16 research outputs found

    Synthesis of behavioral models from scenarios

    No full text

    Reliability prediction in model driven development

    Get PDF
    Evaluating the implications of an architecture design early in the software development lifecycle is important in order to reduce costs of development. Reliability is an important concern with regard to the correct delivery of software system service. Recently, the UML Profile for Modeling Quality of Service has defined a set of UML extensions to represent dependability concerns (including reliability) and other non-functional requirements in early stages of the software development lifecycle. Our research has shown that these extensions are not comprehensive enough to support reliability analysis for model-driven software engineering, because the description of reliability characteristics in this profile lacks support for certain dynamic aspects that are essential in modeling reliability. In this work, we define a profile for reliability analysis by extending the UML 2.0 specification to support reliability prediction based on scenario specifications. A UML model specified using the profile is translated to a labelled transition system (LTS), which is used for automated reliability prediction and identification of implied scenarios; the results of this analysis are then fed back to the UML model. The result is a comprehensive framework for addressing software reliability modeling, including analysis and evolution of reliability predictions. We exemplify our approach using the Boiler System used in previous work and demonstrate how reliability analysis results can be integrated into UML models

    Synthesizing Finite-state Protocols from Scenarios and Requirements

    Full text link
    Scenarios, or Message Sequence Charts, offer an intuitive way of describing the desired behaviors of a distributed protocol. In this paper we propose a new way of specifying finite-state protocols using scenarios: we show that it is possible to automatically derive a distributed implementation from a set of scenarios augmented with a set of safety and liveness requirements, provided the given scenarios adequately \emph{cover} all the states of the desired implementation. We first derive incomplete state machines from the given scenarios, and then synthesis corresponds to completing the transition relation of individual processes so that the global product meets the specified requirements. This completion problem, in general, has the same complexity, PSPACE, as the verification problem, but unlike the verification problem, is NP-complete for a constant number of processes. We present two algorithms for solving the completion problem, one based on a heuristic search in the space of possible completions and one based on OBDD-based symbolic fixpoint computation. We evaluate the proposed methodology for protocol specification and the effectiveness of the synthesis algorithms using the classical alternating-bit protocol.Comment: This is the working draft of a paper currently in submission. (February 10, 2014

    An Approach to Relate Viewpoints and Modeling Languages

    Get PDF
    The architectural design of distributed enterprise applications from the viewpoints of different stakeholders has been proposed for some time, for example, as part of RM-ODP and IEEE 1471, and seems now-a-days to gain acceptance in practice. However, much work remains to be done on the relationships between different viewpoints. Failing to relate viewpoints may lead to a collection of viewpoint models that is inconsistent, and may therefore lead to an incorrect implementation. This paper defines an approach that helps designers to relate different viewpoints to each other. Thereby, it helps to enforce the consistency of the overall design. The results of this paper are expected to be particularly interesting for Model Driven Architecture (MDA) projects, since the proposed models can be used for the explicit definition of the models and relationships between models in an MDA trajectory

    Using Temporal Business Rules to Synthesize Service Composition Process Models

    Get PDF
    Based on our previous work on the conformance verification of service compositions, in this paper we present a framework and associated techniques to generate the process models of a service composition from a set of temporal business rules. Dedicated techniques including path-finding, branch structure introduction, and parallel structure introduction are used to semiautomatically synthesize the process models from the semantics-equivalent Finite State Automata of the rules. These process models naturally satisfy the prescribed behavioral constraints of the rules. With the domain knowledge encoded in the temporal business rules, an executable service composition program, e.g. a BPEL program, can be further generated from the process models

    Eliciting requirements and scenarios using the SCTL-MUS methodology. The shuttle system case study

    Get PDF
    ABSTRACT The development of complex systems demands methodologies that conveniently support the stakeholders in the creative tasks. In this paper, we present a methodology for the incremental elicitation of requirements and scenarios, driven by the integration checks performed over a state machine that represents the global behavior of the desired system

    Reusing artifact-centric business process models : a behavioral consistent specialization approach

    Get PDF
    Process reuse is one of the important research areas that address efficiency issues in business process modeling. Similar to software reuse, business processes should be able to be componentized and specialized in order to enable flexible process expansion and customization. Current activity/control-flow centric workflow modeling approaches face difficulty in supporting highly flexible process reuse, limited by their procedural nature. In comparison, the emerging artifact-centric workflow modeling approach well fits into these reuse requirements. Beyond the classic class level reuse in existing object-oriented approaches, process reuse faces the challenge of handling synchronization dependencies among artifact lifecycles as parts of a business process. In this article, we propose a theoretical framework for business process specialization that comprises an artifact-centric business process model, a set of methods to design and construct a specialized business process model from a base model, and a set of behavioral consistency criteria to help check the consistency between the two process models. © 2020, Springer-Verlag GmbH Austria, part of Springer Nature
    corecore