4,392 research outputs found

    Taming Numbers and Durations in the Model Checking Integrated Planning System

    Full text link
    The Model Checking Integrated Planning System (MIPS) is a temporal least commitment heuristic search planner based on a flexible object-oriented workbench architecture. Its design clearly separates explicit and symbolic directed exploration algorithms from the set of on-line and off-line computed estimates and associated data structures. MIPS has shown distinguished performance in the last two international planning competitions. In the last event the description language was extended from pure propositional planning to include numerical state variables, action durations, and plan quality objective functions. Plans were no longer sequences of actions but time-stamped schedules. As a participant of the fully automated track of the competition, MIPS has proven to be a general system; in each track and every benchmark domain it efficiently computed plans of remarkable quality. This article introduces and analyzes the most important algorithmic novelties that were necessary to tackle the new layers of expressiveness in the benchmark problems and to achieve a high level of performance. The extensions include critical path analysis of sequentially generated plans to generate corresponding optimal parallel plans. The linear time algorithm to compute the parallel plan bypasses known NP hardness results for partial ordering by scheduling plans with respect to the set of actions and the imposed precedence relations. The efficiency of this algorithm also allows us to improve the exploration guidance: for each encountered planning state the corresponding approximate sequential plan is scheduled. One major strength of MIPS is its static analysis phase that grounds and simplifies parameterized predicates, functions and operators, that infers knowledge to minimize the state description length, and that detects domain object symmetries. The latter aspect is analyzed in detail. MIPS has been developed to serve as a complete and optimal state space planner, with admissible estimates, exploration engines and branching cuts. In the competition version, however, certain performance compromises had to be made, including floating point arithmetic, weighted heuristic search exploration according to an inadmissible estimate and parameterized optimization

    Bug Hunting with False Negatives Revisited

    Get PDF
    Safe data abstractions are widely used for verification purposes. Positive verification results can be transferred from the abstract to the concrete system. When a property is violated in the abstract system, one still has to check whether a concrete violation scenario exists. However, even when the violation scenario is not reproducible in the concrete system (a false negative), it may still contain information on possible sources of bugs. Here, we propose a bug hunting framework based on abstract violation scenarios. We first extract a violation pattern from one abstract violation scenario. The violation pattern represents multiple abstract violation scenarios, increasing the chance that a corresponding concrete violation exists. Then, we look for a concrete violation that corresponds to the violation pattern by using constraint solving techniques. Finally, we define the class of counterexamples that we can handle and argue correctness of the proposed framework. Our method combines two formal techniques, model checking and constraint solving. Through an analysis of contracting and precise abstractions, we are able to integrate overapproximation by abstraction with concrete counterexample generation

    UCLID5: Multi-Modal Formal Modeling, Verification, and Synthesis

    Get PDF
    UCLID5 is a tool for the multi-modal formal modeling, verification,and synthesis of systems. It enables one to tackle verification problems for heterogeneous systems such as combinations of hardware and software, or those that have multiple, varied specifications, or systems that require hybrid modes of modeling. A novel aspect of UCLID5 is an emphasis on the use of syntax-guided and inductive synthesis to automate steps in modeling and verification. This toolpaper presents new developments in the UCLID5 tool including new language features, integration with new techniques for syntax-guided synthesis and satisfiability solving, support for hyperproperties and combinations of axiomatic and operational modeling, demonstrations on new problem classes, and a more robust implementation

    Design Understanding: From Logic to Specification

    Get PDF
    We present an outline of the field of Design Understanding and summarize state-of-the-art research in deriving human-understandable knowledge in form of logic properties from an unknown design

    Validity-Guided Synthesis of Reactive Systems from Assume-Guarantee Contracts

    Full text link
    Automated synthesis of reactive systems from specifications has been a topic of research for decades. Recently, a variety of approaches have been proposed to extend synthesis of reactive systems from proposi- tional specifications towards specifications over rich theories. We propose a novel, completely automated approach to program synthesis which reduces the problem to deciding the validity of a set of forall-exists formulas. In spirit of IC3 / PDR, our problem space is recursively refined by blocking out regions of unsafe states, aiming to discover a fixpoint that describes safe reactions. If such a fixpoint is found, we construct a witness that is directly translated into an implementation. We implemented the algorithm on top of the JKind model checker, and exercised it against contracts written using the Lustre specification language. Experimental results show how the new algorithm outperforms JKinds already existing synthesis procedure based on k-induction and addresses soundness issues in the k-inductive approach with respect to unrealizable results.Comment: 18 pages, 5 figures, 2 table
    • …
    corecore