1,179 research outputs found

    Synthesising industry-standard manufacturing process controllers

    Get PDF

    Comparison of Volumetric Analysis Methods for Machine Tools with Rotary Axes

    Get PDF
    Confidence in the ability of a production machine to meet manufacturing tolerances requires a full understanding of the accuracy of the machine. However, the definition of “the accuracy of the machine” is open to interpretation. Historically, this has been in terms of linear positioning accuracy of an axis with no regard for the other errors of the machine. Industry awareness of the three-dimensional positioning accuracy of a machine over its working envelope has slowly developed to an extent that people are aware that “volumetric accuracy” gives a better estimation of machine performance. However, at present there is no common standard for volumetric errors of machine tools, although several researchers have developed models to predict the effect of the combined errors. The error model for machines with three Cartesian axes has been well addressed, for example by the use of homogenous transformation matrices. Intuitively, the number of error sources increases with the number of axes present on the machine. The effect of the individual axis geometric errors can become increasingly significant as the chain of dependent axes is extended. Measurement of the “volumetric error” or its constituents is often restricted to a subset of the errors of the Cartesian axes by solely relying on a laser interferometer for measurement. This leads to a volumetric accuracy figure that neglects the misalignment errors of rotary axes. In more advanced models the accuracy of the rotary axes are considered as a separate geometric problem whose volumetric accuracy is then added to the volumetric accuracy of the Cartesian axes. This paper considers the geometric errors of some typical machine configurations with both Cartesian and non-Cartesian axes and uses case studies to emphasise the importance of measurement of all the error constituents. Furthermore, it shows the misrepresentation when modelling a five-axis machine as a three-plus-two error problem. A method by which the five-axis model can be analysed to better represent the machine performance is introduced. Consideration is also given for thermal and non-rigid influences on the machine volumetric accuracy analysis, both in terms of the uncertainty of the model and the uncertainty during the measurement. The magnitude of these errors can be unexpectedly high and needs to be carefully considered whenever testing volumetric accuracy, with additional tests being recommended

    DESIGN OF OPTIMAL PROCEDURAL CONTROLLERS FOR CHEMICAL PROCESSES MODELLED AS STOCHASTIC DISCRETE EVENT SYSTEMS

    No full text
    This thesis presents a formal method for the the design of optimal and provably correct procedural controllers for chemical processes modelled as Stochastic Discrete Event Systems (SDESs). The thesis extends previous work on Procedural Control Theory (PCT) [1], which used formal techniques for the design of automation Discrete Event Systems (DESs). Many dynamic processes for example, batch operations and the start-up and shut down of continuous plants, can be modelled as DESs. Controllers for these systems are typically of the sequential type. Most prior work on characterizing the behaviour of DESs has been restricted to deterministic systems. However, DESs consisting of concurrent interacting processes present a broad spectrum of uncertainty such as uncertainty in the occurrence of events. The formalism of weighted probabilistic Finite State Machine (wp-FSM) is introduced for modelling SDESs and pre-de ned failure models are embedded in wp-FSM to describe and control the abnormal behaviour of systems. The thesis presents e cient algorithms and procedures for synthesising optimal procedural controllers for such SDESs. The synthesised optimal controllers for such stochastic systems will take into consideration probabilities of events occurrence, operation costs and failure costs of events in making optimal choices in the design of control sequences. The controllers will force the system from an initial state to one or more goal states with an optimal expected cost and when feasible drive the system from any state reached after a failure to goal states. On the practical side, recognising the importance of the needs of the target end user, the design of a suitable software implementation is completed. The potential of both the approach and the supporting software are demonstrated by two industry case studies. Furthermore, the simulation environment gPROMS was used to test whether the operating speci cations thus designed were met in a combined discrete/continuous environment

    Functional modelling in evolvable assembly systems

    Get PDF
    The design and reconfiguration of adaptive production systems is a key driver in modern advanced manufacturing. We summarise the use of an ap-proach from the field of functional modelling to capture the function, behaviour, and structure of a system. This model is an integral part of the Evolvable Assembly Systems architecture, allowing the system to adapt its behaviour in response to changing product requirements. The integrated approach is illustrated with an example taken from a real EAS instantiation

    Process plan controllers for non-deterministic manufacturing systems

    Get PDF
    Determining the most appropriate means of producing a given product, i.e., which manufacturing and assembly tasks need to be performed in which order and how, is termed process planning In process planning, abstract manufacturing tasks in a process recipe are matched to available manufacturing resources, e.g., CNC machines and robots, to give an executable process plan. A process plan controller then delegates each operation in the plan to specific manufacturing resources. In this paper we present an approach to the automated computation of process plans and process plan controllers. We extend previous work to support both non-deterministic (i.e., partially controllable) resources, and to allow operations to be performed in parallel on the same part. We show how implicit fairness assumptions can be captured in this setting, and how this impacts the definition of process plans

    The Path to Fault- and Intrusion-Resilient Manycore Systems on a Chip

    Full text link
    The hardware computing landscape is changing. What used to be distributed systems can now be found on a chip with highly configurable, diverse, specialized and general purpose units. Such Systems-on-a-Chip (SoC) are used to control today's cyber-physical systems, being the building blocks of critical infrastructures. They are deployed in harsh environments and are connected to the cyberspace, which makes them exposed to both accidental faults and targeted cyberattacks. This is in addition to the changing fault landscape that continued technology scaling, emerging devices and novel application scenarios will bring. In this paper, we discuss how the very features, distributed, parallelized, reconfigurable, heterogeneous, that cause many of the imminent and emerging security and resilience challenges, also open avenues for their cure though SoC replication, diversity, rejuvenation, adaptation, and hybridization. We show how to leverage these techniques at different levels across the entire SoC hardware/software stack, calling for more research on the topic

    Active chatter control in high-speed milling processes

    Get PDF
    In present day manufacturing industry, an increasing demand for highprecision products at a high productivity level is seen. High-speed milling is a manufacturing technique which is commonly exploited to produce highprecision parts at a high productivity level for the aeroplane, automotive and mould and dies industry. The performance of a manufacturing process such as high-speed milling, indicated by the material removal rate, is limited by the occurrence of a dynamic instability phenomenon called chatter. The occurrence of chatter results in an inferior workpiece quality due to heavy vibrations of the cutter. Moreover, a high level of noise is produced and the tool wears out rapidly. Although different types of chatter exist, regenerative chatter is recognised as the most prevalent type of chatter. The occurrence of (regenerative) chatter has such a devastating effect on workpiece quality and tool wear that it should be avoidedat all times. The occurrence of chatter can be visualised in so-called stability lobes diagrams (sld). In an sld the chatter stability boundary between a stable cut (i.e. without chatter) and an unstable cut (i.e. with chatter) is visualised in terms of spindle speed and depth of cut. Using the information gathered in a sld, the machinist can select a chatter free operating point. In this thesis two problems are tackled. Firstly, due to e.g. heating of the spindle, tool wear, etc., the sld may vary in time. Consequently, a stable working point that was originally chosen by the machinist may become unstable. This requires a (controlled) adaptation of process parameters such that stability of the milling process is ensured (i.e. chatter is avoided) even under such changing process conditions. Secondly, the ever increasing demand for high-precision products at a high productivity level requires dedicated shaping of the chatter stability boundary. Such shaping of the sld should render working points (in terms of spindle speed and depth of cut) of high productivity feasible, while avoiding chatter. These problems require the design of dedicated control strategies that ensure stable high-speed milling operations with increased performance. In this work, two chatter control strategies are developed that guarantee high-speed chatter-free machining operations. The goal of the two chatter control strategies is, however, different. The first chatter control strategy guarantees chatter-free high-speed milling operations by automatic adaptation of spindle speed and feed (i.e. the feed is not stopped during the spindle speed transition). In this way, the high-speed milling process will remain stable despite changes in the process, e.g. due to heating of the spindle, tool wear, etc. To do so, an accurate and fast chatter detection algorithm is presented which predicts the occurrence of chatter before chatter marks are visible on the workpiece. Once the onset of chatter is detected, the developed controller adapts the spindle speed and feed such that a new chatter-free working point is attained. Experimental results confirm that by using this control strategy chatter-free machining is ensured. It is also shown experimentally that the detection algorithm is able to detect chatter before it is fully developed. Furthermore, the control strategy ensures that chatter is avoided, thereby ensuring a robust machining operation and a high surface quality. The second chatter control strategy is developed to design controllers that guarantee chatter-free cutting operations in an a priori defined range of process parameters (spindle speed and depth of cut) such that a higher productivity can be attained. Current (active) chatter control strategies for the milling process cannot provide such a strong guarantee of a priori stability for a predefined range of working points. The methodology is based on a robust control approach using ”-synthesis, where the most important process parameters (spindle speed and depth of cut) are treated as uncertainties. The proposed methodology will allow the machinist to define a desired working range (in spindle speed and depth of cut) and lift the sld locally in a dedicated fashion. Finally, experiments have been performed to validate the working principle of the active chatter control strategy in practice. Hereto, a milling spindle with an integrated active magnetic bearing is considered. Based on the obtained experimental results, it can be stated that the active chatter control methodology, as presented in this thesis, can indeed be applied to design controllers, which alter the sld such that a pre-defined domain of working points is stabilised. Results from milling tests underline this conclusion. By using the active chatter controller working points with a higher material removal rate become feasible while avoiding chatter. To summarise, the control strategies developed in this thesis, ensure robust chatter-free high-speed milling operations where, by dedicated shaping of the chatter stability boundary, working points with a higher productivity are attained
    • 

    corecore