10,007 research outputs found

    Conditional Diffusion Models for Semantic 3D Medical Image Synthesis

    Full text link
    This paper introduces Med-DDPM, an innovative solution using diffusion models for semantic 3D medical image synthesis, addressing the prevalent issues in medical imaging such as data scarcity, inconsistent acquisition methods, and privacy concerns. Experimental evidence illustrates that diffusion models surpass Generative Adversarial Networks (GANs) in stability and performance, generating high-quality, realistic 3D medical images. The distinct feature of Med-DDPM is its use of semantic conditioning for the diffusion model in 3D image synthesis. By controlling the generation process through pixel-level mask labels, it facilitates the creation of realistic medical images. Empirical evaluations underscore the superior performance of Med-DDPM over GAN techniques in metrics such as accuracy, stability, and versatility. Furthermore, Med-DDPM outperforms traditional augmentation techniques and synthetic GAN images in enhancing the accuracy of segmentation models. It addresses challenges such as insufficient datasets, lack of annotated data, and class imbalance. Noting the limitations of the Frechet inception distance (FID) metric, we introduce a histogram-equalized FID metric for effective performance evaluation. In summary, Med-DDPM, by utilizing diffusion models, signifies a crucial step forward in the domain of high-resolution semantic 3D medical image synthesis, transcending the limitations of GANs and data constraints. This method paves the way for a promising solution in medical imaging, primarily for data augmentation and anonymization, thus contributing significantly to the field

    Freehand Ultrasound Image Simulation with Spatially-Conditioned Generative Adversarial Networks

    Get PDF
    Sonography synthesis has a wide range of applications, including medical procedure simulation, clinical training and multimodality image registration. In this paper, we propose a machine learning approach to simulate ultrasound images at given 3D spatial locations (relative to the patient anatomy), based on conditional generative adversarial networks (GANs). In particular, we introduce a novel neural network architecture that can sample anatomically accurate images conditionally on spatial position of the (real or mock) freehand ultrasound probe. To ensure an effective and efficient spatial information assimilation, the proposed spatially-conditioned GANs take calibrated pixel coordinates in global physical space as conditioning input, and utilise residual network units and shortcuts of conditioning data in the GANs' discriminator and generator, respectively. Using optically tracked B-mode ultrasound images, acquired by an experienced sonographer on a fetus phantom, we demonstrate the feasibility of the proposed method by two sets of quantitative results: distances were calculated between corresponding anatomical landmarks identified in the held-out ultrasound images and the simulated data at the same locations unseen to the networks; a usability study was carried out to distinguish the simulated data from the real images. In summary, we present what we believe are state-of-the-art visually realistic ultrasound images, simulated by the proposed GAN architecture that is stable to train and capable of generating plausibly diverse image samples.Comment: Accepted to MICCAI RAMBO 201

    Mask-conditioned latent diffusion for generating gastrointestinal polyp images

    Full text link
    In order to take advantage of AI solutions in endoscopy diagnostics, we must overcome the issue of limited annotations. These limitations are caused by the high privacy concerns in the medical field and the requirement of getting aid from experts for the time-consuming and costly medical data annotation process. In computer vision, image synthesis has made a significant contribution in recent years as a result of the progress of generative adversarial networks (GANs) and diffusion probabilistic models (DPM). Novel DPMs have outperformed GANs in text, image, and video generation tasks. Therefore, this study proposes a conditional DPM framework to generate synthetic GI polyp images conditioned on given generated segmentation masks. Our experimental results show that our system can generate an unlimited number of high-fidelity synthetic polyp images with the corresponding ground truth masks of polyps. To test the usefulness of the generated data, we trained binary image segmentation models to study the effect of using synthetic data. Results show that the best micro-imagewise IOU of 0.7751 was achieved from DeepLabv3+ when the training data consists of both real data and synthetic data. However, the results reflect that achieving good segmentation performance with synthetic data heavily depends on model architectures

    Generating Diffusion MRI scalar maps from T1 weighted images using generative adversarial networks

    Full text link
    Diffusion magnetic resonance imaging (diffusion MRI) is a non-invasive microstructure assessment technique. Scalar measures, such as FA (fractional anisotropy) and MD (mean diffusivity), quantifying micro-structural tissue properties can be obtained using diffusion models and data processing pipelines. However, it is costly and time consuming to collect high quality diffusion data. Here, we therefore demonstrate how Generative Adversarial Networks (GANs) can be used to generate synthetic diffusion scalar measures from structural T1-weighted images in a single optimized step. Specifically, we train the popular CycleGAN model to learn to map a T1 image to FA or MD, and vice versa. As an application, we show that synthetic FA images can be used as a target for non-linear registration, to correct for geometric distortions common in diffusion MRI
    corecore