
Eliciting Requirements and Scenarios using the
SCTL-MUS Methodology. The Shuttle System Case Study

José J. Pazos-Arias
Telematics Engineering Dept.

University of Vigo (Spain)

jose@det.uvigo.es

Jorge Garcı́a-Duque
Telematics Engineering Dept.

University of Vigo (Spain)

jgd@det.uvigo.es

Martı́n López-Nores
Telematics Engineering Dept.

University of Vigo (Spain)

mlnores@det.uvigo.es

ABSTRACT
The development of complex systems demands methodolo-
gies that conveniently support the stakeholders in the cre-
ative tasks. In this paper, we present a methodology for the
incremental elicitation of requirements and scenarios, driven
by the integration checks performed over a state machine
that represents the global behavior of the desired system.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifica-
tions—Elicitation methods, methodologies

Keywords
Incremental development, scenarios, requirements, state ma-
chines

1. INTRODUCTION
Scenario-oriented solutions are among the most success-

ful attempts to produce quality software requirements [6].
In such approaches, the initial development of a system is
based on the knowledge about certain interactions among
the agents involved in it. From those known interactions,
the stakeholders create a set of scenarios that constitute the
starting point for eliciting the requirements of the system.

However, scenarios do not suffice by themselves to reach
a requirements specification for a system, because they nec-
essarily represent partial views of its global behavior. It
remains an issue to build a global model of the system to
perform integration analysis, that is, to check that the dif-
ferent parts fit well together and do result in a system that
satisfies the needs and expectations of the stakeholders.

In this paper, we present an approach that facilitates the
incremental elicitation of scenarios and requirements, be-
ginning with a set of basic scenarios. For this purpose, the
scenarios and requirements initially elicited are subject to a
process of successive analysis-revision cycles, driven by the
verification of desirable integration properties. Each cycle is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCESM 2005 Workshop
Copyright 2005 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

done over a model of the system that is automatically syn-
thesized from the requirements elicited so far, and produces
modifications of those requirements and the scenarios being
handled. Since it is not possible to predict the evolutions
that the stakeholders may want to apply, these modifications
are always presented as suggestions to revise their work. It
is precisely in reasoning about whether to accept or reject
these suggestions that the approach supports the creative
task of building the desired system.

The context for our work lies in the SCTL-MUS method-
ology, a formal approach to the specification of distributed
reactive systems that was introduced in [12]. This method-
ology supports the incremental development of requirements
specifications, taking into account the incomplete and often
imprecise knowledge available at the early stages of devel-
opment. Our vision in this paper is that the same support
is suitable for the establishment of a Scenario-Based Soft-
ware Engineering (SBSE) process, with its main steps as
described in Section 2. Section 3 illustrates this approach
over the Shuttle System case study described in [13], and
the results are finally discussed in Section 4.

2. THE APPROACH
Figure 1 depicts our proposal for an SBSE process over

SCTL-MUS, which has been inspired by the work presented
in [8]. Our goal is to provide adequate support to carry out
integration analysis in an incremental specification process.

Stakeholders

System
MUS model

Integration properties

ANALYSISREVISION

Requirement revisions

Scenario revisions

Counter-example scenarios

SCTL
requirements

Scenario 2

Scenario n

Scenario 1

Figure 1: An SBSE process over SCTL-MUS.

From Scenarios to Requirements
The ultimate objective of our development process is to

build a model of the global behavior of a system, which al-
lows automating to a great deal its implementation. In this

context, scenarios come up as an accessible means for the
stakeholders to acquire knowledge about the desired func-
tionality. However, whereas it has been argued that a di-
rect translation is possible from scenarios to models [15], we
believe that leaning intermediately on a requirements spec-
ification is a more suitable approach. The reason is that
scenarios and system models serve different purposes by na-
ture: each scenario captures a particular vision of the global
system, involving only a part of the system agents and some
of the possible interactions between them. The stakeholders
do not conceive the system as a whole, but as a bunch of sep-
arate behaviors; thereby, it is not feasible for them to move
directly from a set of scenarios to a model that represents
the global behavior of a system.

In contrast, scenarios are an intuitive way for the stake-
holders to capture requirements, thus enabling a property-
oriented way of thinking that is highly suitable for the early
stages of software development [16]. Eliciting requirements
is an eminently creative task, because an expressive effort
is needed to find the requirements that represent more ac-
curately the behavior implied by the scenarios. Again, note
that an automated translation between requirements and
scenarios is purposeless, because it would amount to rewrit-
ing the scenarios into another language, not to eliciting sys-
tem requirements.

In order to facilitate the elicitation of requirements from
the scenarios, it is necessary that the language employed
to specify requirements be simple and understandable to
the stakeholders, so that it allows them to easily express
the interactions implied by the scenarios. For this purpose,
we propose using the Simple and Causal Temporal Logic
(SCTL), whose semantics allows expressing cause-effect re-
lationships between different events in a way that is close to
natural language. Such a causal semantics has proved to be
beneficial in requirements specification tasks [11].

From Requirements into a System Model
Having a formal specification language, once a set of SCTL

requirements have been elicited from the scenarios, we can
apply the synthesis algorithm presented in [12] to obtain
a state machine for the system. This is expressed in the
Model of Unspecified States (MUS) formalism, a variation of
classical Labeled Transition Systems devised to capture the
incompleteness of a model obtained from a partial specifica-
tion. It is over this state machine that integration analysis
is performed.

Eliciting Requirements and Scenarios
Due to the characteristic impreciseness of the early stages

of development, the requirements elicited from the scenar-
ios may not be representative of a system with the desired
functionality. When this happens, the model obtained for
the global system fails to pass the integration tests.

We consider three possible sources of incorrectness:

1. The requirements may be incorrect, because the stake-
holders can make errors when expressing the scenarios
through requirements.

2. The requirements may correspond accurately to the
initial scenarios, but be incorrect with respect to others
—unknown or not represented in the current stage of
development.

3. The considered scenarios may be erroneous.

The first kind of errors can be detected by validating the
system MUS model (i.e., by checking whether the scenar-
ios are materialized over the model), but the other kinds
demand alternative mechanisms. In response to that, we
perform the integration tests according to the paradigm of
the analysis-revision cycle, which was introduced in [4] as a
suitable approach to support evolving requirements specifi-
cations.

The main idea behind the analysis-revision approach is
to gather diagnostic information about the problems found
during the analysis, and then use that information to gen-
erate revisions of the artifacts provided by the stakeholders.
In [5], we applied this paradigm to handle certain evolutions
of the requirements, with special emphasis on making it easy
for the stakeholders to decide on adopting the suggested re-
visions. Now, we extend it for the SBSE process, introducing
support for the elicitation of scenarios as well. The moti-
vation for doing this is twofold: i) to facilitate even further
the decision of whether the requirements revisions should
be accepted or rejected, and ii) to facilitate the elicitation
of more complex scenarios from a set of basic ones, which is
hard work if no convenient assistance is provided.

2.1 Background

The Formalisms
The SCTL-MUS approach is totally formalized. As we al-

ready explained, it combines property-oriented and model-
oriented formal description techniques: the logic SCTL to
express the system’s functional requirements, and the graph
formalism MUS to model systems for validation, formal ver-
ification and implementation purposes.

SCTL statements express under what circumstances dur-
ing the operation of a system shall a given condition be satis-
fied. They have the generic form Premise

L

Consequence,
with

L

ranging over the set of temporal operators {⇒,⇒
©,⇒

J

} and the following semantics:

If Premise is satisfied, then [simultaneously (⇒) | next (⇒ ©) |

previously (⇒
J

)] Consequence must be satisfied.

Given a set of requirements expressed in SCTL, the syn-
thesis algorithm of SCTL-MUS generates a MUS graph that
adheres to them. MUS labels the transitions between states
with three different truth values: true (1) for possible tran-
sitions, false (0) for non-possible ones, and unspecified (1

2
)

for those about which there is nothing in the current speci-
fication saying whether they must be possible or not.

This notion of unspecification was introduced to explicitly
deal with the incompleteness inherent to the intermediate
stages of an incremental process: a partial specification rep-
resents all the systems into which it can evolve by adding
new requirements. MUS graphs include an unspecified state
—not relevant for the contents of this paper and, therefore,
not drawn in the figures— that represents all the states that
have not been specified so far (see [12] for the details). With
this definition, adding new requirements to a specification
always results in losses of unspecification in the MUS model
that implements it (i.e., some unspecified events are turned
into possible or non-possible ones), which allows making the
synthesis an incremental process. This is the main differ-
ence with respect to other formalisms intended to support
partial specifications, like KPSs [3], MTSs [7] or PLTSs [14].

The Analysis-Revision cycle

The analysis phase of our analysis-revision cycle consists
of verifying the system MUS model against a number of de-
sirable properties, specified by the stakeholders as SCTL
formulae. This is done by a many-valued model-checker
that, leaning on the management of unspecification and the
causality of SCTL, enables reasoning about evolutions and
satisfaction tendencies in the formal verification process.

When the model-checker finds that an integration prop-
erty is not satisfied in the system MUS model (or that the
model cannot lose unspecification so as to satisfy the prop-
erty), it generates diagnostic information that is passed to
the revision phase. This phase uses the diagnostic informa-
tion to automatically generate modifications of the elicited
requirements, that would solve the problems with the prop-
erties in question. In doing this, the mechanisms introduced
in [5] allow presenting evolutions as specializations of the
requirements elicited by the stakeholders, making the revi-
sions easy to understand. Proceeding otherwise would pro-
duce artificial requirements that, not capturing the expres-
sive efforts of the stakeholders, do not serve to support the
incremental elicitation process.

2.2 Eliciting Scenarios
As it was presented in [5], our analysis-revision cycle serves

in the SBSE process to generate revisions of the require-
ments elicited from the initial scenarios. Besides, as part of
the analysis phase, the same mechanisms can be used to pro-
vide counter-example scenarios illustrating behaviors that
violate the integration properties. Those scenarios highlight
the changes implied by the revisions of the requirements be-
ing considered with respect to the initial situation.

Notwithstanding, the revision process is not complete only
with the aforementioned features. To facilitate the elicita-
tion of more complex scenarios from a set of basic ones, it
is very helpful to see the modifications of the global model
and the requirements reflected as modifications of the cur-
rent scenarios. Inspired by the work presented in [17], we
aim at supporting the incremental elicitation of scenarios
by exploiting the management of incompleteness of SCTL-
MUS.

Given a set of initial scenarios, our approach generates
scenario revisions from the revisions of the requirements.
Again, we believe that it is not a suitable approach to in-
vent new scenarios, since they would be meaningless for the
stakeholders; on the contrary, we look for specializations of
the scenarios they are handling. To accomplish this, we syn-
thesize a new system MUS model implementing the revised
requirements, and then check whether all the materializa-
tions of the scenarios over the original model are preserved.
In case not, we consider two different situations:

1. All the materializations have been lost. When
the revised requirements do not represent all the be-
havior implied by the scenario, the model synthesized
from those requirements does not contain materializa-
tions of it. Nonetheless, the incompleteness of the
model may permit evolving the specification so that
the scenario is materialized again. The unspecified el-
ements of MUS models allow distinguishing two cases:

• It is possible to turn unspecified events into true
or false ones so that the scenario is materialized
again. In this case, we provide a revision includ-
ing: i) the part of the scenario that is material-

ized, and ii) additional revisions of the require-
ments that imply the necessary changes in the
model. These revised requirements can preserve
all the knowledge of the others, and so we talk
about refinements in the traditional sense.

• There is no way to lose unspecification so that
the scenario is materialized again. This situation
is due to a wrong revision of the requirements or,
alternatively, to the scenario being erroneous. In
this case, we first provide counter-example scenar-
ios obtained from the traces of the revised model.
If none of those scenarios is accepted as represen-
tative of the desired system, we start looking for
requirements revisions that would lead to a model
materializing the scenario. Since it is necessary
to contradict the behavior that prevented the sce-
nario from materializing, these modifications can-
not imply refinements; instead, we have intro-
duced support for retrenchments [1], which allow
evolving a specification by contradicting part of
the knowledge it captures.

2. Some materializations have been lost, but oth-

ers are preserved. In this case, a specialization of
the scenario has occurred as a result of adding knowl-
edge to the specification —through the verification
of desirable properties. The specialization consists of
refining the original scenario to fit the materializa-
tions which are preserved. In addition to that, we
provide new scenarios illustrating the materializations
that have been lost. It is here where the more complex
scenarios are elicited from the simpler ones, initially
conceived by the stakeholders.

3. CASE STUDY: THE SHUTTLE SYSTEM
Next, we show a run of our approach over the Shuttle Sys-

tem case study proposed in [13]. This is about a railway of
interconnected stations, in which shuttles bid for orders to
transport passengers between certain stations. The success-
ful completion of an order results in a monetary reward for
the corresponding shuttle, but a penalty is incurred in case
an order is not served in a given amount of time. New orders
are made known to all the shuttles, so that all of them can
make an offer. The shuttle with the best (i.e., the lowest)
offer will receive the assignment.

From Scenarios to Requirements
We begin with the scenarios shown in Figures 2 and 3,

which have been extracted from [13]. These scenarios repre-
sent interactions between a generic Shuttle Agent —of which
there exist n instances in the system—, the Broker Agent
and the Banking Agent.

Scenario 1 shows that the Shuttle Agent can make an offer
or not when it receives an order, and makes an invoice when
it serves an assigned order in time. Scenario 2 shows that
the Shuttle Agent can be penalized if it does not serve an
assigned order in time.

From these scenarios, we assume that the stakeholders
have elicited the following requirements for the i-th Shuttle
Agent (each SCTL statement is given along with a textual
description to help understand its meaning):

1. “After receiving an order, it is possible to make an
offer”:

Shuttle

Agent

Broker

Agent

Banking

Agent

OrderAv

MakeOffer

OrderAv

AssignOrder

Invoice

Figure 2: Scenario 1.

Shuttle

Agent

Broker

Agent

Banking

Agent

OrderAv

MakeOffer

AssignOrder

PaidPenalty

Figure 3: Scenario 2.

R1i
≡ OrderAv ⇒ ©MakeOfferi

2. “When it is possible to make an offer for an order, it
is also possible to ignore it”:

R2i
≡ MakeOfferi ⇒ IgnoreOrderi

3. “After making an offer, it is possible to receive the
assignment of the corresponding order”:

R3i
≡ MakeOfferi ⇒ ©AssignOrderi

4. “Once an order has been served (in time or not) or
ignored, it is possible to receive a new order”:

R4i
≡ (IgnoreOrderi ∨ Invoicei ∨ PaidPenaltyi) ⇒

© OrderAv

5. “If an order has been assigned, then it can be served in
time, but it can also provoke a penalty”:

R5i
≡ (true ⇒

K

AssignOrderi) ⇒

(Invoicei ∧ PaidPenaltyi)

Note that, to simplify the presentation, we will assume
that it is not possible for two orders to coexist; therefore,
we use a unique event OrderAv to simultaneously notify all
the Shuttle Agents that a new order is received.

From Requirements into a System Model
Figure 4 shows the MUS model of the i-th Shuttle Agent,

generated automatically from the requirements above by the
SCTL-MUS synthesis algorithm (the unspecified events are
not represented; the non-possible ones would be indicated
next to a symbol like).

The MUS graph of the global system, on which integration
analysis will be performed, is obtained by applying the rules

s
1

s
2

s
3

s
4

OrderAv

MakeOfferi

AssignOrderi

IgnoreOrderi

Invoicei

PaidPenaltyi

Figure 4: The MUS model of Shuttlei.

of the interleaving operator |||M. This is an extension of the
classical interleaving operator of process algebras, intended
to support unspecification in a way that a composition re-
flects the potentiality of its components (see [10] for details).
For simplicity, Figure 5 shows the MUS graph for the case in
which there are only two Shuttle Agents in the system, using
the following notation: OrderAv ≡ a, MakeOfferi ≡ bi,
IgnoreOrderi ≡ ci, AssignOrderi ≡ di, Invoicei ≡ ei and
PaidPenaltyi ≡ fi.

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9 s

10
s
11

s
12

s
13 s

14
s
15

s
16

a

b1 d1c1

e1 f1

b2

d2

c2

f2

e2

a

b1

d1

c1

e1 f1a

b2

d2

c2

f2

e2

a
b1 d1

c1

e1 f1

a

b2

d2

c2

f2

e2

a b1 d1

c1

e1 f1

a

b2

d2

c2

f2

e2

Figure 5: The system MUS model for two shuttles.

Eliciting Requirements and Scenarios
When the system MUS model has been obtained, the

stakeholders can validate the elicited requirements and sce-
narios by initiating an analysis-revision cycle. Next, we
illustrate how integration analysis is performed, and how
the results are turned into revisions of the requirements
and the scenarios being handled. Particularly, we focus on
revisions of Scenario 2 (Figure 3), which has several ma-
terializations over the model of Figure 5 for each one of
the Shuttle Agents in the system. A materialization is any
path along the MUS model that follows the sequence of ac-
tions of the scenario, possibly with occurrences of other ac-
tions in between. Thus, for instance, we have some ma-
terializations of Scenario 2 for the first shuttle along the
paths p1 = {s1, s6, s7, s8, s5}, p2 = {s1, s6, s7, s11, s12, s9}
and p3 = {s1, s6, s7, s11, s15, s16, s13}.

The Analysis Phase. It is a desirable integration prop-
erty that an order cannot be assigned to more than one
Shuttle Agent. That property can be easily expressed using
SCTL, relating the fact that an order has been assigned to

a given Shuttle Agent to the possibility that it can make an
invoice:

∀i ∈ [1, n], Pi ≡ Invoicei ⇒
^

j 6=i

(¬AssignOrderj)

For the n = 2 case, the model-checker detects that these
properties are violated in the states s12 and s15 of the model
of Figure 5. For instance, if we are in state s12, the order
has already been assigned to the first Shuttle Agent —event
AssignOrder1 has happened before— but it is still possible
to assign it to the second one —AssignOrder2 is possible
in s12. In response to these observations, the model-checker
generates the following diagnostic information:

∆1 = s12[AssignOrder2] 0

∆2 = s15[AssignOrder1] 0

Each ∆ indicates how the specification of certain events
should be modified in certain states to satisfy the properties
being analyzed. For example, ∆1 indicates that, in order
to satisfy the property P1, the event AssignOrder2 should
have been specified as false in the state s12, whereas it is
currently true.

The model-checker also provides counter-example scenar-
ios illustrating sequences of events that lead to violations
of the properties. Upon successive requests, we can provide
as many scenarios as there exist ways to reach the states
affected by the ∆s. Figure 6 shows one such scenario, that
follows the path p = {s1, s6, s7, s11, s15, s16} over the model
of Figure 5.

Shuttle

Agent 2

Shuttle

Agent 1

Broker

Agent

OrderAv

MakeOffer

MakeOffer

AssignOrder

AssignOrder

Figure 6: A counter-example scenario.

The Revision Phase. Using the mechanisms we pre-
sented in [5], we find that the problems with the integration
properties can be solved by changing the original require-
ments R4i

for refined versions R′
4i

as follows:

• “Once an order has been served or ignored by the i-th
Shuttle Agent, that order cannot be assigned to another
one, but it is possible to receive a new order”:

R′
4i

≡ (IgnoreOrderi ∨ Invoicei ∨ PaidPenaltyi) ⇒

(©OrderAv∧
^

j6=i

(¬AssignOrderj))

Figure 7 shows the MUS graph that is obtained by includ-
ing the revised requirement R′

4i
instead of R4i

, for the case
of two Shuttle Agents.

In this graph, some of the original materializations of Sce-
nario 2 have been lost, but others are preserved; thereby, as
we explained in Section 2.2, the revision entails a special-
ization of that scenario, to fit the materializations which

d2

d1 d1 d2

d1 d2

d2

d1

d2

d2

d1 d1 d2 d1

a

b1 d1c1

e1 f1

b2

d2

c2

e2

f2

a b1

c1

e1f1a

b2

c2

e2

f2

a
b1 d1

c1

e1 f1

a

b2

d2

c2

e2

f2

a
b1

c1

a

b2

c2

Figure 7: The system MUS model including the re-

vised requirements R′
4i

.

are preserved and reflect the ones that have been lost. Ne-
glecting many interesting details, this is done by following
the paths of the former materializations, and annotating the
changes due to the requirement revisions. For example, the
materialization we had for the first Shuttle Agent along the
path p1 = {s1, s6, s7, s8, s5} has been lost, and this is noti-
fied by introducing the scenario of Figure 8(a). In contrast,
the materialization along p2 = {s1, s6, s7, s11, s12, s9} is pre-
served, though with some changes in between that lead to
the scenario of Figure 8(b).1

Faced with the new scenarios and the revised requirement,
the stakeholders can easily reason about the suggested evo-
lution. It is expectable that they would reject it, because the
scenarios and the requirement are not representative of what
is wanted. According to the scenario of Figure 8(a), the fact
that the second Shuttle Agent cannot be assigned an offer
depends on the other one bidding; likewise, in Figure 8(b),
the first Shuttle Agent cannot be assigned an order until the
second has made an offer for it. Moreover, since the require-
ment R′

41
includes IgnoreOrder1 ⇒ ¬AssignOrder2, the

first Shuttle Agent would prevent the second one from being
assigned an order it ignores.

The rejection of a suggested evolution makes the analysis-
revision cycle look for alternatives to satisfy the integration
properties. The mechanisms of [5] find that the next possi-
bility is to change the original requirements R5i

for refined
versions R′

5i
:

• “If an order has been assigned to the i-th Shuttle Agent,
then it can be served in time or provoke a penalty, but
it cannot be assigned to another shuttle”:

R′
5i

≡ (true ⇒
K

AssignOrderi) ⇒

(Invoicei ∧ PaidPenaltyi∧
^

j 6=i

(¬AssignOrderj))

Figure 9 shows the MUS graph that is obtained by in-
cluding the revised requirement R′

5i
instead of R5i

, for the
case of two Shuttle Agents. Again, some of the original ma-
terializations of Scenario 2 have been lost, but others are

1The notation with a crossed-out arrow means that the cor-
responding action is not allowed to occur until the next ac-
tion of the scenario takes place.

Shuttle

Agent 1

Shuttle

Agent 2

Broker

Agent

OrderAv

AssignOrder

AssignOrder

MakeOffer

AssignOrder

(a) From a materialization that has been lost.

Shuttle

Agent 2

Shuttle

Agent 1

Broker

Agent

Banking

Agent

OrderAv

AssignOrder

AssignOrder

MakeOffer

AssignOrder

MakeOffer

AssignOrder

PaidPenalty

(b) From a materialization that is preserved.

Figure 8: Revisions of Scenario 2 according to the

revised requirements R′
4i

.

preserved. The loss of the materialization we had along
p3 = {s1, s6, s7, s11, s15, s16, s13} leads to the same scenario
of Figure 10(a); on its part, the materialization along p2 =
{s1, s6, s7, s11, s12, s9} produces the scenario of Figure 10(b).

We assume the stakeholders accept this revision, because
the scenarios and the revised requirement capture accurately
the intention of the integration properties. According to the
scenario of Figure 10(a), a Shuttle Agent may not be as-
signed an order for which it has made an offer; on its part,
it follows from Figure 10(b) that once an order has been as-
signed to a given Shuttle Agent, it cannot be assigned to any
other one. This is precisely the meaning of the revised part
of R′

5i
: (true ⇒

J

AssignOrderi) ⇒
V

j 6=i

(¬AssignOrderj).

Because the revision is accepted, the revised requirements
R′

5i
become part of the specification of the system, instead

of R5i
, and the scenarios of Figures 10(a) and 10(b) replace

the original scenario of Figure 3. Now, to go on with the
development process, the stakeholders can take a look at
the scenario in which a Shuttle Agent makes a bid but re-
ceives no assignment, to elicit the new requirement “if it
is possible to receive an assignment, then it is also possi-

d2

d2

d2

d1 d1 d1

a

b1 d1c1

e1 f1

b2

d2

c2

e2

f2

a

b1

d1

c1

e1f1a

b2

d2

c2

e2

f2

a
b1 d1

c1

e1 f1

a

b2

d2

c2

e2

f2

a b1

c1

a

b2

c2

Figure 9: The system MUS model including the re-

vised requirements R′
5i

.

ble that a timer goes off without receiving the assignment”
(R6 ≡ AssignOfferi ⇒ T imeOutOfferi). Subsequent
analysis and revision activities would support the reasoning
needed to further advance towards the desired system.

4. OVERVIEW
The SBSE approach we have presented supports the stake-

holders in eliciting system requirements and complex sce-
narios, allowing them to progressively gain understanding
about the system they are building. This is due to the fact
that the analysis-revision cycle leads to a continuous inter-
action between the process and the stakeholders, the latter
reasoning about the revisions suggested by the former.

It is important to remark that the revisions of the re-
quirements and scenarios can be easily understood by the
stakeholders, because they are not presented as new arti-
facts —which would be out of context— but as specializa-
tions of those elicited by the stakeholders. The methodology
also provides great flexibility in managing the revision sug-
gestions, since it is not at all compulsory to accept all or
nothing of a revision; for example, the stakeholders can ac-
cept some of the scenarios provided, but not the requirement
revisions.

The management of incompleteness done by SCTL-MUS
results in an incremental approach, in the sense that the
system MUS model grows along with the elicitation of new
scenarios and requirements. In fact, dealing with unspeci-
fication is the key to reduce the computational complexity
of the SBSE process, in what concerns the size of the sys-
tem MUS model or the cost of checking whether the scenar-
ios are materialized over it. In addition to the incremental
synthesis commented in Section 2.1, unspecification allows
making incremental model-checking, by reusing verification
efforts from previous iterations of the specification. To ex-
ploit this feature, we have adapted for the SBSE process
the mechanisms we presented in [9]; furthermore, inspired
by the work in [2], we are currently initiating research on
applying lightweight techniques.

Once we have finished implementing the above-mentioned
features, we will have completed an incremental develop-
ment methodology that allows refining three modeling per-
spectives of a system (scenarios, requirements and state ma-

Shuttle

Agent 1

Shuttle

Agent 2

Broker

Agent

OrderAv

MakeOffer

AssignOrder

(a) From a materialization that has been lost.

Shuttle

Agent 2

Shuttle

Agent 1

Broker

Agent

Banking

Agent

OrderAv

MakeOffer

AssignOrder

AssignOrder

PaidPenalty

(b) From a materialization that is preserved.

Figure 10: Revisions of Scenario 2 according to the

revised requirements R′
5i

.

chines) at the same time, through analysis-revision cycles.
This will greatly facilitate the identification of suitable evo-
lutions of a specification, doing validations and verifications
over a unique knowledge base, captured in the requirements.

5. ACKNOWLEDGEMENTS
This work has been partially funded by the Xunta de Gali-

cia Research Project PGIDIT04PXIB32201PR.

6. ADDITIONAL AUTHORS
Additional author: Belén Barragáns-Mart́ınez, from the

Telematics Engineering Dept. of the University of Vigo
(Spain). Email: belen@det.uvigo.es.

7. REFERENCES
[1] R. Banach and M. Poppleton. Retrenching partial

requirements into system definitions: a simple feature
interaction case study. Requirements Engineering
Journal, 8(4):226–288, 2003.

[2] Y. Bontemps and P. Heymans. As fast as sound
(lightweight formal scenario synthesis and
verification). In Proceedings of SCESM’04 Workshop
on Scenarios and State Machines: Models, Algorithms,
and Tools, pages 27–34, Edimburgh, UK, May 2004.

[3] G. Bruns and P. Godefroid. Model checking partial
state spaces with 3-valued temporal logics. In
Proceedings of CAV’99 Conference on Computer-Aided
Verification, pages 274–287, Trento, Italy, July 1999.

[4] A. S. d’Avila Garcez, A. Russo, B. Nuseibeh, and
J. Kramer. An analysis-revision cycle to evolve

requirements specifications. In Proceedings of ASE’01
Conference on Automated Software Engineering, pages
354–358, San Diego, USA, Nov. 2001.

[5] J. Garćıa-Duque, J. J. Pazos-Arias, and
B. Barragáns-Mart́ınez. An analysis-revision cycle to
evolve requirements specifications by using the
SCTL-MUS methodology. In Proceedings of RE’02
Conference on Requirements Engineering, pages
282–288, Essen, Germany, Sept. 2002.

[6] M. Glinz. Improving the quality of requirements with
scenarios. In Proceedings of World Congress for
Software Quality, pages 55–60, Yokohama, Japan,
Sept. 2000.

[7] P. Godefroid, M. Huth, and R. Jagadeesan.
Abstraction-based model checking using modal
transition systems. In Proceedings of the CONCUR’01
Conference on Concurrency Theory, pages 426–440,
Aalborg, Denmark, 2001.

[8] D. Harel. From play-in scenarios to code: An
achievable dream. Computer, 34(1):53–60, 2001. IEEE
Press.

[9] M. López-Nores, R. P. D́ıaz-Redondo, J. J.
Pazos-Arias, and J. Garćıa-Duque. An improved
repository system for effective and efficient reuse of
formal verification efforts. In Proceedings of
APSEC’04 Conference on Software Engineering, pages
38–45, Busan, South Korea, Dec. 2004.

[10] M. López-Nores, J. J. Pazos-Arias, J. Garćıa-Duque,
and B. Barragáns-Mart́ınez. Tracing integration
analysis in component-based formal specifications. In
Proceedings of FMOODS’05 Conference on Formal
Methods for Open Object-based Distributed Systems,
Athens, Greece, June 2005. To appear.

[11] J. Moffett. A model for a causal logic for requirements
engineering. Journal of Requirements Engineering,
1:27–46, 1996.

[12] J. J. Pazos-Arias and J. Garćıa-Duque. SCTL-MUS: A
formal methodology for software development of
distributed systems. A case study. Formal Aspects of
Computing, 13:50–91, 2001.

[13] The shuttle system case study. http://wwwcs.upb.de/
cs/ag-schaefer/CaseStudies/ShuttleSystem/.

[14] S. Uchitel, J. Kramer, and J. Magee. Behavior model
elaboration using Partial Labelled Transition Systems.
In Proceedings of ESEC/FSE’03 meeting of the
European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software
Engineering, pages 19–27, Helsinki, Finland, Sept.
2003.

[15] S. Uchitel, J. Kramer, and J. Magee. Synthesis of
behavioral models from scenarios. IEEE Transactions
on Software Engineering, 29(2), Feb. 2003. IEEE
Press.

[16] A. van Lamsweerde. The future of software
engineering, chapter Formal specification: A roadmap,
pages 147–159. ACM Press, 2000.

[17] J. Whittle and I. Krüger. A methodology for
scenario-based requirements capture. In Proceedings of
SCESM’04 Workshop on Scenarios and State
Machines: Models, Algorithms, and Tools, Edimburgh,
UK, May 2004.

