
Design Understanding: From Logic to Specification*
Goerschwin Fey† Tara Ghasempouri‡ Swen Jacobs§ Gianluca Martino† Jaan Raik‡ Heinz Riener¶

†Hamburg University of Technology ‡Tallinn University of Technology
Hamburg, Germany Tallinn, Estonia

§CISPA and Saarland University ¶École Polytechnique Fédérale de Lausanne
Saarbrücken, Germany Lausanne, Switzerland

Abstract—We present an outline of the field of Design Un-
derstanding and summarize state-of-the-art research in deriving
human-understandable knowledge in form of logic properties
from an unknown design.

Index Terms—Design understanding, temporal logics, specifi-
cation, verification, synthesis, assertions, properties

I. INTRODUCTION

Design understanding is the process of reconstructing human-
understandable knowledge from an unknown design. This
problem arises frequently in practice, e.g., when a part of a
design fails or behaves unexpectedly and needs to be debugged,
but the initial designer of this part left the design team. In
such a situation, the documentation of the design, which is still
under development, is often not available, still incomplete, or
deviates from the actually implemented behavior. Automated
design understanding tools can then be used to assist a human
in gaining an understanding of the design and implementing
the required changes. Overall, automated design understanding
has a great potential to improve fault localization, reduce time-
to-market, and improve product quality.

However, design understanding is also a fuzzy process
and until today no commonly accepted formalism, notation,
and methodology for extracting design knowledge from an
unknown implementation exist. We argue that properties written
in a formal language—the standard formalism in formal
verification—are not only useful to describe the input-output
semantics of a system, but also capable of describing the
interior behavior of a design in a human-understandable manner.
Particular temporal logics, that describe relationships between
signals of a circuit implementation over time, are attractive. We
envision that a design understanding tool derives knowledge
in form of temporal-logic formulæ from an unknown design.
Such a tool can be useful in various situations:

1) Reverse engineering: When the intent of a design is not
known or its Register-Transfer Level (RTL) specification
got lost over the years, making sense of a gate level
description (particularly after heavy optimization) is often
impossible for humans. Automated design understanding
tools have the potential to isolate a few core properties
that give an idea of the overall usage of the design.

*This research was supported by H2020-ERC-2014-ADG 669354 CyberCare
and by the German Research Foundation (DFG) under the project ASDPS (JA
2357/2-1).

2) Debugging: Finding and fixing bugs in a design is often
a complicated and time-consuming task. Automatically
generated properties can assist in spotting faults more
quickly, e.g., when the reported properties slightly deviate
from expectations.

3) Verification: For certain designs, equivalence checking
requires considerable effort. In these cases, checking
simple automatically generated properties may still be
possible due to property-specific abstraction mechanisms.
The property-checks can then be used as a lightweight
approach to increase the confidence in the correctness
of the design or to pinpoint functional differences.

This paper summarizes a special session covering state-
of-the-art research in Design Understanding with a focus
on deriving human-understandable, logic properties from an
unknown implementation in a concise and straight-forward
way.

II. SYNTAX-GUIDED PROPERTY ENUMERATION

Automated assertion generation approaches [3], [17] for RTL
derive properties of a design from simulation data. A formal
verification engine guarantees that the assertions hold on the
design. The derived assertions consequently depend on the
quality and quantity of the simulation data used. Moreover,
the generated assertions often capture cycle-accurate signal
manipulations implemented in the RTL code, which tend to
be long and not easy to understand for humans.

We propose syntax-guided property enumeration [13], a
technique that derives temporal-logic formulæ of bounded
length directly from a design. The idea is inspired by the recent
success of syntax-guided synthesis (SyGuS) [1]. The SyGuS
problem is, given a specification Γ in form of a logic formula
with an uninterpreted symbol F and a context-free grammar G,
to find a syntactic expression ϕ ∈ G such that Γ[F/ϕ] holds
for all possible assignments to the free variables in Γ when F
is replaced by ϕ.

Syntax-guided property enumeration [13] reformulates the
SyGuS problem in the context of temporal logics and model
checking. For a given hardware design S, a list ϕ1, ϕ2, . . . , ϕn

of temporal-logic formulæ is enumerated by unwinding a gram-
mar G. Each formula is model-checked on the design. Satisfied
formulæ are kept and reported to a user, failing formulæ are
used to prune the search space. A termination criterion, e.g.,
in form of a time limit or an upper bound on the maximum
length of a formula, is required to guarantee termination. The978-1-5386-4756-1/18/$31.00 ©2018 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/249328144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Formula
generation

Formula
checking

formula ϕi

pass/fail / i = i+ 1

Context-free
grammar G

Hardware
design S

ϕi passed

1 2

Fig. 1. High-level overview of syntax-guided property enumeration

S ::= AG(F)
V ::= signal
F ::= false | V | (¬F) | (F ∧ F) |

AX(F) | AF(F) | AG(F) | (F)EU(F)

Fig. 2. CTL grammar for invariant generation with start symbol S

overall formula generation process is visualized in Fig. 1 and
consists of two steps: 1) in the formula generation step, a new
temporal-logic formula ϕi is generated from the grammar. 2)
In the formula checking step, the formula ϕi is model-checked
on S. The verdict of model checking is reported to the user
and provided to the formula generation step to enable learning
from previous results.

We have implemented a proof-of-concept of syntax-guided
property enumeration in C++ using the enumeration library
behemoth1 and the model checker IImc [9]. Our implementation
takes as input a gate level circuit design in the AIGER format,
a grammar that describes a fragment of Computation-Tree
Logic (CTL), a bound on the maximal number of logic operators
in a formula, and a time limit in seconds. The implementation
enumerates all formulæ by length and thus guarantees that
shortest and best understandable properties are generated—
assuming that shorter formulæ are easier understood by humans.

In an experiment, we have generated assertions (or invariants)
using our implementation with the gammar in Fig. 2, a
limitation to at most 4 logic operators per formula, and an
overall time limit of 15 minutes for generating invariants. As
signals, we consider all primary outputs and latch outputs of a
design. For evaluation, we use six benchmarks provided with
the model checker IImc. All experiments have been conducted
on a Linux workstation with an Intel Core i7-7820HQ, which
supports up to 8 parallel threads, and 16 GB RAM.

Fig. 3 shows the number of generated invariants and the
number of invariants successfully verified by the model checker.

In a second experiment, we have demonstrated that syntax-
guided property enumeration, due to the independence of
the individual model checking problems, qualifies for multi-
threaded implementation. As shown in Fig. 4, it is possible
to exploit the parallelism capabilities of modern processors to
speed-up invariant generation.

III. ASSERTION REWRITING TO IMPROVE READABILITY

Assertions describe the behavior of a system. They can
be used to verify the consistency between design intent, the
actual implementation, and the specification [6]. This work

1behemoth, https://github.com/hriener/behemoth

Fig. 3. Single-threaded invariant generation (time limit: 15 minutes)

Fig. 4. Multi-threaded invariant generation (time limit: 90s)

proposes a methodology to estimate the quality of an assertion
by analyzing its propositions and to rewrite the assertion to
improve readability for humans. The quality estimation is based
on a metric called Q evaluated with respect to a given test
set of simulation traces. The metric Q is a linear combination
of three metrics adapted from data mining: 1) The support
refers to the number of occurrences of an assertion during
simulation. 2) The Correlation Coefficient (CC) [16] refers
to the dependency between antecedent and consequent of an
assertion. 3) The strength [7] represents an assertion with a
low occurrence but highly correlated to the other assertions
which may cover corner cases.

The proposed methodology utilizes the three metrics to deter-
mine redundant and vague propositions and then generates a set
of new assertions, which is more readable and shorter without
loss of accuracy with respect to the original assertion when code
coverage and fault coverage analyses are taken into account.
Previous works have developed quality estimation techniques
for assertions based on data-mining metrics; however, none
of them have broken assertions down into their propositions
to exercise them. For instance, in [10], an approach has been
proposed that estimates the quality based only on the number
of propositions. In [8], assertion quality is estimated based on
their frequencies and correlation during simulation. The work
does not consider assertions with a low number of frequencies,
which may cover corner cases of a design.

Fig. 5 shows the flow of the proposed methodology. In Step 1,
assertion A is broken down into its propositions. Consider the

A = G(p1 � p2 � p3) X(p4 � p5)

Breaking down first
part of the assertion
into its’ propositions

A1 = G(p1) X(p4 � p5)
A2 = G(p2) X(p4 � p5)
A3 = G(p3) X(p4 � p5)

Pruning
propositions with
lower Q than the
original assertion

A4 = G(p1 � p3) X(p4 � p5)

Calculating quality
of assertions

based on Q using
Contingency Table

Re-producing
assertion

A = G(p1 � p2 � p3) X(p4 � p5)

A4 = G(p1 � p3) X(p4 � p5)
Code

coverage
analysis

Fault
coverage
analysis

It is observed that the
new assertion has the
same level of code and
fault coverage while it

is more readable

Proposed
methodology

Test set

Step 1 Step 2 Step 3

Fig. 5. Overview of the proposed methodology

assertion A = G(p1∧p2∧p3)→ X(p4∧p5) in Linear Temporal
Logic (LTL), which states it always happens that p4 and p5 are
satisfied one simulation instant later than p1, p2 and p3 become
true. The propositions p1, p2, . . . , p5 are composed of invariants
over the signals v1, v2, . . . , such as p1 : (v1 = true) ∧ (v2 >
v3), p2 : v4 = false, p3 : (v4 = false) ∨ (v1 = true), etc. The
assertion A is first broken down into three assertions A1, A2,
and A3 as shown in Fig. 5. In the next step, Step 2, the quality
of assertion A and the three new assertions A1, A2, and A3 are
calculated with the help of the Contingency Table (CT). The CT
represents the relation between antecedent ϕ and consequent
ψ for each assertion A for form A = (ϕ→ ψ) and counts the
occurrences of ϕ and ψ.

Looking at (1), f11 represents the number of times where ϕ
and ψ are true during simulation. f10 represents the number
of times where ϕ is true but ψ is false. f01 is the dual of f10,
i.e., it is the number of times where ϕ is false and ψ is true
during simulation. f00 is the number of times an assertion is
not true through the simulation. f1X is the sum of f11 and
f10, f0X is the sum of f01 and f00 and so on. For more detail
in calculating metric Q based on the CT please refer to [8]
and [7]. The formula of Q is equal to:

Q(A) =
f11
fXX

+
f11fXX − f1XfX1√
f1Xf0XfX1fX0

+

√
f211

|fX1 − fX0| · |f1X − f0X |

(1)

At this step the quality of all the assertions are estimated.
The assertions with the lower degree of quality than the
original one are discarded. In Step 3 the antecedents of all
the remained assertions are recomposed together to reproduce
a more readable and shorter assertion with respect to the
original one. We supported the effectiveness of the proposed
methodology with code coverage and fault coverage analysis.

We broke 6 assertions from an LBDR design (one compo-
nents of a router) down into 28 new assertions: 5 of these
new assertions had a lower degree of Q with respect to the
original assertion and were pruned. The final assertion set was

reproduced and exercised with code and fault analysis. 331
faults were injected to the design. The original assertions and
the final set detected the same number of faults i.e., 301, while
100% of the code were covered.

Experimental results show that the proposed methodology
allows us to prune vague and useless propositions in assertions
without loss of accuracy when fault and code coverage analyses
are taken into account.

IV. UNDERSTANDING FORMAL SPECIFICATIONS

Using formal languages to specify properties that a system
should or does satisfy has undeniable benefits: a fixed, formal
semantics of the statements, as well as (the possibility of)
formal proofs that the statement indeed holds. However, when
formal languages are used to describe the intended behavior
of a design, say in formal verification or synthesis, it is often
difficult to write specifications that accurately reflect the intent
of the designer. We argue that this is because of a gap between
the formal semantics and the perceived meaning by a human
designer, which must therefore also be taken into account in
design understanding.

For example, consider the linear temporal logic specification

(GF r ∧ G (r → X (¬rW g)))→ G (r → X g) ,

where r stands for a request that is issued by the environment,
and g for a grant action triggered by the system under design.
Intuitively, the formula states that the environment should never
completely stop sending requests, and that after every request
it waits until it was granted before sending a new request.
Under this assumption, the system should grant every request
one step after it appeared. Now, which systems do satisfy this
specification? On the one hand, every system that grants a
request one step after it appeared. But on the other hand, this
specification is also satisfied by a system that never grants a
request, because this forces the environment to stop sending
requests, which means that the first part of the assumption will
be violated.

While an expert in temporal logics may detect such pitfalls,
one must take into account that this is a very simple example.
Actual specifications of a system, in particular if they are
automatically generated by a process for design understanding,
may be much more complex.

In the following we consider some common pitfalls in writing
specifications for verification and synthesis, try to predict what
this might mean for design understanding, and offer a few
directions that may be worth investigating in the future.

The example above highlights a problem that is very common
in formal synthesis (and to some extent also verification):
virtually no system runs on its own, but instead we have to
consider its behavior in communication with other systems, or
as one of many components of the same system. To obtain
scalable formal methods for analysis and design, we need to
be able to decompose systems into their components, which
in turn requires that the specification of any component also
contains the necessary assumptions on other components.

However, writing good formal assumptions is highly non-
trivial. Two reasons make it particularly challenging:

1) By the standard interpretation of temporal logics like
LTL, assumptions are interpreted in a worst-case manner.
That is, we can only assume exactly what is specified, and
in all other cases we have to expect utmost hostility from
the other components. On the one hand, this is the only
sound way to interpret assumptions. On the other hand,
such an interpretation is overly pessimistic if we consider
a system of components that are really intended to co-
operate. Further, the worst-case interpretation requires
specifications to be overly specific, which makes it harder
for the other components of the system to satisfy them,
and harder for a human to understand and write correctly.

2) Again by the standard interpretation of LTL, a specifi-
cation of the form ϕ→ ψ is satisfied if the assumption
ϕ does not hold. As we have seen above, such a
specification can of course be satisfied by fulfilling the
guarantee, but in some cases the system can also force
the environment to violate the assumptions in order to
satisfy the specification.

Assume-guarantee reasoning [11], [14] and vacuity-
detection [12] provide frameworks to handle these problems
in verification. In synthesis, Bloem et al. [2] have considered
these problems, among others, when handling assumptions in
synthesis. When using automated methods for automatically
generating a specification for a given system, we may well run
into the dual problem: while the specification states exactly
what the system does, the human designer may interpret it in a
wrong way because of somewhat counter-intuitive corner-cases
in the semantics of temporal logics.

For the problems above in particular, a possible solution
would be to highlight such potential corner-cases, or otherwise
increase the awareness of their existence. In general however,
while we cannot solve the problem completely, we advocate
to minimize it by guiding the automatic generation of for-
mal properties towards statements that are less likely to be
misinterpreted.

One obvious way to make formal statements understandable
is to keep them short or simple, informally spoken. Formally,
this may mean different things. Let us again look at the dual
problem of formal synthesis. There, one tries to obtain systems
that are human-understandable in a number of different ways:

• by starting from predefined sketches [15],
• by supplying a predefined grammar [1],
• by bounding their size [5], or
• by bounding more complex metrics of the implementation,

such as the number of cycles in the state machine [4].

All of these give rise to similar approaches that could be
taken when generating a specification from a given system.
These approaches are:

• using predefined templates of properties, for each of which
the intuitive meaning is clear or can be supplied to the
designer,

• using a fixed grammar that is limited in a way as to make
the resulting formulas clear and easy to understand,

• bounding the size of formulas with respect to standard
metrics such as length, number of different subformulas,
nesting depth of temporal operators, etc., or

• bounding the formulas under more complex metrics that
correlate with human understanding of the property. This
may include a small representation by an accepting
automaton, the decomposition of the overall property
into several (largely) independent and easy to understand
properties, or, vice versa, the generalization of several
related properties into one property that subsumes them.

The proposed property mining approaches described in the
previous sections already show the benefits of some of these
considerations.

V. CONCLUSION

In this paper, we have provided an overview of state-of-the-
art research in the field of Design Understanding focusing on
techniques to derive readable properties in temporal logic from
an unknown hardware design.

REFERENCES

[1] R. Alur, R. Bodı́k, E. Dallal, D. Fisman, P. Garg, G. Juniwal, H. Kress-
Gazit, P. Madhusudan, M. M. K. Martin, M. Raghothaman, S. Saha,
S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa.
Syntax-guided synthesis. In Dependable Software Systems Engineering,
pages 1–25. IOS Press, 2015.

[2] R. Bloem, R. Ehlers, S. Jacobs, and R. Könighofer. How to handle
assumptions in synthesis. In SYNT, volume 157 of EPTCS, pages 34–50,
2014.

[3] A. DeOrio, A. Bauserman, V. Bertacco, and B. Isaksen. Inferno:
Streamlining verification with inferred semantics. TCAD, 28(5):728–
741, 2009.

[4] B. Finkbeiner and F. Klein. Bounded cycle synthesis. In CAV, volume
9779 of LNCS, pages 118–135, 2016.

[5] B. Finkbeiner and S. Schewe. Bounded synthesis. STTT, 15(5-6):519–539,
2013.

[6] H. Foster, A. Krolnik, and D. Lacey. Assertion-based design (2. ed.).
Kluwer, 2004.

[7] T. Ghasempouri, S. Payandeh Azad, B. Niazmand, and J. Raik. An
automatic approach to evaluate assertions’ quality based on data-mining
metrics. In ITC-Asia, 2018.

[8] T. Ghasempouri and G. Pravadelli. On the estimation of assertion
interestingness. In VLSI-SoC, pages 325–330, 2015.

[9] Z. Hassan, A. R. Bradley, and F. Somenzi. Incremental, inductive CTL
model checking. In CAV, volume 7358 of LNCS, pages 532–547, 2012.

[10] S. Hertz, D. Sheridan, and S. Vasudevan. Mining hardware assertions
with guidance from static analysis. TCAD, 32(6):952–965, 2013.

[11] C. B. Jones. Software development based on formal methods. In WSFA,
pages 153–172, 1986.

[12] O. Kupferman and M. Y. Vardi. Vacuity detection in temporal model
checking. STTT, 4(2):224–233, 2003.

[13] G. Martino, H. Riener, and G. Fey. Coverage-guided CTL property
enumeration for understanding models of reactive systems. In IWLS,
2018.

[14] A. Pnueli. In transition from global to modular temporal reasoning
about programs. In Krzysztof R. Apt, editor, Logics and Models of
Concurrent Systems, pages 123–144, Berlin, Heidelberg, 1985. Springer
Berlin Heidelberg.

[15] A. Solar-Lezama. The sketching approach to program synthesis. In
APLAS, volume 5904 of LNCS, pages 4–13, 2009.

[16] P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the right interestingness
measure for association patterns. In KDD, pages 32–41, 2002.

[17] S. Vasudevan, D. Sheridan, S. J. Patel, D. Tcheng, W. Tuohy, and D. R.
Johnson. GoldMine: Automatic assertion generation using data mining
and static analysis. In DATE, pages 626–629, 2010.

