21,562 research outputs found

    A heuristic-based approach to code-smell detection

    Get PDF
    Encapsulation and data hiding are central tenets of the object oriented paradigm. Deciding what data and behaviour to form into a class and where to draw the line between its public and private details can make the difference between a class that is an understandable, flexible and reusable abstraction and one which is not. This decision is a difficult one and may easily result in poor encapsulation which can then have serious implications for a number of system qualities. It is often hard to identify such encapsulation problems within large software systems until they cause a maintenance problem (which is usually too late) and attempting to perform such analysis manually can also be tedious and error prone. Two of the common encapsulation problems that can arise as a consequence of this decomposition process are data classes and god classes. Typically, these two problems occur together – data classes are lacking in functionality that has typically been sucked into an over-complicated and domineering god class. This paper describes the architecture of a tool which automatically detects data and god classes that has been developed as a plug-in for the Eclipse IDE. The technique has been evaluated in a controlled study on two large open source systems which compare the tool results to similar work by Marinescu, who employs a metrics-based approach to detecting such features. The study provides some valuable insights into the strengths and weaknesses of the two approache

    Survey over Existing Query and Transformation Languages

    Get PDF
    A widely acknowledged obstacle for realizing the vision of the Semantic Web is the inability of many current Semantic Web approaches to cope with data available in such diverging representation formalisms as XML, RDF, or Topic Maps. A common query language is the first step to allow transparent access to data in any of these formats. To further the understanding of the requirements and approaches proposed for query languages in the conventional as well as the Semantic Web, this report surveys a large number of query languages for accessing XML, RDF, or Topic Maps. This is the first systematic survey to consider query languages from all these areas. From the detailed survey of these query languages, a common classification scheme is derived that is useful for understanding and differentiating languages within and among all three areas

    Syntax-aware Hybrid prompt model for Few-shot multi-modal sentiment analysis

    Full text link
    Multimodal Sentiment Analysis (MSA) has been a popular topic in natural language processing nowadays, at both sentence and aspect level. However, the existing approaches almost require large-size labeled datasets, which bring about large consumption of time and resources. Therefore, it is practical to explore the method for few-shot sentiment analysis in cross-modalities. Previous works generally execute on textual modality, using the prompt-based methods, mainly two types: hand-crafted prompts and learnable prompts. The existing approach in few-shot multi-modality sentiment analysis task has utilized both methods, separately. We further design a hybrid pattern that can combine one or more fixed hand-crafted prompts and learnable prompts and utilize the attention mechanisms to optimize the prompt encoder. The experiments on both sentence-level and aspect-level datasets prove that we get a significant outperformance

    Let's Rectify Step by Step: Improving Aspect-based Sentiment Analysis with Diffusion Models

    Full text link
    Aspect-Based Sentiment Analysis (ABSA) stands as a crucial task in predicting the sentiment polarity associated with identified aspects within text. However, a notable challenge in ABSA lies in precisely determining the aspects' boundaries (start and end indices), especially for long ones, due to users' colloquial expressions. We propose DiffusionABSA, a novel diffusion model tailored for ABSA, which extracts the aspects progressively step by step. Particularly, DiffusionABSA gradually adds noise to the aspect terms in the training process, subsequently learning a denoising process that progressively restores these terms in a reverse manner. To estimate the boundaries, we design a denoising neural network enhanced by a syntax-aware temporal attention mechanism to chronologically capture the interplay between aspects and surrounding text. Empirical evaluations conducted on eight benchmark datasets underscore the compelling advantages offered by DiffusionABSA when compared against robust baseline models. Our code is publicly available at https://github.com/Qlb6x/DiffusionABSA.Comment: Accepted to LREC-COLING 2024, submission versio

    Syntax-Informed Interactive Model for Comprehensive Aspect-Based Sentiment Analysis

    Full text link
    Aspect-based sentiment analysis (ABSA), a nuanced task in text analysis, seeks to discern sentiment orientation linked to specific aspect terms in text. Traditional approaches often overlook or inadequately model the explicit syntactic structures of sentences, crucial for effective aspect term identification and sentiment determination. Addressing this gap, we introduce an innovative model: Syntactic Dependency Enhanced Multi-Task Interaction Architecture (SDEMTIA) for comprehensive ABSA. Our approach innovatively exploits syntactic knowledge (dependency relations and types) using a specialized Syntactic Dependency Embedded Interactive Network (SDEIN). We also incorporate a novel and efficient message-passing mechanism within a multi-task learning framework to bolster learning efficacy. Our extensive experiments on benchmark datasets showcase our model's superiority, significantly surpassing existing methods. Additionally, incorporating BERT as an auxiliary feature extractor further enhances our model's performance

    Integrative Use of Information Extraction, Semantic Matchmaking and Adaptive Coupling Techniques in Support of Distributed Information Processing and Decision-Making

    No full text
    In order to press maximal cognitive benefit from their social, technological and informational environments, military coalitions need to understand how best to exploit available information assets as well as how best to organize their socially-distributed information processing activities. The International Technology Alliance (ITA) program is beginning to address the challenges associated with enhanced cognition in military coalition environments by integrating a variety of research and development efforts. In particular, research in one component of the ITA ('Project 4: Shared Understanding and Information Exploitation') is seeking to develop capabilities that enable military coalitions to better exploit and distribute networked information assets in the service of collective cognitive outcomes (e.g. improved decision-making). In this paper, we provide an overview of the various research activities in Project 4. We also show how these research activities complement one another in terms of supporting coalition-based collective cognition
    corecore