991 research outputs found

    Keeping track of worm trackers

    Get PDF
    C. elegans is used extensively as a model system in the neurosciences due to its well defined nervous system. However, the seeming simplicity of this nervous system in anatomical structure and neuronal connectivity, at least compared to higher animals, underlies a rich diversity of behaviors. The usefulness of the worm in genome-wide mutagenesis or RNAi screens, where thousands of strains are assessed for phenotype, emphasizes the need for computational methods for automated parameterization of generated behaviors. In addition, behaviors can be modulated upon external cues like temperature, O2 and CO2 concentrations, mechanosensory and chemosensory inputs. Different machine vision tools have been developed to aid researchers in their efforts to inventory and characterize defined behavioral “outputs”. Here we aim at providing an overview of different worm-tracking packages or video analysis tools designed to quantify different aspects of locomotion such as the occurrence of directional changes (turns, omega bends), curvature of the sinusoidal shape (amplitude, body bend angles) and velocity (speed, backward or forward movement)

    Odor Localization using Gas Sensor for Mobile Robot

    Get PDF
    This paper discusses the odor localization using Fuzzy logic algorithm. The concentrations of the source that is sensed by the gas sensors are used as the inputs of the fuzzy. The output of the Fuzzy logic is used to determine the PWM (Pulse Width Modulation) of driver motors of the robot. The path that the robot should track depends on the PWM of the right and left motors of the robot.  When the concentration in the right side of the robot is higher than the middle and the left side, the fuzzy logic will give decision to the robot to move to the right. In that condition, the left motor is in the high speed condition and the right motor is in slow speed condition. Therefore, the robot will move to the right.   The experiment was done in a conditioned room using a robot that is equipped with 3 gas sensors. Although the robot is still needed some improvements in accomplishing its task, the result shows that fuzzy algorithms are effective enough in performing odor localization task in mobile robot

    Continuous Environmental Tracking: An Engineering Framework to Understand Adaptation and Diversification

    Get PDF
    We offer a new framework for understanding biological adaptability based on interpreting the findings of 342 journal articles and 67 online reports related to adaptation, bioengineering, and design in view of the assumption that biological functions are most accurately explained by engineering principles. We hypothesize that organisms actively and continuously track environmental variables and respond by self-adjusting to changing environments—utilizing the engineering principles constraining how human-designed objects self-adjust to changes—which results in adaptation. We termed this hypothesis Continuous Environmental Tracking (CET). CET is an engineering-based, organism-focused characterization of adaptation. CET expects to find that organisms adapt via systems with elements analogous to those within human-engineered tracking systems, namely: input sensors, internal logic mechanisms to select suitable responses, and actuators to execute responses. We derived the hypothesis by reinterpreting findings and formalizing biological adaptability within a framework of engineering design, considering: (1) objectives, (2) constraints, (3) variables, and (4) the biological systems related to the previous three. The literature does identify internal mechanisms with elements analogous to engineered systems using sensors coupled to complex logic mechanisms producing highly “targeted” self-adjustments suitable to changes. Adaptive mechanisms were characterized as regulated, rapid, repeatable, and sometimes, reversible. Adaptation happened largely through regulated gene expression and not gene inheritance, per se. These observations, consistent with CET, contrast starkly with the evolutionary framework’s randomness of tiny, accidental “hit-and-miss” phenotypes fractioned out to lucky survivors of deadly challenges. Evolutionists now divide over their framework’s need of modification, and a trend among some seeks to infuse more engineering into biology. This disarray affords a rare, transient opportunity for engineering advocates to frame the issue. CET may fundamentally change how we perceive organisms; from passive modeling clay shaped over time by the vicissitudes of nature, to active, problem-solving creatures that continuously track environmental changes to better fit existing niches or fill new ones

    A Hardware Descriptive Approach to Beetle Antennae Search

    Get PDF
    Beetle antennae search (BAS) is a newly developed meta-heuristic algorithm which is effectively used for optimizing objective functions of complex forms or even unknown forms. The common practice for implementing meta-heuristic algorithms including the BAS largely relies on programming in a high-level language and executing the code on a computer platform. However, the high-level implementation of the BAS algorithm hinders it from being used in an embedding system, where real-time operations are normally required. To address this limitation, we present an approach to implementing the BAS algorithm on a field-programmable gate array (FPGA). Specifically, we program the BAS function in the Verilog hardware description language (HDL), which provides a tractable vehicle for implementing the BAS algorithm at the gate level on the FPGA chip. We simulate our Verilog HDL based BAS module with the Modelsim platform. Simulation results validate the feasibility of our proposed Verilog HDL implementation of the BAS. Additionally, we implement the BAS model on the Zynq XC7Z010 platform, with 132.5 ÎĽ s latency for model implementation

    Design and modeling of a stair climber smart mobile robot (MSRox)

    Full text link

    Odor Localization using Gas Sensor for Mobile Robot

    Get PDF
    This paper discusses the odor localization using Fuzzy logic algorithm. The concentrations of the source that is sensed by the gas sensors are used as the inputs of the fuzzy. The output of the Fuzzy logic is used to determine the PWM (Pulse Width Modulation) of driver motors of the robot. The path that the robot should track depends on the PWM of the right and left motors of the robot. When the concentration in the right side of the robot is higher than the middle and the left side, the fuzzy logic will give decision to the robot to move to the right. In that condition, the left motor is in the high speed condition and the right motor is in slow speed condition. Therefore, the robot will move to the right. The experiment was done in a conditioned room using a robot that is equipped with 3 gas sensors. Although the robot is still needed some improvements in accomplishing its task, the result shows that fuzzy algorithms are effective enough in performing odor localization task in mobile robot

    Neurofly 2008 abstracts : the 12th European Drosophila neurobiology conference 6-10 September 2008 Wuerzburg, Germany

    Get PDF
    This volume consists of a collection of conference abstracts

    A Second-Generation Device for Automated Training and Quantitative Behavior Analyses of Molecularly-Tractable Model Organisms

    Get PDF
    A deep understanding of cognitive processes requires functional, quantitative analyses of the steps leading from genetics and the development of nervous system structure to behavior. Molecularly-tractable model systems such as Xenopus laevis and planaria offer an unprecedented opportunity to dissect the mechanisms determining the complex structure of the brain and CNS. A standardized platform that facilitated quantitative analysis of behavior would make a significant impact on evolutionary ethology, neuropharmacology, and cognitive science. While some animal tracking systems exist, the available systems do not allow automated training (feedback to individual subjects in real time, which is necessary for operant conditioning assays). The lack of standardization in the field, and the numerous technical challenges that face the development of a versatile system with the necessary capabilities, comprise a significant barrier keeping molecular developmental biology labs from integrating behavior analysis endpoints into their pharmacological and genetic perturbations. Here we report the development of a second-generation system that is a highly flexible, powerful machine vision and environmental control platform. In order to enable multidisciplinary studies aimed at understanding the roles of genes in brain function and behavior, and aid other laboratories that do not have the facilities to undergo complex engineering development, we describe the device and the problems that it overcomes. We also present sample data using frog tadpoles and flatworms to illustrate its use. Having solved significant engineering challenges in its construction, the resulting design is a relatively inexpensive instrument of wide relevance for several fields, and will accelerate interdisciplinary discovery in pharmacology, neurobiology, regenerative medicine, and cognitive science
    • …
    corecore