 3). In this example an infinite set of feasible solutions are

available and the metaheuristic search will find a good solutions more quickly. The second

example is where a random restart hill climber and a simulated annealing algorithm were

used to identify the optimal layout of the nodes of a DNA walker circuit that would

minimize the information leakages and circuit area (see Chapter 6).

2. Model-based optimisation
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In model-based optimization, a mathematical function is interpolated through known func-

tion values, and this interpolated function is used as a model of the unknown fitness land-

scape (Wortmann and Nannicini 2016). A proxy model thus provides instant estimates

of the performance of design candidates. Model-based optimization strategies alternate

between improving the surrogate model (exploration), and using the surrogate as a guide

to find good design candidates (exploitation). Model-based methods typically require only

a small number of function evaluations, and thus are especially appropriate for cases where

such evaluations take a long time. The combination of finding good design candidates and

estimating the performance of the whole design space is unique to model-based optimiza-

tion methods and makes them seem especially appropriate for the architectural design

process. The surrogate model allows playful interactions, while the discovered good design

candidates provide starting points for further exploration (Bradner, Iorio, Davis, et al.

2014).

The second example application area discussed in this thesis (see Chapter 5) uses a model-

based optimisation search. In this example, a genetic algorithm is employed to optimise the

structure of a genomic metabolic model of bacteria. The optimisation program generates

a solutions and then the solution is passed on to a simulator in order to compute the

fitness. The simulator uses ordinary differential equations to predict metabolic behaviour

of bacteria. The fitness value is then used in the evaluation process in the genetic algorithm.

2.5 Existing algorithms and approaches

In this section I intend to discuss about three main existing approaches related to the method-

ological approach I have proposed in identifying alternative solutions from the history of a

computational optimisation program. Also I would compare the existing approaches with my

approach highlighting the similarities and differences in application of the concepts.

2.5.1 Automatically Defined Function (ADF) in genetic algorithms

Genetic algorithm (GA) is a metaheuristic. A GA is always applied to a population of individual

objects. Each individual object in the population is associated with a fitness value. The GA

transforms the population into a new generation of the population using genetic operations

such as crossover (sexual recombination) and mutation. These genetic operation are analogous

with the Darwinian principle of reproduction and survival of the fittest. Each individual in the
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population represents a possible solution to a given problem. The genetic algorithm attempts

to find a very good (or the best) solution to the problem by genetically breeding the population

of individuals over a series of generations (Koza 1995).

Genetic programming (GP) is a technique of evolving programs. GP is an extension of the

conventional genetic algorithm in which each individual in the population is a computer pro-

gram. The search space in genetic programming consists of all possible computer programs.

Each computer program is composed of a set of functions and terminals (the inputs to the

undiscovered computer program) appropriate to the problem domain. The functions may be

standard arithmetic operations, standard programming operations, standard mathematical func-

tions, logical functions, or domain-specific functions. A mathematical expression or parse tree

can be considered as a computational program (Koza 1995). An automatically defined func-

tion (ADF) is a function that gets dynamically evolved during a run of generic programming.

This function can be either subroutine, subprogram, DEFUN, procedure, or module. Accord-

ing to (Koza et al. 1996) the functionality of the ADFs are as follows: “When automatically

defined functions are being used, a program in the population consists of a hierarchy of one

(or more) reusable function-defining branches (i.e., automatically defined functions) along with

a main result-producing branch. Typically, the automatically defined functions possess one or

more dummy arguments (formal parameters) and are reused with different instantiations of

these dummy arguments. During a run, genetic programming creates different subprograms

in the function-defining branches of the overall program, different main programs in the result

producing branch, different instantiations of the dummy arguments of the automatically de-

fined functions (function defining branches), and different hierarchical references between the

branches.”

The first example application in my thesis is about using optimisation to generate mathemat-

ical expressions. I used an existing optimisation approach named gene expression programming

which has adopted ADFs in creating the mathematical expressions (Ferreira 2006). Further, The

paper “Use of Automatically Defined Functions and Architecture-Altering Operations in Auto-

mated Circuit Synthesis with Genetic Programming” (Koza et al. 1996) discusses how ADFs

are used in determining the layout of and IC. The third example application where I used an

simulated annealing algorithm to generate the circuit layout for a DNA walker circuit, can be

improved by adopting ADFs.
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2.5.2 Innovization in multi-objective optimization

Multi-objective optimization (MO) is mathematical optimization problem that involves optimiz-

ing more than one objective function at the same time (Huang, Zhang, and Li 2019). Therefore,

optimality of solutions will be decided based on trade-offs between two or more conflicting ob-

jectives. Multi-objective optimization theoretically does not have one solution but produces a

set of Pareto-optimal solutions.

A solution is called Pareto optimal if no change could lead to improved fitness for some

solutions without fitness some other solutions being reduced, or if there is no scope for further

Pareto improvement (a change that result in a new fitness where some solutions will have an

improved fitness, and the fitness of other solutions will remain same).

Each of these pareto-optimal solutions which are produced by MO, is optimal subjective

to a trade-off among the objectives. Since the outcome of the optimisation are multiple solu-

tions, multi-objective optimization is ideal for finding a set of alternate solutions. This gives the

opportunity to either for finally choosing a single preferred solution or to launch a future analy-

sis. Evolutionary algorithms (EAs) are ideal for solving multi-objective optimization problems

because it is population based optimisation approach (Deb, Bandaru, and Celal Tutum 2012).

Since Pareto-optimal solutions are all optimal, they are likely to possess some common

properties (design principles) related to design variables, objectives and constraints. These

common properties could be identified as ‘signatures’ to Pareto-optimal solutions (Deb, Bandaru,

and Celal Tutum 2012). The process of extracting these common properties from a set of Pareto-

optimal solutions in the form of mathematical relationships between the variables and objective

functions is known as Innovization. Temporal innovization refers to the study of evolution of

design principles over generations of an multi-objective evolutionary approach (Bandaru and

Deb 2015).

Innovization is not a straight forward simple procedure. As proposed by (Deb and Srini-

vasan 2006) innovization procedure includes a) obtaining a set of Pareto-optimal solutions from

a multi-objective optimization tool; b) clustering to identify well-distributed solutions; c) mod-

ify the solutions using a local search procedure. Next two independent procedures are used

to verify these filtered solutions (extreme and intermediate Pareto-optimal solutions). First, a

single-objective optimization procedure (e.g genetic algorithm) is applied on the extreme Pareto-

optimal solutions to verify each objective function subject to satisfying given constraints. Sec-

ond, intermediate Pareto-optimal solutions are verified by using the normal constraint method
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(Messac and Mattson 2004). It is similar to obtaining a best representative of each grouping

of Pareto-optimal solutions. Finally, a data-mining strategy must be used to automatically

evolve design principles from the combined data of optimized design variables and correspond-

ing objective values (Deb and Srinivasan 2006). An approach has been proposed by (Bandaru

and Deb 2011) to automatically discover common design principles in Pareto-optimal solutions

using machine learning procedures such as clustering.

I have proposed a methodological approach to identify alternative solutions from the history

of a computational optimisation program in chapter 3 of the thesis. The methodology includes

a “Temporal analysis” component which focuses on analysing the optimisation archive (a data

storage composed of all visited solutions by an optimisation tool within a single or multiple run).

Temporal analysis will look at how a solution has evolved from the initial solution to optimal

solution in the current run and identify sub design patterns that remains constant overtime.

In comparison with innovization (or temporal innovation) mentioned above, temporal analysis

naively looks at the evolution of a solution within a single run. However, there are few differences

between the two approaches. Firstly, while Innovization focuses on defining design principles

(identifying mathematical relationships between decision variables and objective functions), tem-

poral analysis component in my methodology aims at identifying constant sub patterns in the

overall model with the aim of improving the optimisation process (reducing the time to reach

an optimal solution by reducing unnecessary variability). Secondly, innovization is applied to

a set of Pareto-optimal solutions generated by a multi-objective optimization approach, while

temporal analysis focuses on the evolution of a single solution generated by any optimisation

approach (multi-objective or single objective optimisation). Thirdly, innovization depends on

a particular type of optimisation tool, whereas temporal analysis can be applied to the output

of any optimisation tool. Innovization is a well-defined complex procedure involving the use

of several computational and data mining techniques. At present, temporal analysis uses only

visual analytics to identify the constant sub-components within a solution. However, temporal

analysis could certainly be improved by adopting certain concepts used in innovization especially

by adopting data mining techniques to automatically identify the constant sub components.

2.5.3 Multiple Distinct Solutions in evolutionary algorithms

Traditionally an optimisation algorithm produces only one solution at the end of a single run.

This is ideally the best solution found during the search process. However, we can modify

optimisation algorithms to output more than one solution that satisfy the fitness requirements
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within a single run. These solutions are referred to as multiple distinct solutions.

Multiple distinct solutions are important for couple of reasons. First, the availability of

many solutions provide the user with a choice. For example, in a timetabling problem, having

an issue with one timetable will make the timetable unusable. In this case having a second

solution is helpful as we do not have to run the algorithm again to generate a new timetable.

Another example is, in a Travelling salesman problem, there could be a scenario where one road

is blocked and you need to find an alternative route to get to the destination. Therefore, having

more than one path is beneficial. Secondly, when we are unable to obtain the optimal solution

or when the implementation of the optimal solution is less cost effective in real life, it would be

ideal to have multiple distinct solutions (Turner 1994).

An advantage of multiple distinct solution is that it improves solution quality, with in some

cases, little or no extra computational cost. A drawback of multiple distinct solutions is that if

the multiple solutions are similar, and if one is rendered unsuitable for the task, the rest will be

unsuitable and redundant as well. Therefore, having diverse multiple distinct solutions is useful

(Turner 1994).

Multiple distinct solutions are mainly coupled with genetic algorithms (GA). Multiple dis-

tinct solutions work well with GA rather than simulated annealing (SA) or stochastic hill climb-

ing (SH) algorithms because each generation in a GA has a population of solutions. Where as

in SA or HC it looks at only one solution within an iteration. In order to incorporate multiple

distinct solutions into a GA specific algorithm should be added to a normal GA. Spatial selec-

tion, islands, crowding, sharing and tribes are some of the methods adopted by GAs to produce

multiple distinct solutions (Turner et al. 1996).

Multiple distinct solutions with GA have been widely applied to solve the timetabling prob-

lem. “Comparing Genetic Algorithms, Simulated Annealing, and Stochastic Hill climbing on

Timetabling Problems” (Ross and Corne 1995), “Obtaining Multiple Distinct Solutions with

Genetic Algorithm Niching Methods” (Turner et al. 1996). and “Genetic algorithms and mul-

tiple distinct solutions” (Turner 1994) are three studies which compares the effectiveness of

multiple distinct solutions with GA against SA and HC optimisation algorithms. According to

the finding of the paper, when comparing solution quality SA is better than the GA. However,

the GA performed better compared to the multiple distinct approach. As presented by (Ross

and Corne 1995) “number-of-distinct-solutions advantage offered by the GA is evidently most

useful in those cases where its solution quality performance is acceptable in comparison to SA

and SH”. Also, multiple distinct solution approach is not ideal when there are many solutions

31



Chapter 2: Background

and it’s easy to obtain them.

The concept of alternative solutions I have proposed in my work is similar to multiple dis-

tinct solutions. The purpose of alternative solutions is to provide biologists (since the example

applications I have picked are from synthetic biology) with a choice when the optimal solution

is not feasible to implement. However, currently I do not propose a mechanism to measure the

similarity between solutions in terms of viability. Since these are computational models, they

need to be tested in in-vitro to understand the behaviour and significance of similarity values

and boundaries. However, there are several advantages in my approach as well. Unlike GAs

which need to have additional algorithms embedded to facilitate multiple distinct solutions, my

methodological approach can work with the basic optimisation algorithm. The history of the

optimisation program will be stored and alternative solutions will be extracted from the history.

Further, the proposed methodology can be applied to any form of optimisation approach GA,

SA and SH as long as the history is stored. Also, multiple distinct solutions enabled GA needs

to finish in order to identify the distinct solutions, however, in my approach it is possible to

access the optimisation archive and look for alternative solutions while the optimisation process

is still running.

2.6 Current Approaches to Obtain Alternative Solutions

2.6.1 DNA Circuits and DA

There is a study done by a group of researchers at University of Tokyo on automating the

design of DNA circuits using simulated annealing (Kawamata, Tanaka, and Hagiya 2009). Even

though the approach used for automation of design of circuits (using simulated annealing) is

similar there are several differences in the published work and the work presented in this thesis.

The focus of the published work is on automating the design of DNA logic gates using simulated

annealing. The heuristic search is designed to optimise the design by optimising its chemical

kinetic parameters (i.e. reactions of DNA molecules and the time change of the concentration

of structures). Hence the implementation of the simulated annealing algorithm is different with

respect to the fitness measure, termination condition and acceptance probability. In contrast

the work presented in this thesis focuses on automating the design of DNA walker circuits. DNA

walker circuits and DNA logic gates are different in nature. In a nut shell a DNA walker circuit

can be considered as a collection of several DNA logic gates. Further, optimisation process is

used as a mechanism not only to automate the design of circuits but also to identify alternative
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designs with similar behaviour yet having structural differences. Hence the simulated annealing

process is slightly different than the one in the published work. Fitness measure is defined

based on structure of the circuit which uses physical parameters such as area and leaks. The

published method is a maximization optimisation while the proposed optimisation algorithm is

a minimization problem.

2.6.2 Memory-based schemes for evolutionary algorithms

A memory in an optimisation context can be defined as a storage of previously evaluated solu-

tions. In an optimisation environment memory schemes are used to store useful information from

the current environment and reuse it later in new environments. Several research approaches

have shown that memory schemes are useful in real-world optimization problems. Real-world

optimisation problems usually involve several conflicting objectives. Conflicting objectives occur

when an improvement in one objective function mirrors the worsening of another one. The main

aim in multi-objective optimisation is to select the best trade-offs among these conflicting ob-

jectives. Real-world optimisation problems are usually categorized under dynamic optimisation

problems (DOPs). Speciality about DOPs are that the fitness function, design variables and/or

environment conditions change over time. Hence the goal of a dynamic optimisation problem

is not to locate the optimal solution but to tract the moving optima with time. For any opti-

mization algorithm, proper balance between exploration and exploitation of the search space is

necessary to achieve a global optimal solution. Exploration (i.e. diversification) involves global

search in the search space and exploitation (i.e. intensification) involves search in a local region

depending upon the current best solution. Too much of exploration and exploitation harmfully

affects the performance of the algorithm by increasing the convergence time and increasing the

chances to fall into local optima. Memory-based schemes are employed in DOPs to address two

main problems: premature convergence and limitation on number of fitness evaluations permit-

ted. Premature convergence occurs when a population for an optimization problem converged

too early, resulting the end solution being suboptimal. This method is employed in several evo-

lutionary algorithms such as genetic algorithms (GA) [2, 5, 8, 4] and particle swarm optimisation

(PSO) [1, 3, 6, 7].

1. Estimate the fitness value with reference to the search history when the number of fitness

evaluations are limited

2. Maintain solution diversity in generations by using the best solutions in the previous
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generation to construct the initial population in the next generation This is achieved using

two types of memory schemes: implicit and explicit memory schemes

2.7 Importance of computational modelling in design

Design is an essential component of sustainable development. A good design ensures the object

(or the system) being built can perform it’s intended tasks, has a proper mechanism of handling

errors and exceptions and can accommodate requirements which could arise in the future. Thus,

a designer is required to have thorough domain knowledge and the ability to foresee all the

potential opportunities and threats to ensure a robust design. However, as the complexity of

the system increases it becomes impossible for a human designer to gain sufficient insight into

the system so as to provide better design and accurate predictions. Therefore, computational

modelling has become a useful technique that facilitates the design of complex systems.

Computational modelling is the use of computers to simulate the behaviour of complex sys-

tems. Numerous variables that characterises a complex system are encoded into a computational

model using mathematical concepts. During simulation each of these variables alone or in combi-

nation are modified to observe the changes in the outcome. This allows the researchers to make

predictions on the behaviour of the real system that is being studied in response to the changes.

One of the main advantages of this method is that it allows the scientists to experiment with

endless permutations and combinations of input parameters that have been otherwise impossible

to make out by a human experimenter. Thus, computational modelling can expedite research

by facilitating scientists to conduct as many simulated experiments as required by computer

saving time, money and material. Synthetic biology is one of the novel areas that is benefited

by computational modelling.

The ultimate goal of any design process is to come up with the best design; as resources

are limited, to minimize the cost and resource consumption, and to maximize the performance,

profits and efficiency. To optimize means to find the best solution, the best compromise among

several conflicting demands subject to predefined requirements. Mathematical optimization

has been extremely successful as an aid to better decision making. Therefore, computational

optimization, modelling and simulation forms an integrated part of the modern design practice.

However, the extensive level of complexity of real-world systems often makes it difficult to

accurately characterise a system into a perfect computational model and the non-linearity in

correlations makes it difficult to adequately capture them by optimization tools. Consequently,
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there is a gap between approximations delivered by optimization and their practical possibilities.

In certain instances, the optimal design proposed by the optimisation tool typically involves im-

plementation impracticalities in predicted parameters making the optimal design less robust (i.e.

too many modifications, impossible alterations, highly time and resource consuming alterations).

In such cases it is considerate to settle for robust suboptimal design options with sufficiently

good accuracy and reasonable resource expenditure. Hence alternative solutions with optimal

(similar behaviour and different structures) or suboptimal behaviour play a vital role in the

design process.

Analysing the output from optimisation tools are essential in identifying these alternative

solutions. For this purpose, data analytics techniques are applied. Generation history from opti-

misation and characteristics of individual solutions could be used to gain insights on the solution

space explored by the optimisation tools. This amounts to a large volume of data generated over

a short period of time with different data types (i.e. real data, nominal, ordinal, time series,

graphs and etc). identifying alternative solutions may involve performing descriptive statistics,

structural comparisons, groupings, pattern recognition, solution profiling and etc depending on

the solution type. In order to analyse these large amounts of data efficiently and accurately, it

is essential to incorporate data analytics techniques.

Summary

The chapter has provided a brief introduction to design process in general and presented an

overview of design paradigms applied in engineering, software engineering and synthetic biology

area. The two main forms of biological systems that were discussed are metabolic models of

bacteria which simulate the metabolic activity of an E.coli bacteria, and DNA circuits which

is biochemical circuit built using DNA strands. Computational optimisation is a widely used

technique to optimise computational design. Optimisation plays a vital role in the design pro-

cess by enabling the global solution space for a problem which otherwise impossible to do by

hand. However, a common limitation with computationally designed solutions is that the fea-

sibility in implementing them in silico could be difficult. These difficulties are often attributed

to modifications which consume a lot of resources. Having alternative solutions (behaviourally

similar but structurally different) solutions will aid biologists to make effective design decisions.

Therefore a methodology will be proposed in the next chapter which aims at utilising the com-

putational optimisation history which was used to generate the optimal solution, in order to
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extract alternative solutions.
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Methodological approach to identify

alternative solutions from the history of

a computational optimisation program

Introduction

Traditionally design was done based on experience and intuition of designers. However, with the

advancement of technology, incorporating computational strategies in the conventional design

process provided with the ability to explore complex systems. Computational design, which

takes advantage of mass computing power, machine learning, and large amounts of data, is

changing the fundamental role of humans in the design process. The methodology described in

this chapter aims at improving the computational design process. The methodology is mainly

applied in identifying alternative solutions in a population based data generation approach.

3.1 Elements of the approach

As described in Chapter 2 it is a widely established and effective practise to incorporate optimi-

sation into the computational design process. Given a computational model optimisation is used

as a technique to select the best (i.e. optimal) value combinations required for input parameters

in order to generate the optimal outcome. However, in reality the best computational design

obtained through optimisation approach might not be feasible to implement.

Usually in an optimisation approach, the optimal solution is the output. The intermediary

solutions which are generated from the initial solution until the search reaches the optimal

37



Chapter 3: Methodology

solution is discarded at the end. Each optimisation run contains a rich source of information

that could be used to derive alternative conclusions. The speciality of the methodology proposed

in this thesis is that it analyses these intermediary solutions in order to improve the overall design

process. The methodology defined in this chapter aims at exploiting the optimisation history in

order to enhance the computational design process. A data analytics driven search approach is

utilized to analyse the optimisation history. The analysis focuses mainly on three aspects with

the aim of improving computational design; extract alternative solutions, observe the evolving

nature of solutions to predict recurring patterns and reinforce design constraints.

The methodology is applied to three examples. In all three examples, an optimisation algo-

rithm is used to generate computational designs to satisfy a predefined target behaviour. The

examples are: use of gene expression programming optimisation to generate mathematical ex-

pressions for a predefined target value, generation of computational designs for models of genome

metabolic bacteria using genetic algorithm optimisation and finally, creation of computational

designs for DNA walker circuits using a simulated annealing optimisation algorithm. These

examples will be discussed in detail in Chapters 4,5, and 6 respectively.

3.1.1 Workflow of the methodology

In this section the work flow of the methodology is described. The methodology consists of three

main phases:

1. Mathematical model definition:

As the methodology focuses on improving computational design it is necessary to have a

mathematical model that mimics the behaviour of the whole or part of the complex system

should be created.

2. Target driven optimisation:

Once the mathematical model is formed, computational optimisation approaches can be

applied to automatically generate solutions which satisfy predefine target behaviour. An

optimisation archive is created in this step. Output at each iteration of the optimisation

process is stored in the optimisation archive. Data in the archive is used for further analysis

in phase three.

3. Approach to analyse the optimisation archive:
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Historical data from optimisation is stored in the optimisation archive. This data will be

analysed in three different ways to gain three different categories of insights.

(a) Extract alternative solutions

(b) Temporal analysis

(c) Standardize design constraints

Figure 3.1: Methodology work flow overview

A representation of the overall work flow is shown in figure 3.1. Each phase of the work flow

will be explained in detail in the following sections.

3.1.2 Mathematical model definition

A mathematical model is a description of a system with the aid of mathematical concepts.

In order to create a mathematical model, firstly, we need to select the characteristics of the

system we would be observing. Next, physical observations of the complex system should be

recorded by measuring the change of these characteristics. Therefore, it is important that these

characteristics should be quantifiable. Eventually, these characteristics will be translated to

parameters of the mathematical model and the values for the parameters will be estimated
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using physical observations. Observations could be made on part of the system or on the whole

system depending on its complexity. Also the characteristics and the number of observations

made depend solely on the complexity of the physical system as well.

Observing a system can be defined as measuring the behaviour of the system in response to

different stimuli. Therefore it is essential to identify quantifiable characteristics in the complex

system. For example in a GEM model, which depicts the metabolic activities of E coli bacteria,

concentration of chemical compounds is a quantifiable characteristic. E coli feeds on sugar and

produce ethanol. In order to understand the metabolism with respect to sugar concentration,

the change in sugar and ethanol concentration should be measured over time. Here the sugar

and ethanol concentrations are quantifiable parameters.

Once the physical observations are made, mathematical concepts are applied to identify

the relationships between the input and output parameters (input parameter is the property

which decreases in quantity over time and the quantity of the output property increases over

time). Once this is completed a formal mathematical description of the system is made and it

is refereed to as the mathematical model. A mathematical model includes the input and output

characteristics parameters, assumptions which it is based on (aspects which are kept constant)

and how input and output properties are related in the complex system.

In this thesis three example applications of the methodology is discussed in the next three

chapters. Mathematical expressions described in Chapter 4 is a whole system but not necessarily

a complex system. GEM models which are discussed in Chapter 5 depicts only the metabolic

activities of E coli bacteria which can be considered as part of the complex system. Finally DNA

circuits represents a whole complex system. Figure 3.2 is an abstraction of the mathematical

definition phase.

3.1.3 Target driven optimisation

In this phase computational optimisation is applied to the model defined in the first phase.

Computational optimisation was used as a means of obtaining the best model that results in

the target behaviour which is predefined before running optimisation. Optimisation was set up

to select the best model by testing models with different combinations of values for parameters

of interest.

1. Defining design requirements:

Once the mathematical model is completed, define the design requirements expected from
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Figure 3.2: Mathematical model definition

the new design. When the number of conflicting objectives increases it is difficult to obtain

a solution that would provide a significantly higher output. Hence it is ideal to change a

small set of parameters that are linked while keeping the rest of the parameters constant.

2. Selecting parameter to be optimised:

The next step is to identify the parameters that is correlated with the defined design

requirements. The parameters include decision variables (input parameters for the op-

timisation model and output of the optimisation model), and design constraints (design

requirements that must be met for an output to be valid). Design constraints are usually

expressed as equalities and inequalities.

3. Defining the objective function:

An objective function is a performance index which quantifies the quality of a solution by

the selected decision variables. Depending on the design requirements objective function

could be maximized or minimized. This could be a mathematical function computed using

the values of the decision variables or an output from a simulation program.

4. Selecting an appropriate optimisation algorithm: Once the objective function is defined,

next step would be to chose an appropriate optimisation algorithm for the search process.

Selection of the optimisation algorithm depends on several factors such as the nature of

design requirements, design variables (single or multiple input variables) and objective

function.

5. Implementing and executing the optimisation algorithm:
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The next step is to implement the optimisation program by encoding the decision variables,

design constraints and objective function. This can be done in any programming language.

The number of times of execution and the number of iterations depends on how efficiently

the small change function can search the total solution space. (A small change function is

used to introduce a small change to the current solution in order to change the direction

of search in order to find a solution with better fitness. More details on the small change

function is discussed in section 6.4.2). Usually these parameters should be selected using

experimental methods.

As the methodology is focused at identifying alternative designs two main conditions should

be satisfied in the design process for any optimisation approach: the best solution accep-

tance criteria should be designed to accept solutions that are equal in finesses and the

history of the heuristic search should be stored.

Figure 3.3: Target driven optimisation
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3.1.4 Analysis of optimisation archives

The history of a heuristic search includes a population of solutions. A population in this context

refers to all the solutions explored during the heuristic search. That is all the solutions generated

by the optimisation program This population of solutions is a subset of the total solution space

for a given problem. Data collected from a single run should ideally contain details of the

solution, its fitness, current best fitness and the order in which they appeared in the history

(respective iteration the solution appeared). If sufficient number of optimisation runs were

completed optimisation history data is going to amount to a large volume. Therefore, in order

to analyse this large volume of data effectively data analytics techniques must be applied.

The generational data (optimisation history) collected from the heuristic search will be anal-

ysed in mainly two different ways; ranking and profiling of solutions. Ranking of solutions

involves ordering the solutions based on decision variables agreed upon previously. The decision

variables refer to the variables used in the optimisation process in order to evaluate the fitness

of a solution. Therefore, these include input variables, constraints and fitness value of the opti-

mization algorithm. The ordering can be based on single or multiple parameters. This method

is useful when there is only one solution for each fitness category as it will aid in selecting sub

optimal solutions. Descriptive data analytics techniques can be applied for ranking.

Profiling involves grouping of solutions based on selected decision variables agreed upon

previously. For grouping solutions mainly clustering techniques are used.

Figure 3.4: Analysis of optimisation archive

43



Chapter 3: Methodology

Information in the optimisation archive can be processed in different ways to obtain mainly

three outputs. The three outputs are extracting alternative solutions, observe the evolution of

solutions and to standardize model constraints.

1. Extract alternative solutions

Alternative can be defined in mainly two ways; behaviourally different and behaviourally

similar but structurally different. It is important to identify the form of alternativeness

expected from the analysis as the analytic methods will be different for each approach.

• Behaviourally different solutions

Behaviourally different solutions can be identified by sorting the solutions based on

the parameter values that are related to the behaviour of the model. Since the opti-

misation process will be optimizing the behaviour, these parameter values refer to the

fitness value (decision variable) of the optimisation algorithm. Ordering the param-

eters will give an indication of the best and worst solutions. Further, solutions can

be clustered based on the parameter values (i.e. decision variable of the optimisation

program) to identify groups of solutions with similar behaviour. Grouping solutions

based on their behaviour is useful when there are a large number of solutions in order

to identify equivalence classes in behaviour.

• Behaviourally similar but structurally different solutions

In order to categorise solutions based on structural similarity a similarity measure

should be defined to distinguish between two structures. This quantitative measure

can be used to cluster the solutions in to groups of structural similarity.

Work presented in this thesis primarily focuses on solutions which are behaviourally similar

but structurally different. The behaviourally similar solutions falls into a equivalence class.

However, in certain scenarios alternative solutions may also refer to a sub-optimal solution

(behaviour slightly less than the optimal/best behaviour observed). Sub-optimal solutions

are important when the structure of the best solution is infeasible to implement in real life

(due to higher cost or infeasible modifications). In such cases availability of sub optimal

solutions will provide a range of decision options to biologists.

2. Temporal analysis

The temporal analysis is mainly focused on observing the structural evolution of solutions

overtime i.e. within a single run. In a given optimisation run how the structure of the
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initial solution has changed into the best solution within a single run is analysed in this

section. The benefit of this analysis gives the opportunity to identify the sub structures in

models which remain constant during evolution. For larger models, when there are a high

number of parameters that needs to be changed, limiting the number of parameters that

is allowed to change will improve the optimisation time.

Identification of these sub structures takes place within the exploitation phase of the

optimisation process (i.e. within a single run). However, in order to confirm the accuracy

and consistency (i.e. not a one-off occurrence) of the sub structures, more instances need

to be explored. Therefore, temporal analysis will have more significance and accuracy in

the exploration phase.

3. Standardize model constraints

Data in the optimisation archive can be used to identify standard values for parameters.

In this approach a value for a certain parameter is allowed to change in a plausible minimum

and maximum range. Next examine the values which have been used by models which were

successful solutions. This will give and indication of the true minimum and maximum values

required for the specific parameter and the information could be used to derive algorithms to

determine the value for parameters.

Figure 3.5 is a representation of the completed methodology.

3.2 Importance of having a methodological approach to identify

alternative solution

Compared with the existing use of memory-based optimisation approaches discussed in Chapter

2 approaches, the methodology presented in this chapter is different due to the following reasons.

Mostly the memory based schemes used in optimisation approaches are used to introduce

diversity in the population when selecting a better initial solution for a new run in order to

avoid premature convergence. However, the memory scheme has a different definition in the

work presented in this thesis. Optimisation history (or memory) is a collection of all the unique

solutions that were encountered in the heuristic search within a single run. This collection

of solutions make a population of solutions. In a usual optimisation, the history is discarded

once the optimal solution is reached. However, a methodology is proposed to extract valuable

information from the history in order to improve computational design and reduce the time
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Figure 3.5: Methodological approach to identify alternative solutions from the history of a
computational optimisation program

taken to run optimisation algorithm for the same type of models.

One factor that determines the time spent on searching for the optimal solutions is the size

of the solution space. When the solution space increase, the time spent to reach the optimal

solution increases as well. The solution space gradually increases when a combination of multiple

input parameters are involved in forming a valid solution (in the optimisation process). In

such instances, solutions with certain combinations of input parameters are not useful in the

overall search process for the optimal solution. The lower fitness values of these unfavorable

combinations delay the optimisation algorithm from reaching the optimal solution. Temporal

analysis is useful in such instances as it helps to reduce the solution space by constraining the

variability.

Through temporal analysis, we can identify sub structures of a model that could be kept

constant in order to achieve a better fitness value. By adding more constraints to the model,
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the search algorithm will only focus on creating solutions that are beneficial towards reaching

a better fitness. This eventually reduces the size of the solution space and thus, time taken to

search for the optimal solution. Therefore, limiting the variability through temporal analysis

will eventually be helpful in executing the optimisation algorithm faster.

Summary

This chapter presented a methodology that enables the extraction of alternative solutions from

a computational optimisation output which is used to generate optimal solutions. The method-

ology consists of three main steps. First a mathematical model of the complex system should be

defined. In the second step computational optimisation is applied to obtain the optimal solution

for a predefined set of target characteristics. In the second step an optimisation archive is cre-

ated which contains the history of the optimisation program. In the third step the optimisation

archive will be analysed to obtain three types of insights; alternative solutions (behaviourally

similar but structurally different solutions), standardising model constraints and evolution of

solutions through temporal analysis. The aim of the methodology is to improve computational

design process. When applying computational optimisation, the main focus is on the final solu-

tion. However, there can be instances when the optimal/best solution is not feasible to imple-

ment. In such scenarios alternative solutions (behaviourally sub optimal, behaviourally similar

but structurally different) provide feasible options. Speciality of the proposed methodology is

that it utilises the output from the optimisation program to identify alternative solutions.

This is a general methodology which could be applied to any instance of computational

optimisation being used to improve design of complex systems. The methodology is validated

by applying it to three case studies; mathematical expressions, GEM models and DNA walker

circuits. These case studies will be discussed in chapter 4,5, and 6 respectively.
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Application 1: Analysing the search

history of GEP optimisation to identify

alternative mathematical expressions

Introduction

This chapter illustrates how the optimisation-history analysing methodology described in chapter

3 can be employed to analyse the search history of an optimisation search program to identify

alternative solutions. The optimisation problem discussed here is focused on searching for the

optimal mathematical expressions using Gene Expression Programming (GEP) optimisation

technique. Conclusions and limitations of methodology has been discussed at the end.

4.1 Descriptor

The effective employment of the optimisation-history analysing methodology was assessed based

on one model case study and two biological case studies. This chapter presents the first case

study where the methodology is applied to evaluate alternative solutions in a population made

of mathematical expressions generated by Gene Expression Programming (GEP) optimisation

techniques.

An alternative solution is defined in this thesis as a solution which is structurally different but

behaviourally similar. The focus of the methodology was to analyse the search history generated

from an optimisation program to identify alternative solutions. In this sense, mathematical

expressions were an ideal example as the population was made of only structurally different yet
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behaviourally similar solutions. Therefore, this case study can be considered a model case study.

Whereas, other case studies provide a more realistic solution space which composed of varying

degrees of alternativeness attributing to different combinations of structural and behavioural

similarities.

As highlighted in Chapter 1, the main research question I intend to answer through the

research is "When using computation optimisation to improve system design, how can alternative

solutions be efficiently found by analysing the history of the optimisation approach?". Through

the analysis of history of the GEP optimisation approach I aim to answer the following questions:

• Can alternative solutions be found by analysing the optimisation history?

• Can the alternative solutions be grouped based on their structure?

The next section provides a brief introduction to the concepts used in the chapter followed

by the application of the methodology to the example scenario.

4.2 Introduction to mathematical expressions and GEP optimi-

sation

4.2.1 Mathematical expressions

Mathematical expressions consists of mathematical operators and operands. In the work pre-

sented in this thesis only the four main operators, addition (+), subtraction (-), multiplication

(*) and division (/) were used. Operands refer to the the quantity on which an operation is

applied. Base 10 numerals (i.e. 0, 1, 2, 3, ..., 9) were used as operands. The number and type

of operators were used to differentiate the structure of the mathematical expressions.

The selection of mathematical expressions as a model case study was done based on the

following reasons:

• The concept of alternative solutions (i.e. structurally different but behaviourally similar)

could be presented clearly with the use of mathematical expressions. For example if the

target number is 12 there are numerous ways to obtain 12 using numbers between 1 and 9

and the four main operators addition (+), subtraction (-), multiplication (*) and division

(/). e.g. 2 ∗ 6 , 3 ∗ 4, 6 + 6, 2 ∗ 3 + 3+ 3+ 3, 9 + 3, 3 ∗ 3 + 3, 6/2 + 9, 6 + 1+ 1+ 1+ 1+ 1

and etc
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• A mathematical expression can be depicted as a tree structure. Therefore, it was easier

to compare solutions on structural similarities. Further, the structure was similar to the

types of data being looked at in the other two biological case studies; GEM models and

DNA walker circuits providing an a suitable reference.

• The methodology was focused on analysing search histories generated by optimisation pro-

grams in order to obtain alternative solutions. Availability of an existing implementation

of an evolutionary program based on genetic algorithm that could generate a mathematical

expression for a target value and predefined set of operators and operands (or operators)

reduced the overhead of having to implement a program from scratch.

4.2.2 Gene Expression Programming

Gene Expression Programming (GEP) is an optimisation algorithm similar to genetic algorithm.

GEP initiates with a populations of individuals, selects them according to a specific fitness, and

introduces genetic variation using one or more genetic operators such as mutation, transposition,

and recombination. The difference between GEP and genetic algorithm is the representation of

individuals. GEP encodes individuals as linear string of fixed length (i.e. chromosomes) and

these chromosomes later get expressed as nonlinear entities of different sizes and shapes (i.e.

expression trees). Therefore GEP is also known as a genotype/phenotype algorithm. Consider

the following algebraic expression:

√
(a+ b)× (c− d) (4.1)

This can be presented as a diagram as follows (see 4.1).

The optimisation process begins with an initial population. The population consists of

randomly generated chromosomes. Then the fitness of each individual is evaluated. The indi-

viduals are then selected according to fitness to reproduce with modification. This creates a

new generation. The individuals of this new generation are, in their turn, subjected to the same

developmental process: expression of the genomes, selection based on fitness, and reproduction

with modification. The process is repeated for a certain number of generations or until a solu-

tion has been found. An in-depth explanation on the optimisation approach and chromosome

representation can be found in (Ferreira 2001).

GEP was implemented by Cândida Ferreira. Cândida Ferreira presents this as a commercial

software suit called GeneXproTools (Ferreira 2010). It is offered as a 30 day free trial version.
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Figure 4.1: Representation of an individual chromosome as an expression tree. In this example a
chromosome represents a mathematical function where “Q” represents the square root function.
Tree is read from left to right and from top to bottom.

For my work I used a a free and open source implementation of GEP named "grep4" developed

by Jason Thomas is available in Google Code Archive (https://code.google.com/archive/

p/gep4j). There were couple of implementations of GEP in Java and Python. I opted for the

Java implementation as I have prior knowledge in coding in Java.

Therefore, this case study was a suitable example as a proof of concept. Application of the

methodology to analyse the alternative solutions in the selected solution space will be discussed

in the following sections.

Application of the methodology

4.3 Step 1: Mathematical Model Definition

For the purpose of being used in an optimisation program, a mathematical expression was

converted to an expression tree (see figure 4.1). Hence, the mathematical expression will be

in the form of a binary tree. GEP uses a special format called the GEP gene to encode the

mathematical expression as an expression tree.
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4.4 Step 2: Target Driven Optimisation

In the second step of the methodology, optimisation is applied on the model in order to select

the best solution and optimisation archive is created. The optimisation method used is gene

expression programming (Ferreira 2001).

"grep4" program is capable of generating mathematical expressions using four operators;

addition, division, multiplication and division. Inputs for the program are

• range of numbers to be used in an expression

• length of the mathematical expression (total number of operators and operands)

• target/ fitness value (expected answer from the expression)

The output of the program is the solution that has the highest fitness value. The algorithm

terminates as soon as it finds a correct solution (when the fitness value of the current solution is

equal to the target value specified). Therefore in order to obtain different solutions it is required

the program to be executed repeatedly. A certain degree of reverse engineering on the code was

required to obtain a population of solutions.

A range of experiments were carried out with the "grep4" program. Different target values

considered for example 12, 24, 36 and 60. These target values were selected as there are several

different ways in which operands and operators could be combined to obtain these targets. The

preliminary constraints are as follows:

• Gene length – 20 (it allows maximum of 4 operators and 5 operands in one mathematical

expression)

• Operand range -100 to +100

• Operators used subtraction (-), addition (+), multiplication (*), division (/). As the

program could to run on one or many operators at a given time, several tests were

run on different combinations of operators. For instance each of the four operators on

their own, multiplication-division, multiplication-division-addition, addition-subtraction,

multiplication-subtraction and etc

• Population size was changed for each operator combination. (As one run of the program

resulted only in one solution, the program was re-run for n number of times to create a
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population of size n). 50, 100, 200, 300, 400, 500, 1000, 1500, 2000, 2500, 3000 are the

population sizes looked at.

Initial testing criteria

• Target value – 12, 24, 36 and 60

• Operator used – Multiplication

• Operands used – positive numbers from 2 to TargetValue/2

• Population size - 1000

12, 24, 36 and 60 was selected as the target value as there are several different solutions for

each target value. This can be related to alternative models that results in the same behaviour.

E.g.

• 12 – 6*2, 3*4

• 24 – 2*12, 6*4, 3*4*2, 6*2*2

In the initial testing phase I decided to use only multiplication. The program supports all

four operators (+, -, * and /) though. The reason I omitted the target number from the operands

is that most of the time the algorithm picked the exact value from the list of operands as it

resulted in the highest fitness value compared to the target and the program did not result in a

mathematical expression. Also for the time being (1* Target value) was disregarded too. Hence

it was more meaningful to specify the operands from 2 to [Target value/ 2].

During the testing phase I observed that when the population size is large (e.g. 1000) the

algorithm had to iterate less number of generations to find the solution. When the population

size is smaller (e.g. 100, 50) it took large number of generations to get to the solution. Hence I

set the population size to 1000 in order to reduce the execution time.

For each of the target value the optimisation algorithm was run for 500 and 1000 iterations to

obtain the all possible expressions and plotted graphs to see the frequency of different solutions

for each target value. When there are large number of possible solutions for a target value (e.

60g) the algorithm had to be repeated for a greater number of times (e.g. 1000) to observe all

the possible solutions. I did a basic analysis of the output using R.
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4.5 Step 3: Analysis of Optimisation Archive

The final step of the methodology was to analyse the optimisation archive in order to group the

alternative solutions. As mentioned in the Descriptor section, the main purpose of the analysis

was to identify alternative solutions from the optimisation history and cluster the solutions

(mathematical expressions based on their structural similarities).

4.5.1 Identification of alternative solutions

Figure 4.2 represents the alternative solutions for fitness value 12 that were discovered by

analysing the optimisation archive. As mentioned in the previous section optimisation archives

were created for fitness values 12, 24, 36 and 60. For presentation purposes I will use the fitness

value 12 as an example. Fitness value 12 means when a mathematical expression is evaluated,

it will result in 12.

Figure 4.2: The figure represents the number of unique expressions (x axis) which evaluates
to 12 and their structural differences based on the mathematical operator being applied (y
axis). Operators being used are; Sub (subtraction), Add (Addition), Mult (Multiplication), Div
(Division) and a combination of more than one operator. No operator indicates an equation was
not used to achieve 12, instrad it directly picked the operand. These expressions were observed
within 500 runs of the optimisation algorithm.

According to the figure 4.2, there are several alternative solutions based on the combinations

of operators (represented in x axis) used in the expression. The count represents the number

of mathematical expressions with each combination of operators. In this comparison operands

have been not considered. Operand range used was -100 to +100 which resulted in an infinite set

of possible solutions that was difficult to analyse. Hence I chose one operator (multiplication),
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smaller set of operators (2 - target value/2) and a pre-define set of target values (12, 24, 36 and

60 for the optimisation program which simplified the analysis due to smaller solution space.

Figure 4.3 represents the number of mathematical expressions (x axis) generated by the opti-

misation program. All these expressions evaluates to 12 and the operator used is multiplication

and operands are numbers between 2 - 6. The GEP algorithm has been able to identify all the

the possible alternative mathematical expressions that could be constructed under the specified

operand and operator constraints.

Figure 4.3: The figure represents unique mathematical expressions that evaluates to 12 (x axis)
against the the number of occurrences of an expression within the 500 runs (y axis). All math-
ematical equations use the same operator multiplication and operator range of 2 to 6. These
expressions were observed within 500 runs of the optimisation algorithm.

Similarly figures 4.4, 4.5 and 4.6 represent the total solution space the number of times a

particular expression was observed during the 500 runs of the optimisation algorithm. One of

the research question set for the first example application is "Can alternative solutions be found

by analysing the optimisation history"? This analysis has answered the first research question.

Using four different target values (12, 24, 36 and 60) I have demonstrated that alternative

solutions can be found by analysing the optimisation history.
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Figure 4.4: The figure represents unique mathematical expressions that evaluates to 24 (x axis)
against the the number of occurrences of an expression within the 500 runs (y axis). All math-
ematical equations use the same operator multiplication and operator range of 2 to 12. These
expressions were observed within 500 runs of the optimisation algorithm..

4.5.2 Clustering of solutions by structure

As mentioned in the Descriptor section, the second research question I intended to answer

through the analysis was whether the alternative structures could be clustered based on their

similar properties?. The main objective for comparing mathematical expressions was to identify

behaviourally similar but structurally different expressions.

Structural similarity in this comparison means it should distinguish between expressions by

the number of alterations that should be made to convert from one expression to the other.

For example, as shown in figure 4.7 after expressing the mathematical expression as binary

trees converting expression “A” to “B” requires 6 alterations; (insertion of 4 nodes, updating the

value of 2 nodes from “2” to “1”. Therefore expression “A” is very different from expression “B”.

However converting expression “B” to “C” requires only 2 alterations (updating the node labels

“1” to “2” and “x” to “+”).

In order to compare binary trees of mathematical equations I used the R package graphk-

ernels. Mathematical expressions were expressed as unidirectional binary graphs. However, the
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Figure 4.5: The figure represents unique mathematical expressions that evaluates to 36 (x axis)
against the the number of occurrences of an expression within the 500 runs (y axis). All math-
ematical equations use the same operator multiplication and operator range of 2 to 18. These
expressions were observed within 500 runs of the optimisation algorithm.

results produced by the graphkernels method were inaccurate as it compared only the numeric

values of the node labels and did not take the connections (operator) between nodes into consid-

eration. For example, graphkernels method evaluated two expressions; (3+ 3) and (3 ∗ 3) which

equates to two different final values; 6 and 9 respectively, to be structurally similar.

Since graphkernels was not an effective tool for structural comparison in this scenario, I

explored the possibility of applying edit distance to solve the problem. Therefore I looked at

the existing literature whether edit distance has been modelled for trees and whether there are

already existing implementations of the algorithms in R. An algorithm to compute tree edit

distance has been published by Kaizhong Zhang and Dennis Shasha. However, the algorithm

was implemented in Python. This library is called zss and using the simple distance() method

edit distance can be computed. There was no R implementation for this algorithm. I decided

to use this algorithm for my comparison as it had the required functionality implemented.

Implementing tree comparison was done in Python. Simple distance() in library zss did not

take graph isomorphism in to account. Therefore trees constructed from expressions (2 ∗ 3) and
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Figure 4.6: The figure represents unique mathematical expressions that evaluates to 60 (x axis)
against the the number of occurrences of an expression within the 500 runs (y axis). All math-
ematical equations use the same operator multiplication and operator range of 2 to 30. These
expressions were observed within 500 runs of the optimisation algorithm.

(3 ∗ 2) were treated as two different expressions resulting in an edit distance of 2. Because of

this first I had to implement a function that will build a tree in a standard format regardless

of how it is presented in the expression. So it will build the same tree for (2 ∗ 3) and (3 ∗ 2).

(Source code for this is available in the GitHub folder).

Standard format:

• Each level was ordered so that the value in the left hand side node was smaller than the

right hand side node value.

• Operators were given a number between 1001 and 1004 and were sorted accordingly. All

the expressions were built using numbers between 0 and 100. Therefore there numeric

representation of operators did not mix up with the operands.

– “+” - 1001

– “–“ - 1002

– “*“ - 1003

– “/“ - 1004

• When the nodes in one level were both similar the node values of the next level was taken
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Figure 4.7: Structural comparison of mathematical expressions

into consideration when ordering the nodes. For example the expression (4 + 5)x(3 + 2)

will be built in the following manner.

Figure 4.8: Representation of the example expression (4 + 5) x (3 + 2) as a tree structure

Since a large solution space was required for clustering, I chose the alternative solutions
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generated by the GEP optimisation for the target value 60 when all four operators were turned

on and operand range was -100 to + 100. Next the pair-wise distances between expressions were

computed using simple distance(). Afterwards this distance was converted into a dissimilarity

measure and the expressions were clustered using hierarchical clustering. Figure 4.9 is the

dendrogram obtained for hierarchical clustering. As shown in the dendrogram (figure 4.9) there

is a clear separation between the types of expressions. Shorter expressions are grouped together

and longer ones are grouped separately. Further Silhouette index confirmed the the optimal

number of clusters for the clustering as 2 with a Silhouette index of 0.6.

Figure 4.9: Clustering of mathematical expressions which has a target value of 60, operand
range of -100 to +100 and operators addition, subtraction, multiplication and division. These
alternative solutions were extracted from the optimisation history of the GEP program.

Next, the smallest cluster was analysed further. The reason for selecting the smallest cluster

was because it was impossible to view the node lables in the dendrogram since there are over

100 solutions being clustered. Hence the smallest cluster was selected to examine the similarities

between members within the cluster and the differences compared to the larger cluster. The

smallest cluster composed of all expressions that are of the same length. However what I noticed

was as shown in Figure 4.10 that the groupings were not exactly meaningful. The reason for this

is edit distance computation weighs update, delete and insert operations equally. Therefore it

does not differentiate between significant changes in the expressions of similar lengths. In order

to overcome this problem I had to introduce different weightings for insert, delete and update

for nodes in a tree. However, fine tuning the distance measure was not carried forward since

it was not the main goal of the analysis. The main aim of the analysis was to prove that the

alternative solutions could be clustered based on structural similarities.
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Figure 4.10: Analysis of the smallest cluster observed in the clustering of the alternative solutions
for target value 60 in figure 4.9

4.6 Discussion on the results

In order to validate the methodological approach to identify alternative solutions by analysing

the history of an optimisation algorithm was applied to an example case study. In step 3 of

the methodological approach to identify alternative solutions by analysing the history, I have

proposed 3 ways in which the optimisation archive could be analysed to improve the model design

(i.e. tree structure of a mathematical expression in the first example application), namely extract

alternative solutions, standardize model constraints and temporal analysis.

The goal of the analysis presented in this chapter was to verify whether alternative solutions

could be identified by analysing the history of the optimisation program and whether the solu-

tions could be clustered based on the structural similarities. Hence the first example application

only demonstrated the use of optimisation archive to extract alternative solutions in the step

3 of the methodology. I have demonstrated above in which ways alternative solutions could

be extracted and how they could be clustered based on the structure. Since a mathematical

expression should evaluate to a specific target value, the concept of sub optimal solutions is not

applicable to this example. For example, when the target value is 12, a mathematical expres-

sion that evaluates to 11 or 13 is not a suitable replacement. Therefore, all solutions that were

considered in this example were alternative designs based on structure (behaviourally similar

but structurally different). Further, standardizing model constraints were not required since

the binary tree structure used to represent mathematical expressions was a standard model.

61



Chapter 4 - Case Study 1: Mathematical Expressions

Finally, temporal analysis to optimize the tree structure could not be applied in this example

because the expression structure changed based on the operators and operands turned on during

optimisation process.

Summary

In this chapter the optimisation-history analysing methodology which was defined in chapter 3

was applied to a case study which uses computational optimisation to generate mathematical

expressions. In the first phase of the methodology I have used a predefined mathematical model

which is used to model mathematical expressions. Mathematical expression was defined as an

expression tree and encoded as a GEP gene. In the second phase gene expression programming

(GEP) genetic algorithm was applied to generate the optimal mathematical expression for a

specified criteria. The optimisation archive was created by combining the history of different

runs of the optimisation program. In the third phase alternative solutions were extracted by

analysing the optimisation archive. Further clustering was used to group the solutions based

on their structural similarities. This example was used as a proof of concept for the existence

of behaviourally similar yet structurally different alternative solutions. Mathematical expres-

sions was the most suitable example. Hence Temporal analysis and standardisation of model

constraints were not demonstrable through this example. In the next chapter the methodology

will be applied to case study from biology where computational optimisation has been used to

optimise the design of genomic metabolic models of E.coli bacteria.
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Example Applications 2: Alternative

solutions for GEM models using

genetic algorithms optimisation

Introduction

This chapter describes the application of the optimisation-history analysing methodology de-

scribed in chapter 3 to analyse the history of an optimisation search program designed to obtain

the optimal design for a genome scale model of bacteria metabolism. A genome scale model

(GEM) is a mathematical representation of a cell that models the metabolic activity (interac-

tion of all metabolites, reactions and genes) for a given organism. The organism being modelled

in this work is E.coli bacteria. The optimisation algorithm used for optimisation of the models

is a genetic algorithm. Model definition, applying target driven optimisation and analysis of the

optimisation archive to identify alternative solutions will be discussed in this chapter.

5.1 Descriptor

The second case study presented in this chapter focuses on employing a genetic algorithm to

optimise the design of a GEM model. Optimisation-history analysing methodology will be

applied to identify alternative solutions by analysing the optimisation history. The example

case study presented in this chapter is the first example with links to computational design in

synthetic biology.

As defined in chapter 3, the methodology consists of three phases.
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• Step 1: Mathematical model definition

The first step of the methodology is to define a mathematical model to mimic the behaviour

of the complex system. The complex system being modelled in this case study is the

metabolic activity of an E. coli bacteria. Section 6.2 provides a brief description of the

model which is being used for computational optimisation. The GEM model being used

in this case study is a pre-define model of the E. coli bacteria which was implemented by

the Palsson group (Monk et al. 2013).

• Step 2: Target driven optimisation

The second phase of the methodology is the application of computational optimisation to

improve the design. The GEM model depicts the metabolic behaviour of E. coli bacteria

and a genetic algorithm was used to create a model which yields a higher metabolic activity.

The optimisation program was developed by a fellow research student in the team and I

have used the history to populate the optimisation archive. Section 6.3 describes the

details of the optimisation program and the nature of the optimisation archive.

• Step 3: Analysis of the optimisation archive

Finally the optimisation archive is analysed in order to identify alternative solutions. Alter-

native solutions in this work refers to behaviourally different solutions and/or behaviourally

similar yet structurally different solutions. The analysis is presented in section 6.6.

As mentioned in chapter 1 the research question I intend to answer through my research is

"When using computation optimisation to improve system design, how can alternative solutions

be efficiently found by analysing the history of the optimisation approach?" In the second exam-

ple application where a genetic algorithm is used to optimise the biomass production of GEM

models, the main research questions I aim to answer are the following questions:

• Are there duplicate solutions in a generation?

• How does a particular gene get activated (or deactivated) across generations?

• How does the gene activity (percentage of active genes in a model) vary in a generation

and how does the activity progress across generations?

• How does the biomass in each model progress through the generations

• Are there any groups of models with the same biomass value but different gene sequences?
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• Is there a grouping between models when clustered based on the gene activity and biomass?

• Is there a common core of genes for behaviourally similar alternative solutions?

5.2 Introduction to synthetic biology and GEM models

5.2.1 Synthetic Biology and Re-engineering of Bacteria

Synthetic biology can be simply defined as designing and fabrication of biological components

and systems for useful purposes. Today synthetic biology (including genetic engineering) under-

lies a multi billion dollar industry offering solutions to some of the most intractable problems.

The ability insert new combinations of genetic material into (or remove unfavourable genetic

information from) micro organisms, animals and plants offers novel ways to produce valuable

small molecules into proteins; provides the means to produce plants (Van Den, Van Damme,

et al. 2013) and animals (Niidome and Huang 2002) that are disease resistant; tolerant of harsh

environments, and have higher yields of useful products (Cameotra and Makkar 1998); and

provides new methods to treat and prevent human diseases.

There are two main disciplines in synthetic biology; the design and fabrication of biological

components and systems that do not already exist in the natural world (creating artificial life)

and the re-design and fabrication of existing biological systems. For example in order to synthet-

ically produce Artemisinin the scientists built a new metabolic pathway in yeast by assembling

10 genes from 3 organisms. This attempt is an example of re-designing of existing biological

systems (Yeast). [See (Benner, Yang, and Chen 2011) for further details on synthetic biology].

Bacteria are one of the most extensively used organisms in synthetic biology. The main reason

is genome of most of the bacteria have been completely sequenced and partially annotated. This

gives the researchers the ability to perform comparative analysis on genomes which would help

in identifying the evolutionary patterns, physiology and ecological adaptabilities of different

organisms. This helps in deciding on which species and how they could be used in the re-

engineering process.

Subsequently several special characteristics of bacteria which make them more easier and

economical to be used in genetic manipulations have been mentioned below (Snyder et al. 2003).

• Haploid: Bacteria are haploid (have only one copy or allele of a gene). This gives the

advantage of identifying cells with a particular type of mutation.
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• Short generation time: Bacteria can reproduce within a very short period of time. For

example some E. coli strains can reproduces every 20 minutes under ideal conditions.

Short reproduction time of an organism gives the ability to do more experiments.

• Asexual reproduction: Bacteria reproduce asexually (cell division) hence all the progeny

will be genetically identical to their parents and each other. This is useful in increasing

the number of bacteria with a specific mutation rapidly and eliminate extra resources used

for cloning.

• Colonies can be grown in Agar plates: Bacteria are small in size and this gives the ability

to generate a colony of billions of individuals in a smaller space.

There are mainly two ways in which bacteria can be engineered (mutations can occur). The

first method is by direct interventions. In this method mutations are created artificially by

following gene editing methods.

• Gene knock-in: adding a new gene to the bacteria

• Gene knock-out: removing or replacing an existing gene

• Gene knock-up: expression of one or more of the genes are increased. This method can

result in increasing the activity of reactions of a bacteria.

• Gene knock-down: expression of one or more of the genes are reduced. This could result

in reducing the activity of reactions which are controlled by the altered genes.

The second method is mutation driven engineering. Here bacteria is either exposed to radi-

ation or bacteria are allowed to naturally build mutations by putting them in an environment

and allowing them to sharing of genetic information.

Direct intervention is the best and fastest way to get intentional mutations because we

have control over the mutations of the bacteria. However direct intervention could be done for

genes which have been annotated (knows the functionality of the gene). In contrast mutation

driven engineering is slow and we do not have control over the mutations that would occur

in bacteria. However the random mutations might result in potential mutations which have

not been discovered before. It is more suitable when working with genes which have not been

annotated. More details can be found in (Primrose and Twyman 2013).
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5.2.2 Computational Models of Bacteria Metabolism

A bacteria model is a computational representation of bacteria’s metabolic functions. A set of

equations describing metabolic reactions: enzymes, substrates and products are referred as a

model. Each reaction is associated with one or more enzymes in a logical manner and it is rep-

resented as a network or a graph showing interactions between enzymes and metabolites. These

metabolic equations can be qualitative (measured in terms of network topology), or quantitative

(measured in terms of reaction rates and metabolite concentrations).

These computational models are intended to be used in the design process; use the network

model to predict organism’s behaviour and optimise the model to desired target behaviour.

Hence the optimised model can be used as a computational design; going backwards from reac-

tions to the genes responsible for the enzymes (Reactions ->logical gene formula ->enzymes /

proteins ->RNA ->DNA) which can act as guidelines for bioengineering implementation. Pub-

lically available whole genome-scale models (GEMs) of metabolism have been constructed by a

group in the USA for 55 fully sequenced Escherichia coli and Shigella strains (Monk et al. 2013).

These models are in SBML (Systems Biology Markup Language) (Hucka et al. 2003) format

and are based on the K-12 MG1655 strain (KEGG GENOME: Escherichia coli K-12 MG1655).

Their most recent reconstruction, iJO1366, accounts for 1,366 genes (39% of functionally anno-

tated genes on the genome) and their gene products. Each model consists of on average 2300

metabolites and 2700 reactions and the total genome consists of 4000 genes. In addition models

are being constructed at Brunel from in-house data; in total there will be over 200 such models.

Application of the methodology

5.3 Step 1 - Mathematical definition of a GEM model

As mentioned earlier a genome-scale model (GEM)is a mathematical representation of a cell

that models the metabolic activity (interplay of all metabolites, reactions and genes) for a given

organism. GEM models are used to depict both human and bacteria behaviour. These models

have typically been developed for Flux Balance Analysis (FBA) and are constraint-based. (Flux

balance analysis (FBA) is a mathematical method for simulating metabolism in genome-scale

reconstructions of metabolic networks (Orth, Thiele, and Palsson 2010)).

The particular organism which has been modelled in the GEM model used in this research

is the K-12 strain of E. coli (Escherichia coli). An E. coli bacteria has over 4000 genes or which
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around 1400 are involved in metabolism. Further a model comprises of around 3000 reactions

and yield about 2300 metabolites (Gilbert et al. 2019). The main GEM model of E. coli K-12

strain used in here was built by the Palsson’s group (Monk et al. 2013).

Figure 5.1 is a petri net illustration of the E. coli K-12 GEM model generated using Snoopy

(Heiner et al. 2012) software.

Figure 5.1: This is a Petri net representation of an E. coli K-12 genome scale metabolic model
(GEM) from Palsson’s group layout generated with Snoopy.

5.4 Step 2 - Target driven optimisation with genetic algorithm

A fellow doctoral researcher’s, Bello Suleiman, research was focused on developing a genetic

algorithm to optimise the behaviour of GEM models. This sections adopts his work and the

optimisation archive was generated using the output from this optimisation runs.
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5.4.1 Use of genetic algorithm to optimise GEM model based on growth

Mr Suleiman has employed a genetic algorithm to optimise the design of GEM models. The

objective function was aimed at improving the models so that it maximizing the growth of

a bacteria. The growth of a bacteria is measured through the amount of biomass a model

generates in a FBA. Therefore, when predicting growth in a GEM model, the objective is biomass

production, the rate at which metabolic compounds are converted into biomass constituents such

as nucleic acids, proteins, and lipids (Orth, Thiele, and Palsson 2010).

According to his design each metabolic model was represented in form of a gene sequence. A

gene sequence was converted into a model using a gene-reaction logic table. The gene-reaction

logic table has information about the reactions and the respective genes that should be presented

in order for the reaction to be activated. Certain reactions require only one gene to be presented;

some reactions need more than one gene and some reactions can be activated if either of the

required genes is presented.

The genetic algorithm was launched with a population of randomly generated gene sequences

of bacterial metabolic models. Each gene sequence was consisted of a fixed number of genes.

The gene sequence is a binary string; ‘1’ representing the gene is turned off and ‘0’ representing

turned off. Through gene recombination and mutation, a new population of gene sequences were

generated. These gene sequences were then converted into a bacteria metabolic model using a

gene-reaction logic table. Each model was then simulated using the FBA simulation and the first

450 best models (model with the highest biomass value) were selected. The gene sequences of

these models were then again fed to the genetic algorithm as the parents for the next generation.

This process was iterated for 250 times (generations) until the population resulted in the highest

biomass value.

5.4.2 Generation of the optimisation archive

As shown in figure 5.1 a GEM model resembles a graph data structure. However, the analysis of

alternative solutions was focused on looking at the linear data (number and types of genes and

reactions, and biomass value) associated with the structures. This means when comparing one

GEM model to another GEM model I would not compare it as a graph structure. I would use

numerical values such as number of common genes or reactions between two models, biomass

value and compute a Euclidean pair-wise dissimilarity distance. Hence the optimisation archive

consisted of mainly two types of data.
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• Chromosome composition (genes) of each model - genes were recorded as binary data; ’1’

the gene was present and ’0’ indicated the absence of the gene, for each model in each

generation. Therefore in total there would be Gene sequences for of all the 450 models in

250 generations (450 x 250 models).

• Behaviour of a model - Reactions and the flux value (reaction rate) of all the reactions in

a model. The number of reactions in a model varies for each model based on the active

genes (each reaction is associated with one or more genes being turned on).

5.5 Step 3 - Analysis of the optimisation archive

5.5.1 Exploratory Analysis of the optimisation archive

Observations from the analysis of gene sequences

A model was composed of 500 genes. There were mainly two groups of genes in a model.

Genes which were essential for biomass creation of the model was in the first group and these

genes were always turned on. The second group consisted of 139 genes that could affect the

biomass production (increase or decrease) and these genes were allowed to turn on and off during

optimisation. The optimisation program was in fact utilised to identify the best combination of

genes that would increase the biomass production from the second set. Therefore the analysis

is mainly focused on the second group of genes.

During the analysis of gene sequences the following observations were made.

• Within a generation, there were no duplicate solutions with the same gene sequence

• Initially most of the 139 genes were deactivated and as the the biomass production in-

creases with the number of generations, more genes were activated and remained turned

on. Also certain genes were permanently deactivated over the course as well. Visualising

the activation and deactivation of genes using a heatmap was quite useful to observe the

pattern. Figure 5.2 is a visualisation of the first generation (Generation 0) genes and

it can be clearly seen the randomly activation of genes. However in the last generation

(generation 249) a significant number of genes remain turned on for all the models which

can be seen in figure 5.3. Figures 5.4 and 5.5 are illustrations of the activity of individual

genes.
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Figure 5.2: Heatmap of activated (blue) and deactivates (white) genes at generation 0. X axis
represents the list of models and the y axis the individual genes. Genes have been activated
randomly.

Figure 5.3: Heatmap of activated (blue) and deactivates (white) genes at generation 249. X axis
represents the list of models and the y axis the individual genes. There is a clear pattern in
activation/ deactivation in certain genes

• As the gene activity (the number of active genes as a fraction of the group of 139 genes)

increased, the biomass production increases as well. Figure 5.6 represents the gene activity

and biomass production at generation zero. It can be see that the average gene activity

is about 0.5 with a high variability within models in generation zero. Also the biomass

production is zero. Figure 5.7 illustrates the gene activity and biomass production at
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Figure 5.4: The graph represents how the number of activated genes in the models varies as the
optimisation progresses. x axis represents the generation no (1 - 250) and y axis represents the
number of active genes in the models in the current generation. At the beginning there is less
genes activated in the models (which results in a low biomass value) and gradually the number
of active genes increases (causing biomass to increase in value). Finally towards the end of the
optimisation process gene variability in models becomes constant..

Figure 5.5: Gene activity over the 249 generations for each of the 139 genes
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generation 140. Biomass production has gone up significantly and there models which

produce varying degrees of biomass. Also the average gene activity has moved up to about

0.75 while variability in activity across models have reduced. Figure 5.8 is a visualization

of the last generation and biomass for all models have become constant. Also the average

gene activity has slightly increased.

Figure 5.6: Gene activity (in blue) and biomass production (in orange) for each model at gen-
eration 0. The average gene activity is about 50% with a high variability across models and
biomass generation is zero

• Clustering of models based on their gene composition was performed for each generation

as well. The pair-wise similarity measure used to compare two models was the number

of common active genes between a pair of models. The main purpose of clustering was

to determine whether a grouping based on structure (gene composition) could be used to

distinguish between different groups of bacteria models and utilise the insights to improve

the optimisation process and computational design process. Figure 5.9 illustrates the

grouping of models based on the gene composition.

Observations from the analysis of reactions

In a GEM model, the number of reactions are determined by the type of active genes. Hence

the number of reactions in models changed often. During the analysis of gene sequences the

following observations were made.
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Figure 5.7: Gene activity (in blue) and biomass production (in orange) for each model at gen-
eration 140. The average gene activity is about 70%.

Figure 5.8: Gene activity (in blue) and biomass production (in orange) for each model at gen-
eration 249. The average gene activity is about 80%

In the initial generations most of the gene sequences did not result in working models (no

biomass value). The number of the non-models gradually decreases and from the 50th generation

onwards models started to generate a biomass. Biomass for all the models in the first 50

generations remains same at value 0. Then the biomass value gradually increases and reaches a
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Figure 5.9: Clustering of models at generation 140 based on pair-wise similarity (the number of
common active genes between a pair of models)

maximum if 1.79. From generation 152 to 249 all the models have the same biomass value 1.79

(see figure 5.10).

(a) Biomass activity in Generation 140
- 7 distinct values of biomass values
(1.79, 1.76, 1.60, 1.58, 1.29, 0.84 and 0.51) ob-
served in this generation

(b) Biomass activity in Generation 249 - only one
biomass value is observed in this generation 1.79

Figure 5.10: Comparison of biomass activity in generation 140 and 249 of the optimisation
process
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Figure 5.11: Reaction profile at generation 249. The active reactions are highlighted in blue and
inactive reactions as blanks

5.5.2 Identifying alternative designs of GEM models

As mentioned earlier there are mainly two types of alternative solutions which are considered in

this thesis.

1. Behaviourally similar but structurally different solutions

2. Behaviourally sub-optimal (output is lower than the best solution)

The first type of solutions are a equivalence class based on behaviour. However, in certain

instances the best solution might be costly to implement or it might contain modifications that

are impossible to perform in real life. Therefore, the biologists would benefit from having an

alternative solution that might be slightly worse in performance compared to the best solution

but easy and fast to implement. In such scenarios sub-optimal alternative solutions are ideal.

Further there could be equivalence classes based on behaviour within these sub-optimal solutions.

In order to demonstrate both aspects of alternative solutions a generation 140 was picked

as an example. Generation 140 bears evidence of all the biomass changes took place within a

single run of the genetic algorithm. Figure 5.12 illustrates the different levels of biomass values

observed at generation 140. The slightly varying biomass levels indicates the existence of sub

optimal solutions.

Next the models in generation 140 were clustered based on Biomass similarity, number of
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Figure 5.12: Biomass activity in Gen 140

reactions and number of common reactions. Hierarchical clustering method was used to cluster

and validation of goodness of clusters were done using Silhouette index. The clustering results

in 5 clusters which was validated using a Silhouette value of 0.22. This information is illustrated

in figure 5.13.

The following table 5.1 includes the details of the elements in each cluster. The ’common

core (genes)’ is the number of genes common in all the GEM models in a particular cluster.

Average biomass value and the size of common core (genes) supported the claim that alternative

solutions (different behaviour and different structure) exists within the solution space. Hence

these alternative solutions are sub-optimal with a stratification in biomass value. The availability

of solutions with varying degrees of behaviour (the average biomass production varies only

slightly between the groups) can benefit the design process by providing sub optimal in the

unlikely event of the optimal solution is not feasible to implement.

Further, models in a single cluster provides evidence for the structural alternativeness (so-

lutions with same behaviour yet different structure). While all GEM models are unique in

structure (composition of genes and reactions), models within a group share a common core.

This common common core is different across clusters. Figure 5.14 is an illustration of the
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(a) Dendrogram for hierarchically clustering based
on biomass - number of clusters 5

(b) Silhouette plot for the clustering - average sil-
houette width 0.45

Figure 5.13: Clustering of GEM models in generation 140 based on biomass

common core genes in each cluster. While most of the 139 genes are present in all the clusters

there are differences between clusters as well.

Cluster No No of models in
each cluster

Common core
size (genes) Average biomass Minimum biomass Maximum biomass

1 3 93 1.78326 1.76866 1.79056
2 91 53 1.58327 1.58306 1.60258
3 12 65 1.29750 1.29750 1.29750
4 71 38 0.84763 0.84063 0.84778
5 273 36 0.51625 0.51625 0.51625

Table 5.1: Clustering of Generation 140 models based on biomass production resulted in 5
clusters. The tables contains the details of elements in each cluster.

Figure 5.15 is an illustration of clustering the GEM models in generation 140 based on the

pairwise common reactions. Hierarchical clustering was applied and the goodness of clusters

were validated using Silhouette index. When clustered based on structure it results in 5 groups

as well which is validated by a Silhouette index of 1. The differences in the core reactions in

each of the clusters are presented in figure 5.16. While all models share a certain number of

reactions, the common reactions between clusters are different across the 5 groups.

5.6 Discussion on the results

As mentioned in the Descriptor the main research question answered through the research is can

alternative solutions be found by storing and analysing the history of an optimisation approach?

In the example of a genetic algorithm being applied to improve the biomass production of a GEM
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Figure 5.14: Presence of common core genes within each cluster. The GEM models in generation
140 was clustered based on biomass similarity which resulted in 5 clusters. The x axis presents
the 139 genes and the y axis indicates the number of the cluster

model of E.coli bacteria, several questions were answered during the analysis of the optimisation

archive step. As mentioned in chapter 3, analysis of the optimisation archive consists of three

sub outputs. Availability of these three outputs depends on the problem the methodology is

being applied.

The first output is extracting alternative solutions. Prior to extracting alternative solutions,

an analysis was done on different types of model data collected in the optimisation archive. It

was found that all models in the 250 generations have a unique gene sequence to one another.

Therefore there were no duplicate solutions. Genes are activated randomly at the beginning

(see figure 5.2), however, as the optimisation process progresses and the certain genes remain

turned on with the increasing biomass values (see figure 5.3). Also the number of genes turned

on as the optimisation progresses from generation 0 to 249 (see figure 5.4. The reason for this

is the active genes determine the number of active functions. As the number of active functions

increases the biomass production increases as well. In generation 0, on average 50% of the genes

in each model were activated (5.6) and at the end of the optimisation on average 80% of the

genes were turned on for models with the highest biomass value (see figure 5.7).)

The goal of the optimisation program is to optimise the biomass production of GEM models.

As shown in figure 5.6 at the beginning of the optimisation program biomass is zero. As the

optimisation progresses the new genes get activated resulting in increase production of biomass.

The highest biomass value recorded was 1.79 and all models in the final generation produces

the same biomass (see figure 5.7). Since there were no duplicate gene sequences within a gener-
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(a) Dendrogram for hierarchically clustering com-
mon reactions (b) Silhouette plot with a Silhouette value of 1

Figure 5.15: Clustering of GEM models in generation 140 based on common reactions. The
Silhouette index resulted in a value of 1 when the number of clusters was 5.

Figure 5.16: The heatmap presents the availability of core reactions within the models in each
cluster.

ation, the GEM models in the last generation are behaviourly similar yet structurally different

alternative solutions.

While the biomass values were more constant at the beginning (see figure 5.6) and at the end

generations (see figure 5.8), more stratification of biomass values were observed at the middle

generations (see figure 5.7). This is an interesting observation because it proves that more

interesting sub optimal solutions get buried during the optimisation process because the focus
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is only on the optimal solution which is observed at the end. Hence storing the optimisation

history and further analysis provides meaningful insights. Therefore, these sub optimal solutions

are valuable in a scenario where the GEM model with the highest biomass output is infeasible

to implement.

Next, the models in each generation were clustered based on the gene composition (the

number of common active genes between a pair of models - see figure 5.9), common reaction

composition (the number of common active genes between a pair of models - see figure 5.15a) and

biomass of the models (see figure 5.13a). Even though there are 250 generations, I have chosen

generation 140 as the model generation for illustration purposes because the biomass values

have a good stratification which is a representative of all the biomass values observed during

the 250 optimisation generations. Further, clustering was done with hierarchical clustering. The

reason to opt for hierarchical clustering method for the analysis in this thesis was it was a

simple clustering method and sufficient to accurately group the solutions based on the euclidean

distance measures. Groupings obtained by clustering based on gene composition and reaction

composition were not useful in connecting structural differences to biomass. However, clustering

models on biomass revealed interesting information in identifying the common core for a given

set of models (see figure 5.16).

Clustering (based on biomass) of the models in Generation 140 revealed that there were 5

distinct clusters. The number of clustered was justified by an average Silhouette value of 0.45.

After analysing the gene composition of the models in cluster I was able to identify a common

core for each cluster/biomass value (see figure 5.14). Common core is all the genes that are

active in the models in a given cluster. Figure 5.14 represents the genes activated in each core

(for each cluster) out of the 139 genes that are allowed turn on and off during the optimisation

approach. Similarly each cluster has a common reaction core (common reactions available in all

the modules in the respective cluster) which is presented in figure 5.16. Given the differences

in behaviour it is highly unlikely that a global viable core (a model that would produce the

respective biomass only when the core genes are turned on) can be achieve. Hence the local

common cores work as a representative of each cluster.

The second output of the methodology is using the insights obtained from analysing the

optimization archive to standardize model constraints. Through clustering of solutions, I was

able to identify a common core of genes (genes that were always turned on when the model

produced the respective biomass) for each biomass category. During the optimisation process

139 genes were allowed to randomly turn on and off. However, from the common core we can
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identify the genes that should be turned on for the whole duration of time. Since this reduced

the number of genes that needs to experimented with are smaller better results could achieved

easily and faster.

The third output of the methodology is temporal analysis. In temporal analysis the evolution

of a particular solution is observed over the course of optimisation process. Temporal analysis

was not performed for this example because there are no constant structures in the model design.

Summary

This chapter presented the second case study which was aimed at applying the optimisation-

history analysing methodology defined in Chapter 3. The case study was aimed at analysing

the optimisation history generated by a genetic algorithm optimising the behaviour of GEM

models of metabolism of E. coli bacteria K-12 strain. The first step of the methodology was

to create a mathematical model that imitates the behaviour of the complex system, bacteria

metabolism. An existing mathematical definition of the system was adopted in this step. The

second step was application of target driven optimisation to improve the design and compile the

optimisation archive. I adopted the work done by a fellow researcher to compile the optimisation

archive. Optimisation output of a genetic algorithm was used to create the optimisation archive

which composed of the behaviour of the bacteria (biomass production) and structure (gene and

reaction composition of models). Finally the optimisation archive was examined to identify

alternative solutions. The analysis resulted in alternative solutions which were alternative by

both behaviour (both behaviourally and structurally different) and structure (behaviourally

similar yet structurally different).

Alternative solutions of GEM models identified in this example scenario are computational

design solutions. An optimisation approach was used to observe how change in activity of

genes affect the metabolic behaviour of the bacteria. However, these designs need to be con-

structed physically in order to verify the computationally predicted behaviour is similar to the

observed physical behaviour. In a usual synthetic biology modelling process, the differences in

the predicted and observed behaviour is fed-back to the design process in order to improve the

computational design approach. Therefore alternative computational solutions (design) can be

used to drive the engineering of alternative physical designs. In this case the alternative solution

acts as an alternative design template (or blueprint).

Compared to the first case study the second case study looked at a different optimisation
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algorithm. In the first case study gene expression programming optimisation was applied while

in the second example a genetic algorithm was used. Also the structure of data being analysed

were different. Mathematical expressions in the first example case study were graphs (binary

trees) where as the GEM models were viewed as liner data. The third case study which is

presented in the next chapter aims at applying the methodology to identify alternative solutions

in an solution space composed of DNA walker circuits constructed from the output of a simulated

annealing optimisation.

83



Chapter 6

Example Applications 3: Alternative

Solutions for DNA Circuits using

Simulated Annealing Optimisation

Introduction

This chapter illustrates how the optimisation-history analysing methodology described in Chap-

ter 3 can be employed to extract alternative solutions from a solutions space consisting of DNA

Walker circuit layouts. A DNA walker circuit is a biochemical circuit built using DNA strands.

The circuit layout can be viewed as an undirected graph drawn on a two dimensional Cartesian

plane. Simulated annealing optimisation algorithm was used to generate the best circuit layout

for a specified set of objectives. A brief introduction to DNA walker circuits, implementation

of simulated annealing optimisation algorithm to generate optimal DNA walker circuit layouts

that satisfies predefined objectives and a method to compare the layouts will also be discussed

in this chapter.

6.1 Descriptor

The third case study which was used to test the effective usage of the optimisation-history

analysing methodology is explained in this chapter. The example presented in this chapter

focuses on employing a computational optimisation algorithm to obtain an optimal design layout

for a DNA circuit. Methodology will be applied to analyse the optimization history generated

from the optimisation program in order to identify alternative solutions (structurally different
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but behaviourally similar) and improve the design process using the insights from the history.

Unlike the first example, analysing the optimisation history of improving mathematical ex-

pressions structure, DNA circuit layout provides a more realistic solution space composed of

varying degrees of alternativeness attributing to different combinations of structural and be-

havioural similarities.

The three main phases of the methodology are;

• Step 1: Mathematical model definition

The first phase of the methodology is to define a mathematical model for the problem. A

DNA walker circuit is a biochemical circuit built using DNA strands. DNA walker circuits

can be used for a number of applications including precise arrangement of matter at the

nano-scale and the creation of smart bio-sensors. Similar to silicon circuits, DSD systems

are able to evaluate non-trivial mathematical functions. Further, experiments have shown

that DSD systems can simulate logic circuits (Dannenberg et al. 2013). These capabilities

of DNA walker circuits pave the means of DNA being used as a digital data storage in

the future. DNA walker circuit technology is still in it’s early experimental stages and

circuit layout approach being looked at in this thesis is a fairly new approach proposed

by Professor Gilbert and Professor Heiner. Section 6.2 provides a detailed description on

the DNA circuit layout (model definition) and the examples which will be looked at in the

case study. The main focus of the study is to obtain an optimal design for a given layout

and a set of alternative designs.

• Step 2: Target driven optimisation

In the second step of the methodology, computational optimisation is applied on the layouts

to select the best solution. Once this step is completed the optimisation archive will be

created which will be analysed to identify possible alternative solutions.

As the DNA circuit layout is novel, this would be the first instance computational optimi-

sation techniques has been applied to obtain the optimal design. Hence, mainly two opti-

misation algorithms; hill climbing and simulated annealing were used to identify the most

effective algorithm. Sections 6.3, 6.4 and 6.5 includes a detailed description of formulating

layout optimisation problem for DNA walker circuits and application of the algorithms.

• Step 3: Analysis of the optimisation archive

The third step of the methodology is to analyse the optimisation archive in order to identify
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the alternative solutions. Section 6.6 has a detailed explanation of the insights extracted

from analysing the optimisation history. During the analysis mainly three insights were

obtained which could aid in improving the design process of DNA walker circuits.

1. Obtained alternative DNA walker design layouts which are behaviourally similar yet

structurally different

2. Identified optimal core design elements in layouts by observing the evolution of so-

lutions over time. Core designs are an arrangement of nodes (e.g. Init, Fork, Norm

1 and Norm 2 nodes in Toy layout) that remains constant in each optimal design.

These core designs can be used as fixed blocks when designing larger circuits. Further

having fixed location for nodes could reduce the number of locations which needs to

varied in the optimisation algorithm decreasing the execution time.

3. Finalized design constraints (relationship between number of nodes and maximum

length and width of the layout) for DNA walker circuit layouts

6.2 Step 1 - A Brief Introduction to DNA Circuits

6.2.1 Nanotechnology and DNA

The prefix "nano-" is a familiar term used in the metric system that refers to a scale of size.

"nano" is derived from the Greek work nannos meaning the dwarf. In the metric system nano is

used used to denote a factor of 10−9 (0.000000001 or one billionth). Therefore nanotechnology

can be defined as "the understanding and control of matter at dimensions of roughly 1 to 100nm,

where unique phenomena enable novel applications" (Allhoff, Lin, and Moore 2010). At present

nanotechnology research has become highly and increasingly integrative across multidisciplinary

knowledge sources. For example medicine (surgery, immunology) , engineering (telecommunica-

tion, electrical and electronic), chemistry (drug discovery) and physics (particles, nuclear) are

few major disciplines where nanotechnology is applied to solve problems (Porter and Youtie

2009).

DeoxyriboNucleic Acid (DNA) is present in all living cells and it is the carrier of genetic

information. DNA engineering is a well known research discipline where level of gene expression

is modified in order to optimize the nature of gene products and improve cellular performance.

However nano-technological purpose of DNA engineering specifically aims at creating specific

topologies, shapes and arrangements of secondary and tertiary structure to manipulate the
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spatial and temporal distribution of matter (seeman1999dna).

6.2.2 DNA Walker Circuit

A DNA walker circuit is a biochemical circuit built using DNA strands. A DNA walker circuit

has mainly two parts; a DNA Strand Displacement (DSD) circuit and a DNA walker. A DSD

circuit is created by tethering of DNA strands to a rigid lattice (origami tile). These tethered

strands are called anchorages. A DNA walker is a free-moving single DNA strand which is

capable of traversing along the lattice performing a computation.

Figure 6.1: An illustration of the "Toy" circuit with the use of coloured Petri nets. Colour code:
blue – INIT, green – FORK, red – FINAL; uncoloured – NORM

Figure 6.1 represents how a DNA circuit looks like to a modeler. However, in the real life

this DNA circuit looks like any other DNA strand. DNA strands which are expected to react (a

strand with DNA circuits and DNA walkers) are first placed in a mixed chemical solution. The

reactions between the walker and the circuit are controlled by enzymes.

While there can be DSD circuits with free moving DNA strands, tethering of DNA strands

(nodes in the circuit in figure Figure 6.1) give the ability to impose constraints on the reaction
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between DNA strands by preventing the otherwise free moving stands to react in unintended

ways (Qian and Winfree 2011). The manner a walker traverse along the circuit is called DNA

strand displacement. Figure ?? is an illustration of the DNA displacement process. A single

free moving DNA strand (walker: green colour strand) first binds to a partially double-stranded

(black and red colour strands), then releases (or displacing) the originally bound strand (red

colour strand). This process is called DSD and Qian and Winfree have further discussed about

several instances of how DSDs are used experimentally to simulate logic gates (Qian and Winfree

2011). A simulation of the binding of a walker to the DNA circuit can be found in https:

//youtu.be/42FCzoJt8Pg as well.

Figure 6.2: An illustration DNA strand displacement: A single free moving DNA strand (walker:
green colour strand) first binds to a partially double-stranded (black and red colour strands),
then releases (or displacing) the originally bound strand (red colour strand). (This illustration
was inspired by the work published in "Control of DNA Strand Displacement Kinetics Using
Toehold Exchange" (Zhang and Winfree 2009))

DNA walker circuits have been further studied by Dannenberg and his research group and

they have introduced a modelling approach for walker circuits based on experimental data (Dan-

nenberg 2016). However, in this thesis I will be looking only at the DNA walker circuit layout.

6.2.3 DNA Walker Circuit Layout

The DNA walker circuit layouts which are discussed in this thesis have been adopted from the

work published by Prof Gilbert and Prof Heiner (Gilbert, Heiner, and Rohr 2018). There are

four circuit layouts namely Toy, Toy0, Toy1 and Toy2. These circuits are designed to evaluate

a Boolean function over n input variables. Below figure 6.3 is an illustration of the layout of the

circuit named Toy which is elaborated in Prof Gilbert and Prof Heiner’s work (Gilbert, Heiner,

and Rohr 2018).

As shown in figure 6.3 a DNA walker circuit can be viewed as an undirected graph. The

graph can be considered as a binary tree where the walker evaluates a Boolean function while it

walks along the branches of the tree. If the walker reaches the red node in the horizontal branch,

the result will be false and if the walker reaches the same coloured node in the vertical branch the
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Figure 6.3: An illustration of the Toy circuit layout with the use of coloured Petri nets. Colour
code: blue – INIT, green – FORK, red – FINAL; uncoloured – NORM

result will be evaluated to true. Vertices are referred to as anchorages (terms vertices, nodes and

anchorages are used interchangeably in this text) and undirected edges represent possible walker

steps. There are five different types of vertices based on their functionality. In the diagram the

nodes have been colour coded according to their functionality. These vertices are laid out in a

Cartesian grid of a fixed size which is determined by the size and shape of the tree.

6.2.4 Different Types of Anchorages and Their Behaviour in a DNA Circuit

There are mainly five types of vertices. Each of these types have their own characteristics and

behaviour which will be explained in detail in the layout constraints section.

• INIT - Init (also refereed to as I) is the unique initial node (anchorage). This node denotes

the entry point into the circuit for a walker. There is only one Init node in a circuit. When

representing the layout as a coloured Petri net Init node will be encoded in blue.

• FORK - Fork (also refereed to as F) node denotes a junction where the circuit branches
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into two sections; true or false. There can be one or more Fork nodes in a circuits. When

representing the layout as a coloured Petri net Fork node will be encoded in green.

• NORM - Norm (or N) node processes a boolean expression. In a binary decision tree there

are two types of norm nodes; True Norm vertex (also refereed to as N1n where n represent

the order of Norm nodes) and False Norm vertex (also refereed to as N2n). There can be

more than one Norm node in a circuit. When representing the layout as a coloured Petri

net Norm node will be encoded as an uncoloured node.

• FINAL - Final node denotes the position where the walker leaves the circuit. In a binary

decision tree there can be only two Final nodes; True vertex (also refereed to as F1) and

False vertex (also refereed to as F2). When representing the layout as a coloured Petri

net Final node will be encoded in red.

• JOIN - Similar to a Fork node a Join node denotes a junction. Binary decision trees do

not require join anchorages therefore none of the examples discussed in this thesis have

join nodes.

6.2.5 Connectivity Between Anchorages in a DNA Circuit Layout

Each anchorage (node) has a designated set of connections. Both INIT and FINAL nodes have

only one adjacent edge, NORM node will have two adjacent edges and JOIN and FORK nodes

have three adjacent edges.

Thus the edge connections can be summarised as;

• INIT node has one adjacent edge that leaves the nodes

• FORK node has three adjacent edges; one enters the node and two leaves the node

• NORM node has two adjacent edges; one enters the node and one leaves the node

• FINAL node has one adjacent edge that enters the nodes

• JOIN node has three adjacent edges; one enters the node and two leaves the node or two

enters the node and one leaves the node

For a given set of input values, a walker is supposed to go only to anchorages, where the

evaluation of the label yields true. However as the walker walks along an undirected graph

ideally it can start its journey at a INIT and traverse to any node or start at one of the FORK
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nodes. Therefore the traversal imposes several constraints on a walker’s movement. A DNA

walker can thus travel in one direction starting from INIT vertex to one of the FINAL vertices

and it is not allowed to visit a node that has already been visited.

6.2.6 Simulation of DNA Walker Circuits

DNA walker circuits are tested in-silico. Prof Heiner and her research group has developed

a Petri net analysis too named Marcie (Heiner, Rohr, and Schwarick 2013) and it is used to

simulate a DNA walker circuit.

In order to simulate the circuit a CANDL specification of the layout needs to be created. A

CANDL specification is a text file with the extension .candl and it includes the structure of the

layout; a representation of the circuit in Cartesian form (x and y coordinates for every node in

the layout), and characteristics of the layout such as grid size, node connectivity and distance

measurements (a template of a sample CANDL file is in Appendix 7.3.4). Next the CANDL

specification is processed by Marcie using a specific set of commands. Marcie is used to perform

a qualitative analysis on the circuit.

Marcie is able to perform the following tasks :

• Simulate the functionality of the DNA walker circuit

• Determine the type and number of leak transitions in the circuit

• Determine whether any dead states exists in the circuit

6.2.7 Research Question

When a walker is moving along a localized (tethered) DSD there is a possibility of the walker

jumping to another branch of the decision graph. This undesirable movement results in an

incorrect output called a leakage transition. Prof Gilbert and Prof Heiner have proposed a

method to automatically identify leakage transitions, which allows for a detailed qualitative and

quantitative assessment of circuit designs, design comparison, and design optimisation. As Prof

Gilbert and Prof Heiner suggest the leakage in a walker circuit can be reduced by optimising the

distance between two anchorages (nodes). Ideally this can be achieved by increasing the circuit

area. However at the same time the circuit area should be minimised too.

As highlighted in Chapter 1, the main research question I intend to answer through the

research is "When using computation optimisation to improve system design, how can alternative

solutions be efficiently found by analysing the history of the optimisation approach?".

91



Chapter 6 - Case Study 3 - DNA Walker Circuits

The goal of the work presented in this chapter is to explore different ways of laying out the

nodes in a given circuit preserving the topology so the leakage transitions and circuit area are

minimised (Gilbert, Heiner, and Rohr 2018). Following are the questions I intend to answer

through my research:

• What is the optimal way to layout the circuit components preserving the node and arc

connections that would minimize both the area occupied and the number of leaks?

• Can the components be laid in a different manner while the behaviour remains the same?

(i.e. are there alternative solutions; different structure but similar behaviour, for a given

design)

• Is there an inherent ranking present within the solutions?

Computational optimisation algorithms will be used to obtain the optimal solution. The

methodology define in Chapter 3 will be used to analyse the optimisation history to locate

alternative solutions and rankings.

6.2.8 Four DNA Walker Circuits Examples

In order to explore the different ways of laying out a circuit, four different types of circuits have

been used. These layouts were designed by Prof Gilbert and they are inspired by the work

published in (Gilbert, Heiner, and Rohr 2018). These layouts are referred to as Toy layouts.

Table 6.1 contains details of the four layouts.

6.3 Step 2 - Formulation of the optimisation problem

6.3.1 Layout Optimisation Problem

As identified by Prof Gilbert and Prof Monika in their research (Gilbert, Heiner, and Rohr 2018),

main challenges involved in designing a reliable walker circuit consisted of minimizing leakage

transitions and area.

Leakage transition is the computation error which occurs when a walker jumps into another

branch of the decision graph. Area is the area occupied by the layout. In general we can

minimise the leakage transitions by increasing the distance between nodes. However it is also
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Feature DNA layout
Toy Toy 0 Toy 1 Toy 2

Layout

No of nodes 6 7 8 9
Grid size 14 x 14 14 x 14 20 x 20 20 x 20
No of Init nodes 1 1 1 1
No of Fork nodes 1 1 1 1
No of Norm nodes 2 3 4 5
No of Final nodes 2 2 2 2

Table 6.1: Details of the four example DNA walker circuits

a requirement of an ideal circuit to have the least area possible. Hence the aim is to minimise

leakage transitions while minimising the area of the circuit.

For example consider the Toy circuit model illustrated in 6.3. There are several hundred ways

in which the nodes can be laid out preserving the circuit layout constraints. Therefore it is not

possible to work it out by hand or mathematically compute the best arrangement of nodes which

occupies the least area and have the least number of leaks. This suggests that the exploration for

the best solution would be benefited by adopting a computational search mechanism. The search

for the optimal circuit was done in two separate computational methods; exhaustive search and

computational optimisation which are described in detailed in the following sections.

6.3.2 Exhaustive search by Prof Gilbert’s Prolog program

Prof Gilbert implemented a Prolog program which exhaustively searched the complete solution

space for the optimise solution. The program was developed in Prolog and it was able to generate

all the possible solutions for a given model. After computing the fitness for all the solutions, the

solution that had the least fitness value was selected as the best one. Prof Gilbert was able to

exhaustively search the solutions spaces for Toy, Toy0, Toy1 and Toy2 models. Following table

6.2 provides a summary of the results obtained from Prof Gilbert’s search.
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Model layout No of solutions No of unique
fitness values Minimum Fitness Maximum Fitness

Toy 263,920 140 40 11816
Toy0 786,943 225 60 17091
Toy1 394,002 817 780 35520
Toy2 640,609 1113 780 43512

Table 6.2: Number of solutions obtained from Prof Gilbert’s exhaustive search for the four Toy
models

For instance let’s look at the solution space of Toy layout which was generated through

exhaustive search. The 263,920 total number of solutions could be fitted into 140 unique fitness

values. The minimum fitness value observed was 40 and the maximum fitness value was 11816.

Distribution of fitness values of the total solution space is depicted in Figure 6.4. Further figure

6.5 is a representation of the distribution of leaks and area of the solutions. Similarly the

complete solution space for Toy0 circuit layout consisted of 225 unique fitness values where the

fitness values varied between a minimum fitness of 60 and a maximum fitness of 17091.

Figure 6.4: Distribution of fitness values in the total solution space generated for Toy layout
through exhaustive search

While it is possible to identify the optimal circuit layout designs using Prof Gilbert’s method,

there are couple of drawbacks in his approach. The Prolog program has to first generate the

total solution space and then evaluate each and every solution. This exhaustive search uses a

lot of resources. As we are interested in an optimal solution it is a waste of resources to look
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Figure 6.5: Distribution of area and leaks in the total solution space generated for Toy layout
through exhaustive search

at all possible answers (for the Toy layout the first 10% of the best fitness values account to

only 1388 out of the total number of solutions 263,920). For example, for the Toy circuit model

even though there are 263,920 solutions in total, only 24 solutions have the minimum fitness.

Further for larger circuit models it is impossible to perform an exhaustive search. For example

the program crashed few times when trying to generate the solution space for Toy 1 and Toy 2

layouts given the difference is an addition of one node to each layout compared to its predecessor.

Therefore an exhaustive search is an ineffective method. However the results of the exhaustive

search was beneficial in implementing and validating the functionality of the heuristic search.

6.3.3 Computational optimisation of the layout problem

As an exhaustive search proved to be inefficient and impractical, especially as the layouts gets

larger, a heuristic method was considered more suitable. A heuristic search provided the capa-

bility to explore the solution space in an efficient manner resulting in a good enough, if not the

best, solution. Hence computational optimisation was used to explore the solution space.
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As explained previously a DNA walker circuit can be viewed as an undirected graph. Graph

layout problem is a well-researched area and are a separate category of combinatorial optimiza-

tion problems whose goal is to find a linear layout of an input graph in such way that a certain

objective cost is optimized (Díaz, Petit, and Serna 2002). The graph problem is mainly ap-

plied to three main categories of examples. The first example category is known as the facility

layout problem (a.k.a plant/ machine layout problem). The optimisation process is focused

on the placement of facilities (e.g., machines, departments) in a plant area, with the aim of

achieving the most effective arrangement in accordance with some criteria or objectives under

certain constraints, such as shape, size, orientation, and pick-up/drop-off point of the facili-

ties (Hosseini-Nasab et al. 2018). A majority of the work on graph layout problem is based

on facility layout problem using different optimisation techniques such as swarm optimisation

(Rossetti, Macor, and Scamperle 2017), simulated annealing (Tayal and Singh 2018) and genetic

algorithms (Raman, Nagalingam, and Gurd 2009).

The second example category can be considered as developing optimum design of truss

type structures (a.k.a topology design) with respect to size, shape and topology design variables

using optimisation (Tort, Şahin, and Hasançebi 2017), (Hasançebi and Erbatur 2002). The third

category of example data used in graph layout optimisation is circuit layouts. These circuits can

be integrated circuit designs (Berkens et al. 2012), (Hughes, Morton, and Monk 2007) or DNA

walker circuits (Kawamata, Tanaka, and Hagiya 2009).

Optimisation of a DNA walker circuit discussed in this thesis relates to a method of opti-

mizing an integrated circuit layout, wherein an initial DNA walker circuit layout is provided.

A predetermined set of constraints (physical characteristics) are used to evaluate the structure

of the circuit and a cost function is used to evaluate the goodness of a layout and layout are

selected that optimize the goodness value, so that the circuit layout is optimized. Mainly two

optimisation algorithms were used to in the heuristic search; random restart hill climbing and

simulated annealing.

6.3.4 Defining a Fitness Measure for a DNA Walker Circuit

A "heuristic search refers to a search strategy that attempts to optimize a problem by iteratively

improving the solution based on a given heuristic function or a cost measure" (Lu and Zhang

2013). Hence it was essential to define a cost function for a DNA walker circuit. The main

reason for defining a custom cost function for the heuristic search described in this thesis is that

there doesn’t exist a standardised cost function to measure the goodness of DNA walker circuits
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based on the parameters that are being optimised.

As mentioned previously the aim of the heuristic search is to reduce the leaks of a DNA

walker circuit and area occupied at the same time. Thus the fitness measure is defined as

follows:

Fitness = (short leaks ∗ 100 + medium leaks ∗ 10 + long leaks ∗ 1) ∗ area (6.1)

short leaks = number of short leaks in the circuit

medium leaks = number of medium leaks in the circuit

long leaks = number of long leaks in the circuit

area = area of the circuit

(6.2)

Hence as per the above mentioned fitness measure a lower fitness value is considered as a

better layout. In the fitness measure the leakage transitions are weighted by type as there is an

order of significance for each type. Short leaks are more common and more prone to erroneous

output and hence those leaks should be minimised more than the other two types. Medium and

long leaks are rare and more tolerable than short leaks hence have assigned a lower weighting.

The area of the circuit is the rectangular area occupied by nodes in the Cartesian plane.

Hence it is calculated as follows:

Area of the circuit = (Xmax−Xmin) ∗ (Y max− Y min) (6.3)

6.4 Optimising DNA Walker Circuit Layout Problem using Hill

Climbing Algorithm

6.4.1 Hill Climbing Algorithm

Hill climbing algorithm is a local heuristic search technique used to optimise mathematical

problems. As the name suggests the functionality of the algorithm depicts climbing to the

highest point of a range of hills. If the solution space is represented as a range of hills, the

algorithm will climb the hill until it reaches the highest hill top. The mechanism used to

identify the highest top is to compare the current height with the previous best height.
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The algorithm starting with an arbitrary solution for a problem, then attempts to find a

better solution by making an incremental change to the solution. Subsequently a hill climber

performs an iterative search by continuously moving in the direction of increasing fitness value to

find the best solution to the problem. The algorithm terminates after a set number of iterations

(Selman and Gomes 2006).

Following figure 6.6 is a representation of different states a hill climbing algorithm could

reached during its search process and the values of the fitness function.

Figure 6.6: State space diagram for hill climbing algorithm: x axis represents the and the y axis
represents the value of the objective function/fitness (source:https://www.geeksforgeeks.
org/introduction-hill-climbing-artificial-intelligence/)

The point which is marked as the current state is the place where the algorithm is present

at this moment. There are three main types of regions the algorithm can reach during its search

process.

• Local maximum: a local maximum is the best state the algorithm can reach compared to

the neighbours. However it is known as a local maximum as there is a state better than

the local maximum (global maximum).

• Global maximum: the best possible state in the state space graph.

• Plateua/flat local maximum: a flat region where the objective function has the same value.

It is impossible for a hill climbing algorithm to get out of a plateua as the direction of

travel can not be decided with exactly similar values.
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Hill climbing uses a greedy search approach; meaning at any point in the solution space, the

search moves in the direction only which optimizes the cost function with the hope of finding the

optimal solution at the end. Hence there is a possibility that the optimisation algorithm will stop

at a local optimum as shown in the above figure. This is the basic hill climbing algorithm. There

are several versions of the hill climbing algorithm with slightly different search mechanisms to

overcome some of the drawbacks in the basic hill climbing algorithm.

• Simple hill climbing algorithm: This is the simplest hill climbing algorithm. The algorithm

will evaluate the neighbour state and select the first state which optimises current cost

and set it as a current state. Only one state will be checked at a time and if a better state

than the current state is found, then the algorithm will move else it will remain in the

same state. Following is the pseudo code for the simple hill climbing algorithm.

Algorithm 1 Simple Hill Climbing Algorithm
Input: A random solution
Output: Solution with the best fitness

1: procedure SimpleHillClimber
2: S ← Random Solution
3: F ← Fitness(S)
4: for i ← 1 to ITER do
5: S′ ← Small Change(S)
6: F ′ ← Fitness(S′)
7: if F ′ better F then
8: S ← S′

9: end if
10: end for
11: return S
12: end procedure

• Random restart hill climbing algorithm: As mentioned earlier the algorithm will check one

state at a time and if a state better than the current state is found, then the algorithm

will move else it will remain in the same state. One drawback of simple hill climbing

algorithm is that the algorithm can get on trapped at a local maximum or a plateua (flat

local maximum) due to its traversal strategy. As a solution the initial search state can be

reset to a randomly selected location and the search operation can be restarted giving the

possibility of eventually reaching the global maximum.

• Steepest-Ascent hill climbing algorithm: The steepest-ascent algorithm is a variation of

simple hill climbing algorithm. This algorithm examines all the neighbouring states of the
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current state and selects one state which maximizes the objective function. This algorithm

consumes more time as it searches for multiple states (Arriaga and Valenzuela-Rendón

2012).

6.4.2 Implementation of Random Restart Hill Climbing Algorithm to Opti-

mise DNA walker circuit layout

The aim of designing the optimal layout for a given DNA walker circuit was to come up with a

layout(s) with the least number of leaks and area. As described in the previous section the main

challenges faced in designing the optimal layout were the exponential number of permutations in

topology and computational overhead which increased with the number of nodes in the circuit.

Therefore a heuristic search was deemed appropriate for an efficient design process.

Random restart hill climbing algorithm was selected as a suitable optimisation technique

due to few reasons. Firstly it was possible to transform the circuit layout problem into a math-

ematical programming problem as the number of leaks and area were quantitative parameters.

Hence it was easy to define a fitness function required for the optimisation. The second reason

for opting for hill climbing algorithm was its easiness in implementation. Using computational

optimisation in a design process targeted to minimise the leaks and area in a circuit was a

novel idea. Hence it was necessary to confirm whether the expected output (results from the

exhaustive search) could be obtained from a heuristic search. Therefore the efficiency of imple-

mentation was the second reason for selecting hill climbing algorithm. Further the functionality

of a genetic algorithm was not appropriate for the layout problem. In a genetic algorithm the

mutation function combines portions of data (DNA) from two solutions and create a new solu-

tion. The idea of plugging two halves of separate layouts together to make a new solution did

not seem reliable as there were many constraints involved in layout the components in a circuit.

Java was selected as the preferred programming language for the implementation as I had

prior knowledge in coding with Java. Because the learning curve was minimal implementation

of the optimisation program could be done fairly quickly. Implementation of he optimisation

program consisted of two main parts; implementation of the random restart hill climbing algo-

rithm and implementation of the DNA walker circuit layout constraints in order to generate and

validate layouts.
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Implementation of the random restart hill climbing algorithm

Implementation of the hill climbing algorithm was fairly straightforward. Below is the pseudo

code (algorithm 2) for the random restart algorithm used for the optimisation. While the inner

for loop is responsible for a single hill climbing search, the outer for loop is responsible for

the restart function of another hill climber search at a random point in the search space. The

variable ITER denotes the number of iterations the hill climbing search process was iterated

within a single execution (number of states it visited in the solution space). Ideally the value of

ITER depended on the size of the circuit and the number of iterations increased with the size of

the circuit. STARTPOINTS variable was used to specify the number of times the hill climber

was restarted. The preferred number of STARTPOINTS was set to 20. The more times the

hill climber was restarted a wide range of local maximums could be observed however the value

of STARTPOINTS was constrained by the execution time of one hill climbing search process.

The execution time for one hill climbing process increased with the size of the circuit as the

time taken for layout validation increased with the number of nodes in the circuit along with

the number of iterations per process.

Algorithm 2 Random Restart Hill Climbing Algorithm
Input: A random solution
Output: Solution with the best fitness

1: procedure RandomRestartHillClimber
2: for x ← 1 to STARTPOINTS do
3: S ← Random Solution
4: F ← Fitness(S)
5: for i ← 1 to ITER do
6: S′ ← Small Change(S)
7: F ′ ← Fitness(S′)
8: if F ′ better F then
9: S ← S′

10: end if
11: end for
12: return S
13: end for
14: end procedure
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Implementation of the DNA walker circuit layout constraints in order to generate

and validate layouts

The main part of the programming effort was required to encode DNA walker circuit constraints

into Java. The work was mainly on three functions.

1. Function: GenerateRandomSolution - This function was used to generate a random solu-

tion. To form a valid solution the nodes were placed on the Cartesian plane as per the

constraint definition. Size of the Cartesian plane, number of nodes, order of appearance

and type of each node, and the connections between each pair of nodes were given as input

to the program.

The algorithm starts from the first node (i.e. INIT); it randomly generates a pair of

coordinates for the INIT node, and moves on to the next node according to the order

specified. Next the algorithm generates all the possible locations the next node could be

placed and picks a location randomly from the available nodes. If there are no available

places for the node to be placed algorithm will start at with new initial position.

This approach was an efficient way of generating layouts than randomly generating nodes

and validating against constraints afterwards.

2. Function: SmallChange - In a hill climbing algorithm a small change needs to be made

to the existing solution in order to decide the direction of travel. This function was used

to introduce a small change into an existing solution (S). As per the algorithm 50% of

the nodes in the layout were allowed to be moved to different places. Firstly the Java

algorithm generates a random integer number between 1 and n/2 (n being the number of

nodes in the circuit) to decide how many nodes will be changed. Next it will generate all

the possible locations the selected node can move and randomly pick one from the available

locations. If there are no available locations it will discard the changes and start fresh.

Usually the small change function in a hill climbing algorithm is expected to perform the

smallest possible change. In the circuit layout problem the smallest change is changing

the location of one node. However changing one node at a time did not introduce much

variability into the solution as the number of possible locations a node could be placed

was minimal due to layout constraints. As a result there were a significant number of

repeats in the hill climbing solution space and in all the 20 runs (each run with 5000

iterations) not only it could not reach the lowest fitness observed during the exhaustive
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search but also the variability in fitness values observed were minimal. Therefore multiple

locations were allowed to change with one change operation causing the hill climber to

make a significantly high jump from a lower fitness to a high fitness value. This proved to

be an effective method because for the Toy model in the next 20 runs (with the improved

small change function) 45% of the time the hill climber was able to reach a fitness value

within the top 10% of the lowest values observed during exhaustive search.

3. Function: LeakComputation - This function was used to compute the leaks in a circuit. As

described earlier the leaks in a circuit is necessary to calculate the fitness of that layout.

Initially the leaks were computed using the Marcie simulator. However calling Marcie was

computationally expensive. Due to the computational overhead it took nearly 2 hours for

one run (with 5000 iterations) to complete. Therefore the leak computation algorithm was

implemented in Java and it reduced the execution time of one run (with 5000 iteration)

to 2 minutes.

The next section is an analysis of the solutions obtained from the hill climbing algorithm.

6.4.3 Evaluation of results from Hill Climbing Algorithm

The main reasons an optimisation approach was used in the generation of possible layouts were

due to the limitations and inefficiency in an exhaustive search. As described in the previous

section a random mutation hill climbing algorithm was used to search the solution space for

each of the four layouts. The results of the search and conclusions made are discussed in this

section.

Initially the hill climbing algorithm was run on both Toy and Toy0 circuit layouts. For

each run the hill climbing optimisation was repeated for 20 runs while each run having a set

STARTPOINT value of 5000 iterations. However the minimum fitness value observed during all

the runs did not reach a value below 500 for both circuits in all the runs. As mentioned earlier

the minimum fitness observed during the exhaustive search for Toy and Toy0 layouts were 40

and 60 respectively.

As the hill climbing algorithm could not reach the expected minimum fitness, the complete

solution space for both Toy and Toy0 layouts were examined. A surface plot of the solution space

was generated by combining all the variables in a layout (i.e. coordinates, area, fitness and leak

information) and reducing it to two dimensions applying dimensionality reduction. This was

done using MatLab software. Figure 6.7 is a representation of the solution space for both Toy
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(a) Toy
(b) Toy0

Figure 6.7: Surface plots representing the total solution space of Toy and Toy0 layouts. The
total solution space was obtained from the exhaustive search Proglog program.

and Toy0 layouts.

As depicted in the surface plot in figure 6.7 the distribution of solutions took the form of

a valley instead of a hill. The main disadvantage of this form of a distribution is that the hill

climbing algorithm will always stop in a local optimum instead of reaching a global optimum.

Hence it was concluded that a hill climbing algorithm was not suitable for this problem. Simu-

lated annealing optimisation technique was considered appropriate for the optimisation of layout

designs as it has the capability of accepting slightly worse solutions in order to escape from being

trapped in a local optimum.

The next section will discuss in detail on how simulated annealing optimisation technique

was used to optimise the design process of DNA walker circuits.

6.5 DNA Walker Circuit Layout Optimisation using Simulated

Annealing

6.5.1 Simulated Annealing Algorithm

Simulated annealing is a global optimisation technique which mimics the physical annealing

process of a crystal structure (Kirkpatrick, Gelatt, and Vecchi 1983). Simulated annealing is

capable of working with both discrete and continuous fitness values. The simulated annealing

optimisation techniques is widely applied to solve problems in different disciplines such as the

travelling salesman problem (Allwright and Carpenter 1989), designing electronic circuits (Wong,
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Leong, and Liu 2012), dynamically planning the traversal path for robots (Miao and Tian 2008)

and in bioinformatics designing of protein molecules (Goodsell and Olson 1990).

A simple heuristic such as hill climbing, always traverse the solution space by searching

for a better neighbour after better neighbour and stops when there are no neighbours that are

better solutions than the current solution. This approach does not guarantee to lead to the

best solution most of the time as the current best could be a local optima while the actual best

solution would be a global optimum that could be different. The speciality of simulated annealing

optimisation technique is that although the search mechanism prefer better neighbours, it is

capable of accepting worse neighbours in order to avoid getting trapped in a local optima.

Ideally a simulated annealing algorithm can find the global optimum if it is run for a long

enough amount of time.

The following pseudocode represents the simulated annealing optimisation approach in it’s

generic form.

Algorithm 3 Simulated Annealing Algorithm
Input: A random solution S, starting temperature T
Output: Solution with the best fitness

1: procedure SimulatedAnnealing
2: S ← Random Solution
3: F ← Fitness(S)
4: for x ← 1 to ITER do
5: S′ ← Small Change(S)
6: F ′ ← Fitness(S′)
7: if F ′ better F then
8: S ← S′

9: else if AcceptanceProbability better Random(0, 1) then
10: S ← S′

11: end if
12: T ← NewTemperature
13: end for
14: return S
15: end procedure

The annealing schedule and the acceptance probability plays a significant role in the simu-

lated annealing search technique.

Annealing Schedule

Simulated annealing is inspired by the physical annealing process. The annealing schedule

mimics the temperature variation which takes place in an actual annealing process. Initially
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the temperature (T ) is set to a high value and then it is decreased at each step following an

annealing schedule (the annealing schedule can be a custom function defined by the user). Final

temperature the algorithm can reach is zero (T=0). Neighbourhood area in the solution space

that the algorithm could search is determined by the value of the temperature. When the

temperature values are high the search algorithm is expected to wander towards a broad region

of the search space containing good solutions. As the temperature reduces (i.e. cools down) it

drifts towards low-energy regions that become narrower and narrower; and finally move downhill.

Acceptance Probability

Acceptance probability defines the likelihood of making a transition form the current state to

a candidate new state which is slightly worse than the current state. This feature prevents the

search from becoming trapped at a local minimum that is worse than the global one.

The energies of the two states (i.e. fitness of the solutions) and the current temperature

determine the acceptance probability. The acceptance probability function is usually defined so

that the probability of accepting a move decreases when the difference in energies (i.e. fitness

in the current state and new state) increases. This makes sure that small uphill moves are more

likely than large ones. Also the temperature T plays a crucial role in controlling the sensitivity

of transition between states. For higher values of T simulated annealing function is sensitive to

large uphill variations and when T is smaller the function is sensitive to finer energy variations

in states.

6.5.2 Design and Implementation of the algorithm

Transition from the hill climbing algorithm into simulated annealing algorithm was fairly straight-

forward. The only changes needed to be done was encoding the cooling schedule and acceptance

probability. Simulated annealing program was implemented in Java as well.

a. Fitness function

The same fitness function which was used in the hill climbing algorithm was used for

simulated annealing as well. The equation is a s follows.

Fitness = (short leaks ∗ 100 + medium leaks ∗ 10 + long leaks ∗ 1) ∗ area (6.4)

The best solution in this context was the circuit layout which has the least number of leaks
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and minimum area. Hence a lower fitness value was considered a better fitness. Therefore

the optimisation process can be considered as a minimisation optimisation.

b. Cooling schedule

As mentioned earlier simulated annealing heuristic search mimics the natural annealing

process. The cooling schedule determines how the temperature is reduced in the consequent

cooling cycles (i.e. iterations). The cooling schedule is composed of three main parameters;

starting temperature, final temperature and the cooling factor.

c. Termination condition

The simulated annealing algorithm is programmed to complete all the cooling cycles (i.e.

iterations) that were defined at the start of the algorithm. The number of cooling cycles

were decided using an estimation method which is presented below. For a new circuit

layout it would difficult to compute the best fitness it could achieve. The goal of opting to

a heuristic search was to effectively search the solution space for the optimal or sub optimal

solution. Hence it is impossible to impose a termination condition. Further, acceptance

probability condition is programmed to accept solutions with the same fitness yet different

structure revealing potential alternative solutions. Hence letting the algorithm complete

the set number of iterations was found to be useful than imposing an early termination.

6.5.3 Estimation of the number of iterations (cooling cycles) for simulated

annealing

Even though hill climbing was not an effective heuristic search mechanism that could look though

the solution landscape of DNA walker circuit layouts, the algorithm was useful in determining an

estimate for the number of iterations required for simulated annealing algorithm to be executed

to reach an optimal solution.

The experiment was done on the first three layouts Toy, Toy0 and Toy1. For each of the

layouts hill climbing program was set up to run for a long time; 30 minutes for Toy and Toy0

layouts and 2 hours for Toy1 layout as the number of iterations had to be increased to cover the

possibility of a proportional relationship. With the fixed number of iterations the program was

repeated 40 times for all three layouts. Afterwards the contingency plots were generated for all

three layouts. Figure 6.8 is an illustration of the contingency plot generated for Toy layout by

running hill climbing algorithm for 40 runs each run with 150000 iterations. A contingency plot

represents the best fitness reached at each iteration when the optimisation algorithm is run.
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Figure 6.8: Contingency plots for Toy layout: The graph contains 40 contingency plots generated
after applying Hill climbing algorithm on Toy layout for 40 times (runs). The x axis represents
the number of iterations per run and the y indicates the the best fitness at each iteration.

By examining the contingency plot the maximum number of iterations that took to reach

equilibrium was selected as the number of iterations required to reach the optimal solution for

that particular layout. Following table 6.3 shows the maximum iteration point in which each

layout has reach equilibrium. There exists a proportional relationship between the numbers;

when the number of nodes in the layout is increased by one the number of iterations increases

by 2.4 times. Hence for Toy2 layout we can estimate that the number of iterations should be

95147 ∗ 2.4 228353. Also it includes the average execution time of a run for each layout.

Layout No of Nodes Equilibrium
reached at Relationship Avg execution time

per run (ms)

Toy 6 16419 3695821.5
Toy0 7 39985 39985/16419 = 2.4 2343345.2

Toy1 8 95147 95147/39985 = 2.4
95147/16419 = 5.7 8001359.3

Table 6.3: Equilibrium points for each toy layout - Hill climbing algorithm

Figure 6.9 depicts how the circuit area and leaks of solutions change over time during a single
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run of the program. The blue represents the beginning of the optimisation cycle and gradually

the colour changes from purple to red. Red colour denotes the final solutions. According to the

fitness function, the area and the number of leaks should decrease with the time. The figure

represents this effect.

Figure 6.9: This figure represents how area and fitness changes over time as the simulated anneal-
ing algorithm optimises the solution. Blue colour represents the early stages of the optimisation
process, then gradually the colour changes from purple to red. Red denotes the optimal solution
for the run.

However, the execution time of one run was significantly high and in order to optimise the

time, number of iterations needed to be further reduced. Hence, for each layout the lowest fitness

observed at each run and the iteration in which it was reached was plotted in a scatter plot.

As figure 6.10 represents, in all layouts, the lowest fitness was reached within the first thousand

iterations majority of the times (70%).
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(a) Layout: Toy (b) Layout: Toy

(c) Layout: Toy0 (d) Layout: Toy0

(e) Layout: Toy1 (f) Layout: Toy1

Figure 6.10: This figure presents the analysis of the relationship between number of iterations
taken to reach the best fitness when applied Hill Climbing Optimisation Algorithm on layouts
Toy, Toy0 and Toy1. Scatter plot in the LHS indicates the lowest/best fitness at each run against
the iteration the it was first observed. Bar plot indicates the number of lowest fitness values
observed within the a specified number of iterations

6.5.4 Evaluation of Results of Simulated Annealing and creating the optimi-

sation archive

Considering all above factors the following number of iterations were used for each layout when

running simulated annealing algorithm.

Circuit layout Iterations Runs
Toy 1500 20
Toy0 3600 20
Toy1 8700 20
Toy2 20000 20

Table 6.4: Number of iterations for each layout when applying simulated annealing algorithm
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Simulated annealing algorithm was applied to the four DNA circuit layouts. Separate tests

were carried out for the four different circuit layouts. As a result of the search, several kinds of

circuit layouts were generated automatically.

For models Toy and Toy0 18/20 runs of the simulated annealing algorithm were able to reach

the the lowest fitness value observed during the exhaustive search. The lowest fitness reached

by the exhaustive search for Toy1 and Toy2 layouts, was 780. However the simulated annealing

algorithm was able to generate layouts with a new lowest fitness value of 60. This proved that

the simulated annealing process was effective in obtaining a layout with lowest fitness for a new

circuit design.

The simulated annealing approach was beneficial in several ways for the design process of

the DNA circuits.

• Efficiently exploring the solution space and reaching the optimal solution with the mini-

mum fitness

• Identifying alternative solutions for the same fitness band

• Identifying the classification criteria for alternative solutions based on design requirements

• Establishing design constraints

• Improving future design by identifying sub-design patterns

Creation of the optimisation archive

Unlike genetic algorithms, hill climbing and simulated annealing algorithms do not have the

concept of generations. Hence one run was considered as a population and the iteration number

was used as a generation. Iteration number was used to impose an order on the solutions (order

of appearance in time) which was helpful in observing the evolution of a solution over time. A

text file was written during each run of the simulated annealing algorithm which contained the

following:

• Iteration number (n)

• Fitness of the new solution

• Best (minimum) fitness value observed so far in the run

• Initial solution (layout) which is generated at the beginning of the current iteration
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• New solution generated after making a small change to the initial solution in the current

iteration

• Solution (layout) with the best fitness

• For each solution number of short, medium and long leaks, and area

For example, when simulated annealing algorithm was executed on the Toy layout, one run

consisted of a population of 1500 solutions (1500 iterations). As the number of runs increases

the populations became more diverse. However, each population was analysed individually as

combining populations will affect the definition of data. Analysis of the optimisation archive is

explained in the next section.

In addition to the above data a separate log was created to capture the alternative solutions

generated during the a run. When simulated annealing algorithm searches for the optimal

solution, at each iteration the fitness of the new solution was compared with the current best

fitness (Elite fitness) observed. If the new fitness was less than the current best fitness, the

best fitness and the corresponding solution were replaced with the new values. According to the

implementation of the algorithm, this occurred only when the fitness value of the new solution

is less than the current best fitness value (as this is a minimisation problem). During the

execution, if an alternative solution (solutions with similar behaviour but different structure)

was observed, it was lost. Hence, in order to capture the alternative solutions with current

best fitness (elite fitness) values, a new clause was added to the program to record a solution

with the new solution if the new fitness value is equal to the current best fitness value. A Java

hashmap was employed to store the unique solutions for each fitness value. This information

will be included in the population data which were mentioned in the previous paragraph as

well, however, recoding alternative solutions on the go gives the additional benefit of promptly

identifying alternative solutions. This is beneficial for larger circuits with longer execution times.

If the design requirements agrees with a sub-optimal design, the execution could be terminated

without having to wait for till the completion of the set number of iterations.

6.6 Step 3 - Analysis of the optimisation archive

As mentioned in the previous section the optimisation archive consists of populations of solutions

created for each run. As proposed in the methodology, the archive was analysed mainly to gain

the following three types of insights.
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• Extract alternative solutions

• Temporal analysis - observe the structural evolution of solutions overtime to identify core

design patterns

• Standardize model constraints

In order to explain the functionality, optimisation results from Toy layout is used in the

following sections.

6.6.1 Identifying alternative solutions

Simulated annealing algorithm starts at a random place in the global solution space and reach

for a local optimum solution within a specified number of iterations. Therefore, one run is not

sufficient to make a decision on the global optimum. In order to get a better understanding of

the total solution landscape, it is essential to perform multiple runs. In the DNA walker circuit

layout design case study, simulated annealing algorithm was repeated for 20 times for each

layout. When analysing the solution space in search of alternative solutions, all the solutions

from all the runs for a given layout were analysed as one population. Figure 6.11 gives an

overview of all the optimal fitness values observed during the 20 runs. The minimum optimal

fitness reached by simulated annealing algorithm was 60. The other fitness values are 72, 81, 90,

96, 100, 120, 140 and 482. The most frequently observed fitness was 100 and it was observed

5/20 times.

An alternative solution can be interpreted in two different ways.

• Both structurally and functionally different - these solutions can be identified by ranking

the solutions by fitness. Additionally, solutions can be chosen based on our design require-

ments. For example, Figure 6.12 represents the position of solutions based on area and

number of leaks. If the designers have specific constraints on the area, types of leaks and

the number of leaks allowed, solutions could be selected as well.

Figure 6.13 represents the alternative solutions by area. In the total population there are

26 unique circuit area values and the frequency is the number of unique solutions with the

same circuit area. However, these solutions have different fitness values and leak values.

Figure 6.14 represents alternative solutions based on area.

Figure 6.15 represents the alternative solutions by leak bands. In the total population

there are 11 unique leak bands and the frequency is the number of unique solutions with
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Figure 6.11: The figure represents the frequency of the best fitness values observed for the Toy
layout when simulated annealing (SA) algorithm was executed. The data consists of fitness
values observed for 20 runs of the SA each with 1500 iterations

the same leak ban. A leak band is a single value consisting of the number of small, medium

and large leaks in order. For example [0, 0, 2] means a circuit with 0 small leaks, 0 medium

leaks and 2 large leaks. The alternative solutions by leak bands too have different fitness

values and area values. Figure 6.16 represents alternative solutions based on leaks.

• Structurally different, yet behaviourally similar solutions

The research work is more focused on identifying behaviourally similar yet structurally

different solutions. Figure 6.17 represents the unique fitness values observed in the total

population for Toy layout design.

Figure 6.18 provides a cleared view of the top 20 fitness values observed.

Figure 6.19 includes the alternative solution for fitness value 66. These solutions are

behaviourally similar as they have the same fitness, number of leaks and circuit area.

However the structure is different.
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Figure 6.12: This figure represents where each solution fits in a area vs leaks landscape for all
solutions observed in the total population of Toy layout. There are 11 leak bands: each band
consisting of the number of leaks mentioned in the order of short, medium, large, in the whole
population.

6.6.2 Establishing design constraints

Another main advantage of using a computational optimisation method was it gave a ability

to fiddle with design constraints and verify constraints. For example the simulated annealing

algorithm helped to create a new rule in determining a maximum and minimum grid size for

the DNA walker circuit. Identifying this had a significant improvement in the solution space.

Following is a detail description of how the constraints were checked.

Finalizing the layout constraints for Toy0 circuit

In my previous report I explained a case where DNA layout validation constraints inbuilt in

Marcie (DNA circuit validation software) was in contradiction with the constraints Prof. Gilbert

and I used to develop our DNA layout generation/ validation program. To enumerate the

problem; a node of type “NORM” can have 2 or 3 short distances. However Marcie rejects the
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Figure 6.13: This figure represents the number of unique solutions observed for each circuit area
in the Toy layout population. There are 26 unique area values with a minimum value of 18 and
a maximum value of 70.

following layout (see figure 6.20) where the N0 node (of type NORM) has 3 short distances.

We consulted the collaborating team in Germany who developed Marcie software. As per

their explanation DNA walker circuits are undirected graphs and the arcs between nodes do not

exist in reality. Therefore when a walker takes a specific route the direction is determined by

the distance between nodes. Further to obtain a useful layout a series of assumptions are made.

One of them is that fork nodes have only one predecessor. Marcie’s analysis simulates a DNA

walker and walks around the net. In the incorrect layout Marcie reaches the fork node on two

different paths (see figure 6.21) and this violates the aforementioned assumption. Therefore the

walker cannot decide which one is the correct predecessor of the fork node. Hence it’s an illegal

layout.

Finalizing the maximum grid size for each layout and formalizing how to compute

it

For the experiments carried on the DNA circuit layouts there was no standard grid size defined.

It was a predetermined value. Therefore Prof Gilbert and I decided to experiment with the layout

size to determine the maximum and minimum gird size for a layout. The goal of our search is
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(a) Layout: 9194c474c262, Fitness: 396,
Leaks:[0,2,2] (b) Layout: 9194c464c262, Fitness: 72, Leaks:[0,0,4]

(c) Layout: 315273548124, Fitness: 3798,
Leaks:[2,1,1]

(d) Layout: 315271548324, Fitness: 558,
Leaks:[0,3,1]

(e) Layout: b1b383b586b7, Fitness: 420,
Leaks:[0,4,0]

(f) Layout: 413335543766, Fitness: 3960,
Leaks:[2,2,0]

Figure 6.14: Alternative solutions by area (both structurally and behaviourally different alter-
native solutions). These layouts have the same area of 18, however the fitness and leaks values
are different to each other.

to identify all possible layouts for a given circuit and the search should not be dictated/ biased

by the grid size. Therefore it is important to determine a maximum and minimum grid size.
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Figure 6.15: This figure represents the number of unique solutions observed for each leak band
in the Toy layout population. There are 11 unique leak bands for the Toy circuit layout in the
population observed.

The first constraint we imposed was one branch of the layout should be able to laid out on a

straight line along one of the axis. For example let’s consider the Toy layout. Toy layout has 6

nodes. And there are two branches labelled in orange and blue in figure 6.22. Therefore each

branch has 4 nodes. The maximum short distance between two nodes according to Manhattan

distance is 3.

Therefore in order to lay out one branch in a straight line along any axis the maximum grid

side should be;

Maximumdistance = (noofnodesinonebranch− 1) ∗ 3 + 2 (6.5)

2 have to be added to the answer because nodes are not placed on the grid borders. Therefore

for the Toy layout maximum grid size should be

Toymaxdist = (4˘1) ∗ 3 + 2 = 11 (6.6)

We experimented with the new grid size and the solution space increased significantly. Fur-

ther we were able to obtain a new best fitness value for the Toy layout. Previously it was 100
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(a) Layout: b1b484d654b8, Fitness: 672, Area:56 (b) Layout: 313314632693, Fitness: 480, Area:40

(c) Layout: 5153358347b3, Fitness: 576, Area:48 (d) Layout: 7153237525a5, Fitness: 384, Area:32

Figure 6.16: Alternative solutions by leaks (both structurally and behaviourally different al-
ternative solutions). These layouts have the same number of leaks of [0,1,2] (no short leaks, 1
medium leak and 1 long leak), however the fitness and area values are different to each other.

and the current best (lowest) fitness was 84. However when examining the layouts with the best

fitness I observed the below layout.

I noticed that the FINAL nodes in the layout in figure 6.23 (left) could be further extended

as depicted in the second figure (right). Applying the same rule for the maximum distance

between two consecutive nodes, the branch to be laid out on a straight line the distance should

be;

Toymaxdist = (5˘1) ∗ 3 + 2 = 14 (6.7)

Next we tested with the new grid size 14 * 14 and the solution space increased further. Also

we tested by increasing the grid size further up to 15 but the solution space remained the same.

This experiment helped us to standardise the method to determine the grid size for any given

layout. Given a layout with uneven branch lengths; Maximum width: branch with the maximum

number of nodes should be able to laid out on a straight line
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Figure 6.17: The figure represents the number of the alternative solutions (similar fitness but
structurally different) for the fitness values observed for the Toy layout when simulated annealing
(SA) algorithm was executed. The data consists of all unique fitness values observed for 20 runs
of the SA each with 1500 iterations

Figure 6.18: The figure represents the number of the alternative solutions (similar fitness but
structurally different) for the fitness values observed for the Toy layout when simulated annealing
(SA) algorithm was executed. The data consists of all unique fitness values observed for 20 runs
of the SA each with 1500 iterations

Maximumwidth = (maximumnoofnodesinabranch− 1) ∗ 3 + 2 (6.8)
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(a) Layout: 8184b454d224 (b) Layout: 8184b454d324

(c) Layout: 717444a414c2 (d) Layout: 717444a422d4

(e) Layout: 717444a423d4 (f) Layout: 717444a414c3

Figure 6.19: Alternative solutions by area (both structurally and behaviourally different alter-
native solutions). These layouts have the same area of 18, however the fitness and leaks values
are different to each other.

Maximum length: fork node and the two branching out sections should be laid out on a

straight line
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Figure 6.20: The first layout (left) is a Tpy0 layout that was evaluated to be incorrect by Marcie.
The second layout (right) is a similar layout that Marcie evaluated to be correct. As you can
see node ‘N0’ has 3 short distances and ‘No’ in the second layout has only 2 short distances.

Maximumlength = (noofnodesaftertheFORKnodeincludingtheFORKnode−1)∗3+2 (6.9)

Figure 6.24 shows an analysis of the maximum and minimum grid sizes for the four DNA cir-

cuit layouts Toy, Toy0, Toy1 and Toy2. It is evident that changing the grid size has significantly

increased the solution space.

6.6.3 Improving future design by identifying sub-design patterns using tem-

poral analysis

The third insight which could be obtained from analysing the optimisation archive is the evo-

lution of a solution over time. The time aspect is emulated with the use of iteration number.

Hence, the optimisation results from different runs are analysed separately.

The approach used was to select the solutions which were selected as the current best solution

(elite solution) and visually analyse the layouts from the worst best fitness to the least best fitness

(because this is a minimization problem). Two main sub patterns were identified for the I, F,

N1 and N2 nodes when the fitness value reached a value below 100.

Figure 6.25 shows an example of how the simulated annealing algorithm optimised the struc-
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Figure 6.21: Two possible paths that can reach the FORK node in the incorrect layout

Figure 6.22: Representation of the Toy layout: general layout (left) and laying one branch on a
straight line (right)

ture of a Toy layout with an initial fitness of 1488 to fitness of 72 in 5 steps.

The I, F, N1 and N2 nodes form in a T shapes as shown in figure 6.26a. 7 out of 20 runs

reached an optimal fitness values less than 90. Out of the 7 runs 3 demonstrated the T pattern

where the structure was stable.

Figure 6.27 shows the second sub design observed when the fitness value reaches a value

below 90. In this sub shape the nodes I, F, N1 and N2 makes a y formation. 4 out of the 7

runs which reached a fitness value less than 90 had this pattern. Simulated annealing algorithm
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Figure 6.23: Finalizing the gird size for a layout: With the updated grid size I was able to obtain
a new layout with a new fitness of 84 (left). However, I noticed that the FINAL nodes in the
left hand side layout could be further extended to place the nodes in a vertical line as in the
right hand side layout. Therefore maximum grid size can be defined as in algorithm 6.7

Figure 6.24: Table shows an analysis of the maximum and minimum grid sizes for the four DNA
circuit layouts Toy, Toy0, Toy1 and Toy2 with the newly defined constraints. Changing the grid
size has significantly increased the solution space.

starts with a solution of fitness 594 and optimises the structure into fitness value 90.

Figure 6.26b represents the second static formation of I, F, N1 and N2 nodes in an optimal
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solution.

Identification of optimal formations of sub structures is important when working with larger

circuits. As the number of nodes in the circuit increases, the number of variable locations the

optimisation program needs to change during an iteration increases as well. Therefore the global

solution spaces becomes larger and more iterations and runs would be required to identify the

global optimal. This would inevitably increase computational time. In order to mitigate this

issue, the optimal sub structures could be helpful. These optimal sub structures provide the

relationships between a set of nodes. For example the T shape (figure 6.26a) indicates that the

most optimal placement of I, F, N1 and N2 nodes when they are placed in a T shape and [I and

F], [F and N1] and [F and N2] should be separated by 3 squares each. In the Y formation (figure

6.26b) the nodes I, F, N1 and N2 shoudl eb placed in a Y shape where I and N2 are 2 squares

apart from F, and N1 is 3 squares apart from F. These relationships can be used to accurately

predict the optimal substructures instead of randomly placing the nodes on the Cartesian plane.

Subsequently it will improve the search and reduce overall time taken to reach the optimal

solution. Currently the temporal analysis is done manually. In the further work section I have

explained how this could be automated in order to identify the sub patterns automatically.

6.7 An Algorithm to Structurally Compare Circuit Layouts

The next challenge was to find a suitable distance metric to compare the circuit layouts. Circuit

layouts have 3 characteristics namely leaks, area and fitness. However these values do not give a

clear distinction of the layouts in a comparison computation as there are different layouts with

the same area and number of leaks (see Figure 6.28).

Further there are some layouts that have a rotational symmetry. For example the first two

layouts in 6.28 may look different but once the second layout is flipped 180 degrees about the

Fork node they are the same layout. Figure 6.29 is a visualization of 2 layouts with a rotational

symmetry.

DNA layouts can be considered as unidirectional isomorphic graphs (same number and type

of nodes and the topology [connection between nodes] is same). I tried searching for an existing

graph comparison method and was unsuccessful. Afterwards Prof Gilbert and I came up with

two different algorithms to compare the layouts inspired by superimposition and can be used to

compute the pair-wise distance between two layouts. If the two layouts are L1 and L2;
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Prof. Gilbert’s method:

• Superimpose the layouts by aligning two corresponding nodes in both lay-

outs at a time (i.e. L1I and L2I) and compute the Euclidean distance

between rest of the corresponding pairs of nodes and add the distances e.g.

In a Toy model if the INIT node from both layouts were superimposed, cor-

responding node pairs will be (L1F , L2F )+(L1N1, L2N1)+(L1N2, L2N2)+

(L1F 1, L2F 1) + (L1F 2, L2F 2). This step was repeated by superimposing

of all the corresponding node pairs.

• Rotate one layout by 180 degree and repeat the process

• Select the minimum distance as pair-wise distance between two layouts

My method:

• Superimpose the layouts by aligning the layouts on the x and y axis

• Compute the Euclidean distance between corresponding nodes and add the

distance

• Rotate one layout by 180 degrees and repeat the process

• Select the minimum distance as the pair-wise distance between two layouts
After defining the procedure these methods were tested by hands on the three sample layouts

(see Figure 6.28). Both distance measures were proven to be a metric. All nodes were compared

against all nodes in Prof Gilbert’s method where as in my method only corresponding nodes were

compared once. When computed the distance both methods gave similar answers and distance

measure was able to cluster the three examples accurately. In Prof. Gilbert’s methods points

were moved off the grid. However there was one drawback in my method. For an instance in

a larger grid the same layout is placed in the top half and the second layout is placed in the

bottom half and as I am superimposing the layouts by the axis it could result in the larger

dissimilarity due to positioning rather than actual shape.

Next Prof Gilbert consulted a colleague of his Prof Juris Viksna who specialises in the

area and he suggested two widely used comparison methods; Geometric hashing (Wolfson and

Rigoutsos 1997) and RMSD minimisation (Sadeghi et al. 2013). Both methods are often used

to measure the physical distance between 3D molecular structures (i.e. proteins). Geometric
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hashing is computationally expensive procedure whereas RMSD (Root Mean Square Deviation)

minimisation was simple to implement. Therefore I started off with the RMSD minimisation.

As with the first two algorithms I computed the distances for the same layouts by hand and

confirmed it is suitable. Next I implemented it in Java.

6.7.1 RMSD (Root Mean Square Deviation) minimisation

RMSD is a pair-wise distance comparison method. One structure can be compared to a different

structure of the same type, or relative to a base model (synthetic/ real) or relative to a mean

structure (synthetic/ real). When applying RMSD to compare DNA walker circuits, I will be

performing a pair-wise comparison of two circuit layouts of the same circuit type.

Next when superimposing structures a reference point should be defined. There are two main

widely accepted methods for this; least square fit and geometric hashing. Due to the complexity

of the algorithm and time constraints I opted for the least square fit. In the least square fit

model, the model is superimposed in manner which minimizes the RMSD value.

RMSD definition

Given two layouts (structures) L1 and L2 with identical number and types of nodes (n), and

arc connections nodes in L1 and L2 can be defined as;

L1 = L1ni|i = 1, 2, . . . ,m

L2 = L2ni|i = 1, 2, . . . ,m

RMSD =
√
,
1

m

m∑
i=1

, |L1ni + L2ni|2

Application of RMSD minimisation to layouts

As mentioned above the algorithm will only compare layout structures which has an identical

number of nodes and type of nodes. In order to illustrate using an example the 2 Toy circuit

layouts in figure 6.30 will be used.

Algorithm is designed as follows:

• The first layout is placed on the Cartesian plane as it is

• The second layout is placed on the same plane, so the I node falls on the (1, 1) position

(see Figure 6.31a). The back layout is layout 1 and yellow colour is used to represent
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layout 2. Once the second layout is placed it should be a valid placement according to the

DNA circuit layout constraints.

According to the DNA circuit layout constraints, a valid placement has to conform to the

following conditions.

– No nodes can be placed outside of the grid

– No nodes can be placed on the edges of grids X = 0, X = maxGridX, Y = 0 and

Y = maxGridY , For a Toy layout maximum grid size is 13. Hence maxGridX =

maxGridY = 13

Hence the initial placement of layout 2 is not a valid placement (see figure 6.31a). As it is

not a valid placement pair wise distance is not computed.

• Next the 2nd layout is moved along the Y = 1 axis by one. Now the I node is at [2, 1]

position. Again the algorithm will check whether the placement is valid. According to

the above mentioned constraints it is not (see figure 6.31b). Hence the distance is not

computed.

• Again the 2nd layout is moved by 1 along the Y = 1 axis. This results in a valid positioning

of the layout on the grid. Hence the pairwise RMSD distance is computed (see figure 6.31c).

• As explained in the previous sub section, the layouts demonstrate rotational symmetry. In

order to accurately calculate the distance between layouts, a rotation will be performed.

Mainly two types of rotations will be performed.

– Rotation along the I−F branch: The I−F branch will be taken as a reference point

when making the rotation. If the I − F branches of both layouts are parallel (i.e.

have the same X coordinate or Y coordinate) no rotation will be performed to align

the axes. Else the second layout will be rotated to align so the I −F branches of bot

layouts are aligned (see figures 6.32a, 6.32b, 6.32c and 6.32d ).

– Rotation about the F node - in each pairwise comparison, the second layout will be

rotated 180 degrees about the F node to identify rotational symmetries (see figures

6.32e and 6.32f).

• Similarly the I node of the second layout is moved by 1 until the value of X < maxGridX.

Each time the pair wise RMSD is computed using the algorithm 4. Next the layout is
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rotated about the F node by 180 degrees and the pairwise distance is computed. Finally

the minimum distance out of all pairwise distance is selected as the RMSD distance between

the two layouts.

Algorithm 4 Compute pairwise RMSD distance
Input: Coordinate strings for two layouts
Output: RMSD distance between L1 and L2

1: procedure ComputePairwiseRMSDDistance
2: L1 ← Coordinate string for layout 1
3: L2 ← Coordinate string for layout 2
4: minRMSDDist ← 0
5: currentRMDS ← 0
6: for i ← 1 to maxYGrid do
7: S′ ← computeRMSD(L1, L2)
8: if currentRMDS′ better minRMSD then
9: minRMSD ← currentRMDS

10: end if
11: end for
12: return minRMSD
13: end procedure

The pair wise RMSD computation was developed using Java. The comparison algorithm was

applied to a sample set of layouts which accurately grouped the similar structures. 13 solutions

from the 9th simulated annealing run of the Toy was selected. Once the pair wise distance

computation was completed R was used to perform the clustering.

Hierarchical clustering was used to cluster the layouts. The main reasons to opt for hierarchi-

cal clustering were a) hierarchical clustering algorithm can easily accommodate a pre-computed

distance matrix as the dissimilarity matrix. This isn’t possible with certain clustering algorithm

such as kmeans; b) the clustering of 13 solutions was a simple task and hierarchical clustering

algorithm clustered the layouts accurately; c) hierarchical clustering has been used for previous

analysis in other example applications; and, d) R has inbuilt methods to perform hierarchical

clustering and cluster validation methods. Figure 6.33 represents the cluster dendrogram pro-

duced by hierarchical clustering. The goodness of the clusters was determined using Silhouette

index in R. Silhouette index suggested 4 clusters was the best suitable for the given sample with

a value of 0.38. Figure 6.34 represents results of the Silhouette test and the dendrogram divided

into 4 clusters.

The layouts for each cluster are included below.
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Summary

This chapter presented the third case study which was used to test the effective usage of the

optimisation-history analysing methodology. The case study was focused at employing optimi-

sation to enhance the design of DNA walker circuits. A DNA walker circuit is a biochemical

circuit built using DNA strands. Four different layouts of DNA walker circuits namely Toy, Toy0,

Toy1 and Toy2 were used in the example. The methodology presented in Chapter 3 proposed a

framework consisting of 3 steps to enhance computational design by using optimisation in the

design process and identify alternative solutions by analysing the optimisation history.

The first step is to define a mathematical model which mimics the behaviour of the real

system. Professor Gilbert and his research team designed a model for to depict the behaviour

of a DNA walker circuit. The second step focuses on applying computational optimisation to

enhance the design based on the design requirements. In order to optimise the design of DNA

walker circuits mainly two optimisation methods; hill climbing and simulated annealing, were

applied. Out of the two optimisation algorithms, simulated annealing was the most suitable

method for the task. At the end of the second step an optimisation archive was created which

consisted of the history of the optimisation. In a usual optimisation problem, the focus is mainly

on the final optimal solution. However, the speciality in the method proposed in this thesis is

that is uses the history of the optimisation for further analysis and improve the design process.

The third step focuses on analysing the optimisation archive. Three main types of insights

were extracted from analysing the optimisation archive generated for DNA walker circuits via

simulated annealing optimisation. Firstly alternative solutions (behaviourally similar yet struc-

turally different) were extracted by analysing the optimisation archive. These solutions would be

helpful when biologists have to make design decisions under constraints. Secondly the optimisa-

tion approach was able to successfully employ in confirming design constraints. In this example

case study, optimisation history was used to successfully develop an equation to determine the

maximum grid size for any given layout. Finally the optimisation archive was used to extra

sub design patterns which remained constant in optimal solutions. By observing the evolution

of a solution (how does an initial solution change into the optimal solution over time) optimal

formations of nodes could be identified. The Toy layout resulted in two main sub designs where

the I, F,N1andN2 were formed in a T shape and Y shape.

Alternative solutions of DNA walker circuits identified in this example application are com-

putational design solutions. A simulated annealing optimisation approach was used to identify
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the optimal way of laying out the nodes in a circuit. However, according to the usual synthetic

biology design approach, these designs need to be constructed physically in order to verify the

differences between the computationally predicted behaviour and observed physical behaviour.

These differences behaviour are fed-back to the computational design process in order to improve

the computational design. Therefore alternative computational solutions (design) can be used

to drive the engineering of alternative physical designs. In this case the alternative solution of

DNA walker circuits acts as an alternative design template (or blueprint) as well.

Lastly the chapter discusses about a dissimilarity measure inspired by RMSD minimisation

which was developed to compare two DNA circuit layouts. This dissimilarity measure was

implemented to identify structural dissimilarities in DNA walker circuit layout and group them.

The last section demonstrate the use of the dissimilarity measure to cluster a set of DNA walker

circuits for the Toy layout.
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(a) Layout 1: 9194b676b954, Fitness: 1488 (b) Layout 2: 9194c476c754, Fitness: 168

(c) Layout 3: 9194c464c766, Fitness: 144 (d) Layout 4: 9194c464c244, Fitness: 96

(e) Layout 5: 9194c464c262, Fitness: 72

Figure 6.25: This series of figures represents how simulated annealing algorithm optimised the
structure of a Toy layout with an initial fitness of 1488 into a fitness with 72. The I, F, N1 and
N2 nodes at the end forms a T shape when the structure becomes optimal relative to number
of leaks and circuit area
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(a) T shape formation of the I, F, N1 and N2 nodes in
a Toy layout which provides the optimal sub layout

(b) Y shape formation of the I, F, N1 and N2 nodes
in a Toy layout which provides the optimal sub lay-
out

Figure 6.26: The two main sub optimal structures observed in the Toy layout during temporal
analysis
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(a) Layout 1: c1a272b442d4, Fitness: 594 (b) Layout 2: 718364a343b1, Fitness: 462

(c) Layout 3: a1a373d365d5, Fitness: 112 (d) Layout 4: a1a373d375d5, Fitness: 96

(e) Layout 5: a19363b433d2, Fitness: 90

Figure 6.27: This series of figures represents how simulated annealing algorithm optimised the
structure of a Toy layout with an initial fitness of 594 into a fitness with 90. The I, F, N1 and
N2 nodes at the end forms a Y shape when the structure becomes optimal relative to number
of leaks and circuit area
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Figure 6.28: Three different layouts with the same number of leaks, area and fitness – from left
to right layouts are named as L1, L2, and L3

Figure 6.29: Layout 2 is flipped about the FORK node. This makes both Layout 1 and 2 similar
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(a) Toy layout 1: I[5,1], F[5,3], N1[3,4], N2[7,3],
F1[3,6], F2[7,5]

(b) Toy layout 2: I[10,1], F[10,3], N1[8,4], N2[12,4],
F1[8,6], F2[12,6]

Figure 6.30: Example Toy layouts

(a) Initial placement of the second layout on the grid.
I is placed on [1, 1] position. This is not a valid po-
sitioning according to the DNA circuit layout con-
straints.

(b) I of the second layout is moved down along the
Y = 1 axis by 1. I is placed on [2, 1] position. This is
not a valid positioning according to the DNA circuit
layout constraints.

(c) I of the second layout is moved down along the
Y = 1 axis by 1. I is placed on [3, 1] position. This
forms a valid positioning according to the DNA cir-
cuit layout constraints.

Figure 6.31: Placement of the two layouts on the same grid. Layout 1 is represented in back
and layout 2 is represented in yellow colour. The second layout is moved along the Y = 1 axis.
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(a) Two layouts with rotational symmetry of 45 de-
grees

(b) Layout 2 is rotated 45 in order for the I − F to
align with each other

(c) Two layouts with rotational symmetry of 90 de-
grees

(d) Layout 2 is rotated 90 in order for the I − F to
align with each other

(e) Two layouts with rotational symmetry of 180 de-
grees

(f) Layout 2 is rotated 180 degrees about the F node
to align with each other

Figure 6.32: Examples of rotational symmetry in the comparing Toy layouts
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Figure 6.33: Clustering of the Toy layout using RMSD pair wise distance

(a) The dendraogram has been divided into 4 clus-
ters based on the Silhouette value

(b) The best Silhouette value achieved was 0.38 for 4
clusters. Hence the optimal number of clusters was
taken as 4

Figure 6.34: Evaluation of the goodness of clusters using Silhouette measure
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(a) Layout 1: 414373248112 (b) Layout 2: 414373249312

(c) Layout 3: 41437324a312

Figure 6.35: Elements in Cluster No 1 is a result of clustering of the 13 Toy solutions based on
their structural similarity using RMSD pairwise distance resulted in 4 clusters (see figure 6.34).
As you can see the solutions in the cluster a similar in structure.
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(a) Layout 1: 7173a343c221 (b) Layout 2: 61639333c313

(c) Layout 3: 7173a343c224

Figure 6.36: Elements in Cluster No 2 is a result of clustering of the 13 Toy solutions based on
their structural similarity using RMSD pairwise distance resulted in 4 clusters (see figure 6.34).
As you can see the solutions in the cluster a similar in structure.

Figure 6.37: Layout 1: 214361469149: Elements in Cluster No 3 is a result of clustering of the
13 Toy solutions based on their structural similarity using RMSD pairwise distance resulted in
4 clusters (see figure 6.34). As you can see the solutions in the cluster a similar in structure.
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(a) Layout 1: 113253347337 (b) Layout 2: 113253346115

(c) Layout 3: 113253347315 (d) Layout 4: 113251346315

(e) Layout 5: 31437325a317 (f) Layout 6: 314373247626

Figure 6.38: Elements in Cluster No 4 is a result of clustering of the 13 Toy solutions based on
their structural similarity using RMSD pairwise distance resulted in 4 clusters (see figure 6.34).
As you can see the solutions in the cluster a similar in structure.
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Chapter 7

Summary, Conclusions and Further

Work

Introduction

This chapter revisits the main contributions of the thesis. Corresponding open problems that

could be addressed in the future are described in the end.

7.1 Summary

Computational modelling is an effective method in tuning the performance of complex systems.

Further, computational optimisation plays a significant role in creating ’better’ designs by ex-

perimenting on endless permutations and combinations of initial conditions.

However, in most cases there is a gap between approximations delivered by optimization and

their practical realization. The main reason for these discrepancies is the degree of complexity

in the real-world complex systems. As the complexity of a system increases, the number of vari-

ables which determine the behaviour of a complex system increases as well. Subsequently, the

non-linear relationships between these variables and partial understanding of these relationships

attribute to inconsistencies in computational model and actual system. Further, limitations in

computational resources used for simulating computational models restrict modellers to mod-

elling sub-systems (larger the model more computational resources are required for simulations).

Therefore, when pugging in sub systems to form a complete system might result in certain in-

consistencies. Hence, there are limitations in capturing the exact behaviour of a complex system

through optimization tools.
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As a result, the optimal design produced by the computational optimisation approach in

certain instances will have a higher in-vitro implementation cost (i.e. too many modifications,

impossible alterations, highly time and resource consuming alterations). These implementation

impracticalities result in a less robust optimal design. In such cases, a more practical approach

would be to settle for solutions with sub-optimal behaviour with a reasonable accuracy and

resource expenditure. Hence the accessibility to alternative solutions with optimal (similar

behaviour and different structures) or suboptimal behaviour play a vital role in the design

process. The importance of having alternative solutions can be better explained through a

common example such as timetabling. When preparing a timetable various factors are taken into

consideration such as the subject being taught, type of class room, number of students, frequency

of the activity, class of students and etc. Due to the contradicting nature of constraints, often

multiple timetables are generated for the same cohort. Availability of multiple (or alternative)

solutions gives the freedom to the persons who make decisions to select the most viable solution.

The most viable solution might not always be the most optimal solution. Similarly, in synthetic

biology, availability of alternative design solutions gives the designers the opportunity to select

the most cost-effective, easy and fast to implement design instead of an optimal solution which

is impossible to implement.

Therefore, the work presented in this thesis was focused on proposing a methodology (Chap-

ter 3) to analyse a population of solutions generated by an optimisation program and extract

alternative solutions. The generalizability of the methodology has been demonstrated by ap-

plying the methodology to three different problem areas based on three different data types

(Chapter 4, 5 and 6).

7.1.1 Methodology

In this thesis a general methodology was proposed which can be applied to extract alternative de-

signs of computational models by analysing the optimisation history obtained from a population

based heuristic search.

The methodology consists of three main phases; mathematical model definition, target driven

optimisation and analysis of optimisation archive. Defining of a mathematical model which

depicts the whole/ partial behaviour of a complex system is carried out in the first phase. This

phase can be initiated with an existing definition of an model as well. In such instances, the

behaviour to be optimised is defined in the first phase.

In the second phase computational optimisation is applied to generate the most optimal
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model for the pre-defined targets. The methodology does not define a specific optimisation

algorithm as the applicability of an algorithm depends on the characteristics of the model. The

optimisation archive is created in the second phase. Optimisation archive stores the solution

space explored by an optimisation algorithm in the process of reaching the optimal solution.

These solutions are stored in a sequential order as they appear in the search.

The third phase is focused on analysing the optimisation archive to extract alternative so-

lutions. In addition to the main objective insights from analysing archive data can be used to

improve model design through evolutionary analysis of structures and standardising model con-

straints. A range of data analytic techniques are used to extract alternative solutions by grouping

the models by behaviour and structure. These techniques are depended on the characteristics

of models being analysed.

7.1.2 Applications of the methodology

The methodology was applied to three examples scenarios in order to demonstrate its generality

in application. The three examples focus on three different data categories and optimisation

techniques.

The first example was focused on identifying alternative mathematical expressions which

evaluates to a specified target and could only be compiled with a pre-defined set of operands and

operators. Gene Expression Programming (GEP) optimisation algorithm was used to obtain the

optimal solution. Mathematical expressions were interpreted as binary trees for the purpose of

comparison. A tree edit distance was used to compare between structures and similar structures

were grouped using hierarchical clustering (see Chapter 4).

The second application area was identifying alternative solutions in a population of solu-

tions of Genomic Metabolic Models (GEM) models of bacteria. The optimisation archive was

consisted of solutions generated from genetic algorithm optimisation technique. The data cat-

egory analysed in this example was static data. Characteristics of models such as gene and

reaction composition were used to compute similarity between solutions. Hierarchical clustering

and visual analytic techniques were used to group solutions and identify alternative designs (see

Chapter 5).

Lastly, the methodology was applied to a population of solutions consisting of DNA Walker

circuits. Simulated annealing optimisation technique was used to explore the solution space

to find the optimal circuit layout with the least number of leaks and area. The optimisation

archive was composed of the solutions explored during the search. DNA circuits were represented

144



Chapter 7: Summary, Conclusions and Further Work

as graphs. Therefore, the analysis was performed on graph data category. A new comparison

algorithm which was developed to structurally compare circuit layouts and the similarity measure

was used to hierarchically cluster the solutions in order to identify alternative solutions. Further,

descriptive analytic techniques were also used. In addition to extracting alternative solutions,

visual analytic techniques were applied to observe the evolution of an initial solution into an

optimal solution. Identified optimal sub structures was used to improve model design. Further,

this example demonstrated the application of the methodology to standardise model constraints

(see Chapter 6).

The application areas covered in this thesis are mainly from synthetic biology. As explained

in Chapter 1 (refer Figure 1.2), computational models that depict the desired behaviour need to

be physically constructed in order to verify its behaviour and the computational approach which

was used to generate the design. This information is then used to improve the computational

design process. Therefore alternative computational solutions (design) can be used to drive the

engineering of alternative physical designs. In this case the [alternative] solution acts as an

[alternative] design template (or blueprint). Therefore, alternative solutions presented for GEM

models and DNA circuits act as blueprints as well.

7.2 Conclusions

Computational optimisation is often used in the design process to select the best solution from

a set of available solutions. However, in most cases there is a gap between approximations

delivered by optimization and their practical realization. In an instance where the optimal

solution selected by an optimisation algorithm has a significantly high implementation cost it

would be ideal to opt for a sub optimal solution with a lower implementation cost.

An optimisation algorithm would always look for the next best solution by maximizing or

minimizing an objective function until a pre-defined target value is reached or a fixed number

search iterations have been completed. Therefore the search history of an optimisation algo-

rithm contains solutions which are sub optimal. However, due to the nature of an optimisation

algorithm of searching for the best solution, often the history of the search is discarded.

Hence, the methodology proposed in this thesis was aimed at analysing the search history of

an optimisation search process. The main advantage of the methodology is that, it utilises inter-

mediary results from an existing search process aiming at selecting the best solution. Therefore,

it eliminates the need to generate new data for the sole purpose of extracting alternative solu-
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tions. For example, the optimiser generates around 500 - 600 unique solutions within a single

run of simulated annealing with 30,000 iterations. As the aim of an optimisation approach is to

select the best solution only one gets picked at the end. The remaining 599 solutions are usually

discarded. Hence, the methodology is utilizing an untapped source of data to extract alternative

solutions that have affordable implementation costs, and to improve model design by observing

the evolution of an solution from the initial to optimal. Further, this method facilitates the con-

cept of improving initial model design and improving time spent on heuristic search by limiting

the degree of variability. This feature is achieved through extracting constant core sub patterns

through analysing the evolution of initial solution to the optimal solution. For example when

optimising the DNA walker circuit layouts with SA optimisation, the program was required to

randomly pick positions for all nodes whenever a solution was created. If there were 6 nodes the

program had to randomly guess coordinates for all 6 nodes. However, if we could place certain

nodes in constant positions we could reduce the number of guesses when creating a new solution

and cut down execution time. In order to identify which nodes can be placed in constant places

so that the fitness would improved, is done through temporal analysis. By observing how a

solution evolves over time we can identify which parts of the layout that remains same for a

better fitness. These parts in a layout that doesn’t change are referred to as constant core sub

patterns. As the methodology is applied to intermediary results of an optimisation process, it

is not required to wait till the search process is completed to analyse the solutions. This is

an advantage when a heuristic search process takes a long time to select the optimal solution

because implementation can begin on a partially optimal solution or design could be improved

with the evolutionary insights obtained from the analysis and restart the search process with a

better search position.

Another advantage is the generality of the methodology. The methodology can be ideally

used for any population of solutions generated from a heuristic search process and it is inde-

pendent of the data category of the solutions. This has been demonstrated by three different

applications which is described in chapter 4, 5 and 6. As summarised above the methodology

was applied to three different heuristic search approaches namely; gene expression programming,

genetic algorithms and simulated annealing, which focused on three different data categories

namely; binary trees, static data and graphs respectively.
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7.3 Further Work

The methodology can be extended in the future to address the following open problems.

7.3.1 Apply particle swarm optimisation to optimise DNA walker circuit

layouts

Two main optimisation algorithms; hill climbing and simulated annealing, were used to optimise

the design of DNA walker circuits. Simulated annealing algorithm performed better than the

hill climbing algorithm. However, one of the main short comings of the simulated annealing

algorithm is that the solution space consists of more repeated solutions. The number of unique

solutions is far less and this cause an inefficient search in the solution space. Therefore I intend

to apply particle swarm optimisation (PSO) algorithm (Liu et al. 2018) to improve the design

process of DNA walker circuits. This study will be done in collaboration with a another research

group at Brunel.

7.3.2 Test the models in-vitro environment

The optimal and sub optimal designs obtained for GEM models and DNA walker circuits in the

work presented in this thesis are based on computational accuracy. The behaviour simulations

were performed on computational models. If the in-silico models could be tested in-vitro the

output can be used to further improve the design process.

7.3.3 Automatically identify sub patterns

For DNA walker circuits the evolution of an initial solution into the optimal solution is observed

through visually. This task was performed manually by observing the pattern change through

image transition. It could be ideal to implement a software which could analyse the evolution

of structures and extract the static core sub designs.

7.3.4 Validation of the methodology from other domains of science

The methodological approach to identify alternative solutions from a computational optimisation

program was mainly applied to example applications from synthetic biology domain. However,

there are other domains where computational optimisation is used for designing purposes. For

example, truss optimisation widely used in architecture (Gomes 2011), optimisation of semi-

conductor circuit layouts (Gaston and Walton 1994), mechanical design optimisation (Rao and
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Savsani 2012) and warehouse layout optimisation (Karásek 2013) is a few to name from the

engineering domain. The methodology can be potentially applied to optimisation approaches

with external constraints to test the robustness of the methodology.
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Appendix A - CANDL file definition

colspn [toy]

{

constants:

all:

int D1 = 7;

int D2 = 8;

int dS = 3; // short distance

int dM = 5; // medium distance

int dL = 8; // long distance

parameters:

double rateShort = 0.009;

double rateShortInit = 0.003;

double rateShortFinal = 0.0009;

double rateMedium = rateShort/50;

double rateMediumInit = rateShortInit/50;

double rateMediumFinal = rateShortFinal/50;

double rateLong = rateShort/100;

double rateLongInit = rateShortInit/100;

double rateLongFinal = rateShortFinal/100;

double rateLoop = 1e-09;

double weightBlock = 0.7;

block:

int m_X = 0;

int m_NX = 0;

colorsets:

Dot = {dot};

CD1 = {1..D1};

CD2 = {1..D2};

enum Type = {INIT,FINAL,NORM,FORK,JOIN};

enum Label= {E,T,F,X,NX};

Circuit = PROD(CD1,CD2,Type,Label);

variables:



CD1 : x1;

CD2 : y1;

CD1 : x2;

CD2 : y2;

Type : z1;

Type : z2;

Label : w1;

Label : w2;

colorfunctions:

bool Positions(CD1 x, CD2 y, Type z, Label w) {

(x=2 & y=1 & z=INIT & w=E) | (x=3 & y=3 & z=FORK & w=E)|

(x=3 & y=5 & z=NORM & w=X) | (x=5 & y=3 & z=NORM & w=NX)|

(x=3 & y=7 & z=FINAL & w=T)| (x=6 & y=1 & z=FINAL & w=F)

};

bool Blockage(Label w) {

w!=E & w!=T & w!=F

};

// Rectilinear distance, Manhattan distance, L1 norm

CD1 RectilinearDistance(CD1 x1,CD2 y1,CD1 x2,CD2 y2) {abs(x1-x2) + abs(y1-y2)};

// Chessboard distance, Chebyshev distance, Loo norm

CD1 ChessboardDistance(CD1 x1,CD2 y1,CD1 x2,CD2 y2) {max(abs(x1-x2), abs(y1-y2))};

bool NoSelfLoop (CD1 x1,CD2 y1,CD1 x2,CD2 y2)

{(x1 != x2 | y1 != y2)};

bool ShortDistance (CD1 x1,CD2 y1,CD1 x2,CD2 y2)

{RectilinearDistance(x1,y1,x2,y2) <= dS || ChessboardDistance(x1,y1,x2,y2) < dS};

bool MediumDistance(CD1 x1,CD2 y1,CD1 x2,CD2 y2)

{(RectilinearDistance(x1,y1,x2,y2) > dS && ChessboardDistance(x1,y1,x2,y2) >=

dS) &&



(RectilinearDistance(x1,y1,x2,y2) <= dM || ChessboardDistance(x1,y1,x2,y2) <

dM)};

bool LongDistance (CD1 x1,CD2 y1,CD1 x2,CD2 y2)

{(RectilinearDistance(x1,y1,x2,y2) > dM && ChessboardDistance(x1,y1,x2,y2) >=

dM) &&

(RectilinearDistance(x1,y1,x2,y2) <= dL || ChessboardDistance(x1,y1,x2,y2) <

dL)};

bool IsNeighbourShortD (CD1 x1,CD2 y1,Type z1,Label w1,CD1 x2,CD2 y2,Type z2,Label w2)

{ShortDistance(x1,y1,x2,y2) && NoSelfLoop(x1,y1,x2,y2) && Positions(x1,y1,z1,w1)

&& Positions(x2,y2,z2,w2)};

bool IsNeighbourMediumD (CD1 x1,CD2 y1,Type z1,Label w1,CD1 x2,CD2 y2,Type z2,Label

w2)

{MediumDistance(x1,y1,x2,y2) && NoSelfLoop(x1,y1,x2,y2) && Positions(x1,y1,z1,w1)

&& Positions(x2,y2,z2,w2)};

bool IsNeighbourLongD (CD1 x1,CD2 y1,Type z1,Label w1,CD1 x2,CD2 y2,Type z2,Label w2)

{LongDistance (x1,y1,x2,y2) && NoSelfLoop(x1,y1,x2,y2) && Positions(x1,y1,z1,w1)

&& Positions(x2,y2,z2,w2)};

places:

discrete:

Circuit A = [z1 = INIT]2‘(x1,y1,z1,w1) ++ [z1 != INIT]1‘(x1,y1,z1,w1);

Circuit B = m[w1]‘(x1,y1,z1,w1);

transitions:

stepShort

{[IsNeighbourShortD(x1,y1,z1,w1,x2,y2,z2,w2) && z1 != FINAL && z2 != FINAL]}

:

: [A - {2‘(x1,y1,z1,w1)++1‘(x2,y2,z2,w2)}] & [A + {2‘(x2,y2,z2,w2)}]

: [z1 = INIT]rateShortInit ++ [z1 != INIT]rateShort

;

stepShortFinal

{[IsNeighbourShortD(x1,y1,z1,w1,x2,y2,z2,w2) && z1 != FINAL && z2 = FINAL]}

:



: [A - {2‘(x1,y1,z1,w1)++1‘(x2,y2,z2,w2)}] & [A + {2‘(x2,y2,z2,w2)}]

: rateShortFinal

;

stepMedium

{[IsNeighbourMediumD(x1,y1,z1,w1,x2,y2,z2,w2) && z1 != FINAL && z2 != FINAL]}

:

: [A - {2‘(x1,y1,z1,w1)++1‘(x2,y2,z2,w2)}] & [A + {2‘(x2,y2,z2,w2)}]

: [z1 = INIT]rateMediumInit ++ [z1 != INIT]rateMedium

;

stepMediumFinal

{[IsNeighbourMediumD(x1,y1,z1,w1,x2,y2,z2,w2) && z1 != FINAL && z2 = FINAL]}

:

: [A - {2‘(x1,y1,z1,w1)++1‘(x2,y2,z2,w2)}] & [A + {2‘(x2,y2,z2,w2)}]

: rateMediumFinal

;

stepLong

{[IsNeighbourLongD(x1,y1,z1,w1,x2,y2,z2,w2) && z1 != FINAL && z2 != FINAL]}

:

: [A - {2‘(x1,y1,z1,w1)++1‘(x2,y2,z2,w2)}] & [A + {2‘(x2,y2,z2,w2)}]

: [z1 = INIT]rateLongInit ++ [z1 != INIT]rateLong

;

stepLongFinal

{[IsNeighbourLongD(x1,y1,z1,w1,x2,y2,z2,w2) && z1 != FINAL && z2 = FINAL]}

:

: [A - {2‘(x1,y1,z1,w1)++1‘(x2,y2,z2,w2)}] & [A + {2‘(x2,y2,z2,w2)}]

: rateLongFinal

;

loop

{[Positions(x1,y1,z1,w1) && z1 = FINAL]}

:

: [A - {2‘(x1,y1,z1,w1)}] & [A + {2‘(x1,y1,z1,w1)}]

: rateLoop

;

immediate:

block

{[Blockage(w1) && Positions(x1,y1,z1,w1)]}



:

: [A - {(x1,y1,z1,w1)}] & [B - {(x1,y1,z1,w1)}]

: weightBlock

;

fail

{[Blockage(w1) && Positions(x1,y1,z1,w1)]}

:

: [B - {(x1,y1,z1,w1)}]

: 1-weightBlock

;

}

// end colspn [toy]
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