1,273 research outputs found

    MEMS Technology for Biomedical Imaging Applications

    Get PDF
    Biomedical imaging is the key technique and process to create informative images of the human body or other organic structures for clinical purposes or medical science. Micro-electro-mechanical systems (MEMS) technology has demonstrated enormous potential in biomedical imaging applications due to its outstanding advantages of, for instance, miniaturization, high speed, higher resolution, and convenience of batch fabrication. There are many advancements and breakthroughs developing in the academic community, and there are a few challenges raised accordingly upon the designs, structures, fabrication, integration, and applications of MEMS for all kinds of biomedical imaging. This Special Issue aims to collate and showcase research papers, short commutations, perspectives, and insightful review articles from esteemed colleagues that demonstrate: (1) original works on the topic of MEMS components or devices based on various kinds of mechanisms for biomedical imaging; and (2) new developments and potentials of applying MEMS technology of any kind in biomedical imaging. The objective of this special session is to provide insightful information regarding the technological advancements for the researchers in the community

    Nonlinear Acoustics in Underwater and Biomedical Applications: Array Performance Degradation and Time Reversal Invariance

    Get PDF
    This dissertation describes a model for acoustic propagation in inhomogeneous flu- ids, and explores the focusing by arrays onto targets under various conditions. The work explores the use of arrays, in particular the time reversal array, for underwater and biomedical applications. Aspects of propagation and phasing which can lead to reduced focusing effectiveness are described. An acoustic wave equation was derived for the propagation of finite-amplitude waves in lossy time-varying inhomogeneous fluid media. The equation was solved numerically in both Cartesian and cylindrical geometries using the finite-difference time-domain (FDTD) method. It was found that time reversal arrays are sensitive to several debilitating factors. Focusing ability was determined to be adequate in the presence of temporal jitter in the time reversed signal only up to about one-sixth of a period. Thermoviscous absorption also had a debilitating effect on focal pressure for both linear and nonlinear propagation. It was also found that nonlinearity leads to degradation of focal pressure through amplification of the received signal at the array, and enhanced absorption in the shocked waveforms. This dissertation also examined the heating effects of focused ultrasound in a tissue-like medium. The application considered is therapeutic heating for hyperther- mia. The acoustic model and a thermal model for tissue were coupled to solve for transient and steady temperature profiles in tissue-like media. The Pennes bioheat equation was solved using the FDTD method to calculate the temperature fields in tissue-like media from focused acoustic sources. It was found that the temperature-dependence of the medium's background prop- erties can play an important role in the temperature predictions. Finite-amplitude effects contributed excess heat when source conditions were provided for nonlinear ef- fects to manifest themselves. The effect of medium heterogeneity was also found to be important in redistributing the acoustic and temperature fields, creating regions with hotter and colder temperatures than the mean by local scattering and lensing action. These temperature excursions from the mean were found to increase monotonically with increasing contrast in the medium's properties.Office of Naval Research (Code 321-TS

    Orbital Angular Momentum Waves: Generation, Detection and Emerging Applications

    Full text link
    Orbital angular momentum (OAM) has aroused a widespread interest in many fields, especially in telecommunications due to its potential for unleashing new capacity in the severely congested spectrum of commercial communication systems. Beams carrying OAM have a helical phase front and a field strength with a singularity along the axial center, which can be used for information transmission, imaging and particle manipulation. The number of orthogonal OAM modes in a single beam is theoretically infinite and each mode is an element of a complete orthogonal basis that can be employed for multiplexing different signals, thus greatly improving the spectrum efficiency. In this paper, we comprehensively summarize and compare the methods for generation and detection of optical OAM, radio OAM and acoustic OAM. Then, we represent the applications and technical challenges of OAM in communications, including free-space optical communications, optical fiber communications, radio communications and acoustic communications. To complete our survey, we also discuss the state of art of particle manipulation and target imaging with OAM beams

    医用超音波における散乱体分布の高解像かつ高感度な画像化に関する研究

    Get PDF
    Ultrasound imaging as an effective method is widely used in medical diagnosis andNDT (non-destructive testing). In particular, ultrasound imaging plays an important role in medical diagnosis due to its safety, noninvasive, inexpensiveness and real-time compared with other medical imaging techniques. However, in general the ultrasound imaging has more speckles and is low definition than the MRI (magnetic resonance imaging) and X-ray CT (computerized tomography). Therefore, it is important to improve the ultrasound imaging quality. In this study, there are three newproposals. The first is the development of a high sensitivity transducer that utilizes piezoelectric charge directly for FET (field effect transistor) channel control. The second is a proposal of a method for estimating the distribution of small scatterers in living tissue using the empirical Bayes method. The third is a super-resolution imagingmethod of scatterers with strong reflection such as organ boundaries and blood vessel walls. The specific description of each chapter is as follows: Chapter 1: The fundamental characteristics and the main applications of ultrasound are discussed, then the advantages and drawbacks of medical ultrasound are high-lighted. Based on the drawbacks, motivations and objectives of this study are stated. Chapter 2: To overcome disadvantages of medical ultrasound, we advanced our studyin two directions: designing new transducer improves the acquisition modality itself, onthe other hand new signal processing improve the acquired echo data. Therefore, the conventional techniques related to the two directions are reviewed. Chapter 3: For high performance piezoelectric, a structure that enables direct coupling of a PZT (lead zirconate titanate) element to the gate of a MOSFET (metal-oxide semiconductor field-effect transistor) to provide a device called the PZT-FET that acts as an ultrasound receiver was proposed. The experimental analysis of the PZT-FET, in terms of its reception sensitivity, dynamic range and -6 dB reception bandwidth have been investigated. The proposed PZT-FET receiver offers high sensitivity, wide dynamic range performance when compared to the typical ultrasound transducer. Chapter 4: In medical ultrasound imaging, speckle patterns caused by reflection interference from small scatterers in living tissue are often suppressed by various methodologies. However, accurate imaging of small scatterers is important in diagnosis; therefore, we investigated influence of speckle pattern on ultrasound imaging by the empirical Bayesian learning. Since small scatterers are spatially correlated and thereby constitute a microstructure, we assume that scatterers are distributed according to the AR (auto regressive) model with unknown parameters. Under this assumption, the AR parameters are estimated by maximizing the marginal likelihood function, and the scatterers distribution is estimated as a MAP (maximum a posteriori) estimator. The performance of our method is evaluated by simulations and experiments. Through the results, we confirmed that the band limited echo has sufficient information of the AR parameters and the power spectrum of the echoes from the scatterers is properly extrapolated. Chapter 5: The medical ultrasound imaging of strong reflectance scatterers based on the MUSIC algorithm is the main subject of Chapter 5. Previously, we have proposed a super-resolution ultrasound imaging based on multiple TRs (transmissions/receptions) with different carrier frequencies called SCM (super resolution FM-chirp correlation method). In order to reduce the number of required TRs for the SCM, the method has been extended to the SA (synthetic aperture) version called SA-SCM. However, since super-resolution processing is performed for each line data obtained by the RBF (reception beam forming) in the SA-SCM, image discontinuities tend to occur in the lateral direction. Therefore, a new method called SCM-weighted SA is proposed, in this version the SCM is performed on each transducer element, and then the SCM result is used as the weight for RBF. The SCM-weighted SA can generate multiple B-mode images each of which corresponds to each carrier frequency, and the appropriate low frequency images among them have no grating lobes. For a further improvement, instead of simple averaging, the SCM applied to the result of the SCM-weighted SA for all frequencies again, which is called SCM-weighted SA-SCM. We evaluated the effectiveness of all the methods by simulations and experiments. From the results, it can be confirmed that the extension of the SCM framework can help ultrasound imaging reduce grating lobes, perform super-resolution and better SNR(signal-to-noise ratio). Chapter 6: A discussion of the overall content of the thesis as well as suggestions for further development together with the remaining problems are summarized.首都大学東京, 2019-03-25, 博士(工学)首都大学東

    Electrophysiologic assessment of (central) auditory processing disorder in children with non-syndromic cleft lip and/or palate

    Get PDF
    Session 5aPP - Psychological and Physiological Acoustics: Auditory Function, Mechanisms, and Models (Poster Session)Cleft of the lip and/or palate is a common congenital craniofacial malformation worldwide, particularly non-syndromic cleft lip and/or palate (NSCL/P). Though middle ear deficits in this population have been universally noted in numerous studies, other auditory problems including inner ear deficits or cortical dysfunction are rarely reported. A higher prevalence of educational problems has been noted in children with NSCL/P compared to craniofacially normal children. These high level cognitive difficulties cannot be entirely attributed to peripheral hearing loss. Recently it has been suggested that children with NSCLP may be more prone to abnormalities in the auditory cortex. The aim of the present study was to investigate whether school age children with (NSCL/P) have a higher prevalence of indications of (central) auditory processing disorder [(C)APD] compared to normal age matched controls when assessed using auditory event-related potential (ERP) techniques. School children (6 to 15 years) with NSCL/P and normal controls with matched age and gender were recruited. Auditory ERP recordings included auditory brainstem response and late event-related potentials, including the P1-N1-P2 complex and P300 waveforms. Initial findings from the present study are presented and their implications for further research in this area —and clinical intervention—are outlined. © 2012 Acoustical Society of Americapublished_or_final_versio

    Optical and single element transducers for the generation of arbitrary acoustic fields

    Get PDF
    Precise control over the temporal and spatial properties of acoustic fields in 2 or 3-D is essential for nearly all modern, biomedical applications of ultrasound. At present, piezoelectric arrays dominate, however, despite their ubiquity they have a number of drawbacks that compromise the fidelity with which the output field can be manipulated, particularly at high frequencies and in three dimensions. The development of new novel alternatives for manipulating acoustic fields in 3-D is therefore essential. This thesis presents several new techniques through which this can be achieved using both the optical generation of ultrasound and single element piezoelectric transducers. First, the use of multiple Q-switch laser sources in combination with binary amplitude holograms is investigated for the generation of single and multi-focal acoustic fields. The conditions required for the generation of a focus are established numerically and the method is validated experimentally. Next, two approaches are developed for the generation of arbitrary spatial distributions of pressure using a single optical pulse. The first employs multi-layer optical absorbers: structures composed of several absorbing layers each individually patterned such that the field constructively interferes at a set of target points. The second uses tailored optically absorbing surface profiles: arbitrary surface shapes, fabricated through 3-D printing, designed to geometrically focus over a continuous pattern. Finally, the last chapter of the thesis investigates the use of multi-frequency kinoforms for mapping the field of single element piezoelectric transducers onto multiple complex target distributions. The properties of these kinoforms are explored in depth numerically and experimentally it is shown that multiple complex distributions can be generated in a target plane using this approach

    CALIBRATION AND PERFORMANCE EVALUATION OF MINIATURE ULTRASONIC HYDROPHONES USING TIME-DELAY SPECTROMETRY

    Get PDF
    corecore