1,149 research outputs found

    Experiments with calibrated digital sideband separating downconversion

    Full text link
    This article reports on the first step in a focused program to re-optimize radio astronomy receiver architecture to better take advantage of the latest advancements in commercial digital technology. Specifically, an L-Band sideband-separating downconverter has been built using a combination of careful (but ultimately very simple) analog design and digital signal processing to achieve wideband downconversion of an RFI-rich frequency spectrum to baseband in a single mixing step, with a fixed-frequency Local Oscillator and stable sideband isolation exceeding 50 dB over a 12 degree C temperature range.Comment: 10 pages, 12 figures, to be published in PAS

    Programmable rate modem utilizing digital signal processing techniques

    Get PDF
    The engineering development study to follow was written to address the need for a Programmable Rate Digital Satellite Modem capable of supporting both burst and continuous transmission modes with either binary phase shift keying (BPSK) or quadrature phase shift keying (QPSK) modulation. The preferred implementation technique is an all digital one which utilizes as much digital signal processing (DSP) as possible. Here design tradeoffs in each portion of the modulator and demodulator subsystem are outlined, and viable circuit approaches which are easily repeatable, have low implementation losses and have low production costs are identified. The research involved for this study was divided into nine technical papers, each addressing a significant region of concern in a variable rate modem design. Trivial portions and basic support logic designs surrounding the nine major modem blocks were omitted. In brief, the nine topic areas were: (1) Transmit Data Filtering; (2) Transmit Clock Generation; (3) Carrier Synthesizer; (4) Receive AGC; (5) Receive Data Filtering; (6) RF Oscillator Phase Noise; (7) Receive Carrier Selectivity; (8) Carrier Recovery; and (9) Timing Recovery

    The Expanded Very Large Array

    Full text link
    In almost 30 years of operation, the Very Large Array (VLA) has proved to be a remarkably flexible and productive radio telescope. However, the basic capabilities of the VLA have changed little since it was designed. A major expansion utilizing modern technology is currently underway to improve the capabilities of the VLA by at least an order of magnitude in both sensitivity and in frequency coverage. The primary elements of the Expanded Very Large Array (EVLA) project include new or upgraded receivers for continuous frequency coverage from 1 to 50 GHz, new local oscillator, intermediate frequency, and wide bandwidth data transmission systems to carry signals with 16 GHz total bandwidth from each antenna, and a new digital correlator with the capability to process this bandwidth with an unprecedented number of frequency channels for an imaging array. Also included are a new monitor and control system and new software that will provide telescope ease of use. Scheduled for completion in 2012, the EVLA will provide the world research community with a flexible, powerful, general-purpose telescope to address current and future astronomical issues.Comment: Added journal reference: published in Proceedings of the IEEE, Special Issue on Advances in Radio Astronomy, August 2009, vol. 97, No. 8, 1448-1462 Six figures, one tabl

    The design and implementation of a wideband digital radio receiver

    Get PDF
    Historically radio has been implemented using largely analogue circuitry. Improvements in mixed signal and digital signal processing technology are rapidly leading towards a largely digital approach, with down-conversion and filtering moving to the digital signal processing domain. Advantages of this technology include increased performance and functionality, as well as reduced cost. Wideband receivers place the heaviest demands on both mixed signal and digital signal processing technology, requiring high spurious free dynamic range (SFDR) and signal processing bandwidths. This dissertation investigates the extent to which current digital technology is able to meet these demands and compete with the proven architectures of analogue receivers. A scalable generalised digital radio receiver capable of operating in the HF and VHF bands was designed, implemented and tested, yielding instantaneous bandwidths in excess of 10 MHz with a spurious-free dynamic range exceeding 80 decibels below carrier (dBc). The results achieved reflect favourably on the digital receiver architecture. While the necessity for minimal analogue circuitry will possibly always exist, digital radio architectures are currently able to compete with analogue counterparts. The digital receiver is simple to manufacture, based on the use of largely commercial off-the-shelf (COTS) components, and exhibits extreme flexibility and high performance when compared with comparably priced analogue receivers

    The Design of an Anti-Aliasing Filter for the Next Generation Digitiser

    Get PDF
    MeerKAT, is a 64-element radio astronomy antenna array which has been recently constructed in the Northern Cape Province of South Africa. It serves as South Africa's contribution towards the international Square Kilometre Array (SKA) project. The MeerKAT array has been designed to observe radio signals produced by celestial sources at UHF-Band, L-Band, S-Band and X-Band frequencies. The first phase of the construction included the design, development and integration of the UHF-Band, L-Band and S-band Receivers, whilst the X-band design has been superseded by the incorporation of the next phase of the SKA international project. In preparation of the next the roll-out, research is required to determine optimal wideband filter topologies suitable for direct digitisation of signal frequencies over the frequency range of 3-6 GHz. In this thesis, exploration of suitable wideband planar filters is performed, noting those with an improved out-of-band rejection. The outcome of the investigation leads into the design and development of the suitable wideband planar filter based on key performance specifications. The performance of the manufactured wideband planar filter is then compared to the theoretical design, and validated against the key performance requirements

    Practical Non-Uniform Channelization for Multistandard Base Stations

    Get PDF
    A Multistandard software-defined radio base station must perform non-uniform channelization of multiplexed frequency bands. Non-uniform channelization accounts for a significant portion of the digital signal processing workload in the base station receiver and can be difficult to realize in a physical implementation. In non-uniform channelization methods based on generalized DFT filter banks, large prototype filter orders are a significant issue for implementation. In this paper, a multistage filter design is applied to two different non-uniform generalized DFT-based channelizers in order to reduce their filter orders. To evaluate the approach, a TETRA and TEDS base station is used. Experimental results show that the new multistage design reduces both the number of coefficients and operations and leads to a more feasible design and practical physical implementation

    Practical Non-Uniform Channelization for Multistandard Base Stations

    Get PDF
    A Multistandard software-defined radio base station must perform non-uniform channelization of multiplexed frequency bands. Non-uniform channelization accounts for a significant portion of the digital signal processing workload in the base station receiver and can be difficult to realize in a physical implementation. In non-uniform channelization methods based on generalized DFT filter banks, large prototype filter orders are a significant issue for implementation. In this paper, a multistage filter design is applied to two different non-uniform generalized DFT-based channelizers in order to reduce their filter orders. To evaluate the approach, a TETRA and TEDS base station is used. Experimental results show that the new multistage design reduces both the number of coefficients and operations and leads to a more feasible design and practical physical implementation
    • …
    corecore