1,656 research outputs found

    A formal soundness proof of region-based memory management for object-oriented paradigm.

    Get PDF
    Region-based memory management has been proposed as a viable alternative to garbage collection for real-time applications and embedded software. In our previous work we have developed a region type inference algorithm that provides an automatic compile-time region-based memory management for object-oriented paradigm. In this work we present a formal soundness proof of the region type system that is the target of our region inference. More precisely, we prove that the object-oriented programs accepted by our region type system achieve region-based memory management in a safe way. That means, the regions follow a stack-of-regions discipline and regions deallocation never create dangling references in the store and on the program stack. Our contribution is to provide a simple syntactic proof that is based on induction and follows the standard steps of a type safety proof. In contrast the previous safety proofs provided for other region type systems employ quite elaborate techniques

    Koka: Programming with Row Polymorphic Effect Types

    Full text link
    We propose a programming model where effects are treated in a disciplined way, and where the potential side-effects of a function are apparent in its type signature. The type and effect of expressions can also be inferred automatically, and we describe a polymorphic type inference system based on Hindley-Milner style inference. A novel feature is that we support polymorphic effects through row-polymorphism using duplicate labels. Moreover, we show that our effects are not just syntactic labels but have a deep semantic connection to the program. For example, if an expression can be typed without an exn effect, then it will never throw an unhandled exception. Similar to Haskell's `runST` we show how we can safely encapsulate stateful operations. Through the state effect, we can also safely combine state with let-polymorphism without needing either imperative type variables or a syntactic value restriction. Finally, our system is implemented fully in a new language called Koka and has been used successfully on various small to medium-sized sample programs ranging from a Markdown processor to a tier-splitted chat application. You can try out Koka live at www.rise4fun.com/koka/tutorial.Comment: In Proceedings MSFP 2014, arXiv:1406.153

    CPL: A Core Language for Cloud Computing -- Technical Report

    Full text link
    Running distributed applications in the cloud involves deployment. That is, distribution and configuration of application services and middleware infrastructure. The considerable complexity of these tasks resulted in the emergence of declarative JSON-based domain-specific deployment languages to develop deployment programs. However, existing deployment programs unsafely compose artifacts written in different languages, leading to bugs that are hard to detect before run time. Furthermore, deployment languages do not provide extension points for custom implementations of existing cloud services such as application-specific load balancing policies. To address these shortcomings, we propose CPL (Cloud Platform Language), a statically-typed core language for programming both distributed applications as well as their deployment on a cloud platform. In CPL, application services and deployment programs interact through statically typed, extensible interfaces, and an application can trigger further deployment at run time. We provide a formal semantics of CPL and demonstrate that it enables type-safe, composable and extensible libraries of service combinators, such as load balancing and fault tolerance.Comment: Technical report accompanying the MODULARITY '16 submissio

    The Structure of Differential Invariants and Differential Cut Elimination

    Full text link
    The biggest challenge in hybrid systems verification is the handling of differential equations. Because computable closed-form solutions only exist for very simple differential equations, proof certificates have been proposed for more scalable verification. Search procedures for these proof certificates are still rather ad-hoc, though, because the problem structure is only understood poorly. We investigate differential invariants, which define an induction principle for differential equations and which can be checked for invariance along a differential equation just by using their differential structure, without having to solve them. We study the structural properties of differential invariants. To analyze trade-offs for proof search complexity, we identify more than a dozen relations between several classes of differential invariants and compare their deductive power. As our main results, we analyze the deductive power of differential cuts and the deductive power of differential invariants with auxiliary differential variables. We refute the differential cut elimination hypothesis and show that, unlike standard cuts, differential cuts are fundamental proof principles that strictly increase the deductive power. We also prove that the deductive power increases further when adding auxiliary differential variables to the dynamics
    corecore